Skip to main content
Log in

The synthesis of MOF derived carbon and its application in water treatment

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In recent years, since water pollution has aroused great public concern, various carbon materials have already been widely applied for water treatment. In this respect, tremendous effort has been made to provide different synthesis methods of carbon materials. Among all carbon materials, metal-organic framework (MOF) derived carbon has always been favored as it possesses several appealing merits such as high specific surface area, large pore volume, and outstanding chemical stability. This review presents the latest development of MOFs as templates and precursors for the fabrication of various carbon materials, including porous carbon, nanocarbon, and graphene, which are pyrolyzed at different temperatures. The article also emphasizes on their future trends and perspectives on the application of water treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huang, N.; Zhai, L. P.; Xu, H.; Jiang, D. L. Stable covalent organic frameworks for exceptional mercury removal from aqueous solutions. J. Am. Chem. Soc. 2017, 139, 2428–2434.

    CAS  Google Scholar 

  2. Howarth, A. J.; Katz, M. J.; Wang, T. C.; Platero-Prats, A. E.; Chapman, K. W.; Hupp, J. T.; Farha, O. K. High efficiency adsorption and removal of selenate and selenite from water using metal-organic frameworks. J. Am. Chem. Soc. 2015, 137, 7488–7494.

    CAS  Google Scholar 

  3. Yu, C. Q.; Huang, X.; Chen, H.; Godfray, H. C. J.; Wright, J. S.; Hall, J. W.; Gong, P.; Ni, S. Q.; Qiao, S. C.; Huang, G. R. et al. Managing nitrogen to restore water quality in China. Nature 2019, 567, 516–520.

    CAS  Google Scholar 

  4. Han, Y.; Xu, Z.; Gao, C. Ultrathin graphene nanofiltration membrane for water purification. Adv. Funct. Mater. 2013, 23, 3693–3700.

    CAS  Google Scholar 

  5. Fard, A. K.; McKay, G.; Buekenhoudt, A.; Al Sulaiti, H.; Motmans, F.; Khraisheh, M.; Atieh, M. Inorganic membranes: Preparation and application for water treatment and desalination. Materials 2018, 11, 74.

    Google Scholar 

  6. Maćczak, P.; Kaczmarek, H.; Ziegler-Borowska, M. Recent achievements in polymer bio-based flocculants for water treatment. Materials 2020, 13, 3951.

    Google Scholar 

  7. Ihsanullah. Carbon nanotube membranes for water purification: Developments, challenges, and prospects for the future. Sep. Purif. Technol. 2019, 209, 307–337.

    CAS  Google Scholar 

  8. Hilder, T. A.; Gordon, D.; Chung, S. H. Salt rejection and water transport through boron nitride nanotubes. Small 2009, 5, 2183–2190.

    CAS  Google Scholar 

  9. Xie, B. H.; Shan, C.; Xu, Z.; Li, X. C.; Zhang, X. L.; Chen, J. J.; Pan, B. C. One-step removal of Cr(VI) at alkaline pH by UV/sulfite process: Reduction to Cr(III) and in situ Cr(III) precipitation. Chem. Eng. J. 2017, 308, 791–797.

    CAS  Google Scholar 

  10. Krzywicka, A. Kwarciak-Kozłowska, A. Advanced oxidation processes with coke plant wastewater treatment. Water Sci. Technol. 2014, 69, 1875–1878.

    CAS  Google Scholar 

  11. Bhadra, B. N.; Lee, J. K.; Cho, C. W.; Jhung, S. H. Remarkably efficient adsorbent for the removal of bisphenol A from water: Bio-MOF-1-derived porous carbon. Chem. Eng. J. 2018, 343, 225–234.

    CAS  Google Scholar 

  12. Zhang, J.; Fang, J. H.; Han, J. L.; Yan, T. T.; Shi, L. Y.; Zhang, D. S. N, P, S co-doped hollow carbon polyhedra derived from MOF-based core-shell nanocomposites for capacitive deionization. J. Mater. Chem. A 2018, 6, 15245–15252.

    CAS  Google Scholar 

  13. Bhadra, B. N.; Ahmed, I.; Kim, S.; Jhung, S. H. Adsorptive removal of ibuprofen and diclofenac from water using metal-organic framework-derived porous carbon. Chem. Eng. J. 2017, 314, 50–58.

    CAS  Google Scholar 

  14. Rego, R. M.; Kuriya, G.; Kurkuri, M. D.; Kigga, M. MOF based engineered materials in water remediation: Recent trends. J. Hazard. Mater. 2021, 403, 123605.

    CAS  Google Scholar 

  15. Cao, J.; Sun, S. W.; Li, X.; Yang, Z. H.; Xiong, W. P.; Wu, Y.; Jia, M. Y.; Zhou, Y. Y.; Zhou, C. Y.; Zhang, Y. R. Efficient charge transfer in aluminum-cobalt layered double hydroxide derived from Co-ZIF for enhanced catalytic degradation of tetracycline through peroxymonosulfate activation. Chem. Eng. J. 2020, 382, 122802.

    CAS  Google Scholar 

  16. Wang, H.; Chen, B. H.; Liu, D. J.; Xu, X. T.; Osmieri, L.; Yamauchi, Y. Nanoarchitectonics of metal-organic frameworks for capacitive deionization via controlled pyrolyzed approaches. Small 2022, 18, 2102477.

    CAS  Google Scholar 

  17. Qiu, S. L.; Xue, M.; Zhu, G. S. Metal-organic framework membranes: From synthesis to separation application. Chem. Soc. Rev. 2014, 43, 6116–6140.

    CAS  Google Scholar 

  18. Xu, J.; Zhu, X.; Jia, X. L. From low- to high-crystallinity bimetal-organic framework nanosheet with highly exposed boundaries: An efficient and stable electrocatalyst for oxygen evolution reaction. ACS Sustainable Chem. Eng. 2019, 3, 16629–16639.

    Google Scholar 

  19. Feng, L.; Yuan, S.; Zhang, L. L.; Tan, K.; Li, J. L.; Kirchon, A.; Liu, L. M.; Zhang, P.; Han, Y.; Chabal, Y. J. et al. Creating hierarchical pores by controlled linker thermolysis in multivariate metal-organic frameworks. J. Am. Chem. Soc. 2018, 140, 2363–2372.

    CAS  Google Scholar 

  20. Yang, J. J.; Qin, J. X.; Guo, Z. Y.; Hu, Y.; Zhang, X. Zn-based metal organic framework derivative with uniform metal sites and hierarchical pores for efficient adsorption of formaldehyde. Chin. Chem. Lett. 2021, 32, 1819–1822.

    CAS  Google Scholar 

  21. Zou, K. Y.; Li, Z. X. Controllable syntheses of MOF-derived materials. Chem.—Eur. J. 2018, 24, 6506–6518.

    CAS  Google Scholar 

  22. Lü, Y. Y.; Wang, Y. T.; Li, H. L.; Lin, Y.; Jiang, Z. Y.; Xie, Z. X.; Kuang, Q.; Zheng, L. S. MOF-derived porous Co/C nanocomposites with excellent electromagnetic wave absorption properties. ACS Appl. Mater. Interfaces 2015, 3, 13604–13611.

    Google Scholar 

  23. Chu, X. Y.; Meng, F. L.; Deng, T.; Zhang, W. Metal organic framework derived porous carbon materials excel as an excellent platform for high-performance packaged supercapacitors. Nanoscale 2021, 13, 5570–5593.

    CAS  Google Scholar 

  24. Yang, W. P.; Li, X. X.; Li, Y.; Zhu, R. M.; Pang, H. Applications of metal-organic-framework-derived carbon materials. Adv. Mater. 2019, 31, 1804740.

    Google Scholar 

  25. Zhao, S. Y.; Li, S.; Long, Y. K.; Shen, X. H.; Zhao, Z. C.; Wei, Q. L.; Wang, S. B.; Zhang, Z.; Zhang, X. J.; Zhang, Z. T. Ce-based heterogeneous catalysts by partial thermal decomposition of Ce-MOFs in activation of peroxymonosulfate for the removal of organic pollutants under visible light. Chemosphere 2021, 280, 130637.

    CAS  Google Scholar 

  26. Huo, J. B.; Yu, G. C.; Xu, L.; Fu, M. L. Porous walnut-like La2O2CO3 derived from metal-organic frameworks for arsenate removal: A study of kinetics, isotherms, and mechanism. Chemosphere 2021, 271, 129528.

    CAS  Google Scholar 

  27. Tian, W. J.; Zhang, H. Y.; Duan, X. G.; Sun, H. Q.; Shao, G. S.; Wang, S. B. Porous carbons: Structure-oriented design and versatile applications. Adv. Funct. Mater. 2020, 30, 1909265.

    CAS  Google Scholar 

  28. Kaneti, Y. V.; Tang, J.; Salunkhe, R. R.; Jiang, X. C.; Yu, A. B.; Wu, K. C. W.; Yamauchi, Y. Nanoarchitectured design of porous materials and nanocomposites from metal-organic frameworks. Adv. Mater. 2017, 29, 1604898.

    Google Scholar 

  29. Wang, G. L.; Chen, S.; Quan, X.; Yu, H. T.; Zhang, Y. B. Enhanced activation of peroxymonosulfate by nitrogen doped porous carbon for effective removal of organic pollutants. Carbon 2017, 115, 730–739.

    CAS  Google Scholar 

  30. Ma, W. J.; Wang, N.; Fan, Y. N.; Tong, T. Z.; Han, X. J.; Du, Y. C. Non-radical-dominated catalytic degradation of bisphenol A by ZIF-67 derived nitrogen-doped carbon nanotubes frameworks in the presence of peroxymonosulfate. Chem. Eng. J. 2018, 336, 721–731.

    CAS  Google Scholar 

  31. Liang, C. H.; Tang, Y.; Zhang, X. D.; Chai, H. X.; Huang, Y. M.; Feng, P. ZIF-mediated N-doped hollow porous carbon as a high performance adsorbent for tetracycline removal from water with wide pH range. Environ. Res. 2020, 182, 109059.

    CAS  Google Scholar 

  32. Fang, X. Z.; Jiang, Y.; Zhang, K. L.; Hu, G.; Hu, W. W. MOF-derived fluorine and nitrogen co-doped porous carbon for an integrated membrane in lithium-sulfur batteries. New J. Chem. 2021, 45, 2361–2365.

    CAS  Google Scholar 

  33. Guo, J. R.; Xu, X. T.; Hill, J. P.; Wang, L. P.; Dang, J. J.; Kang, Y. Q.; Li, Y. L.; Guan, W. S.; Yamauchi, Y. Graphene-carbon 2D heterostructures with hierarchically-porous P,N-doped layered architecture for capacitive deionization. Chem. Sci. 2021, 22, 10334–10340.

    Google Scholar 

  34. Yue, M. L.; Yu, C. Y.; Duan, H. H.; Yang, B. L.; Meng, X. X.; Li, Z. X. Six isomorphous window-beam MOFs: Explore the effects of metal ions on MOF-derived carbon for supercapacitors. Chem.—Eur. J. 2018, 24, 16160–16169.

    CAS  Google Scholar 

  35. Bhattacharyya, S.; Konkena, B.; Jayaramulu, K.; Schuhmann, W.; Maji, T. K. Synthesis of nano-porous carbon and nitrogen doped carbon dots from an anionic MOF: A trace cobalt metal residue in carbon dots promotes electrocatalytic ORR activity. J. Mater. Chem. A 2017, 5, 13573–13580.

    CAS  Google Scholar 

  36. Liu, Q. T.; Liu, X. F.; Feng, H. B.; Shui, H. C.; Yu, R. H. Metal organic framework-derived Fe/carbon porous composite with low Fe content for lightweight and highly efficient electromagnetic wave absorber. Chem. Eng. J. 2017, 314, 320–327.

    CAS  Google Scholar 

  37. Huang, J. W.; Chen, Y. B.; Yang, J. M.; Zhu, H. B.; Yang, H. Boosting the oxygen reduction performance of MOF-5-derived Fe-N-C electrocatalysts via a dual strategy of cation-exchange and guest-encapsulation. Electrochim. Acta 2021, 366, 137408.

    CAS  Google Scholar 

  38. Zhang, S. L.; Guan, B. Y.; Lou, X. W. Co-Fe alloy/N-doped carbon hollow spheres derived from dual metal-organic frameworks for enhanced electrocatalytic oxygen reduction. Small 2019, 15, 1805324.

    Google Scholar 

  39. Carrasco, J. A.; Romero, J.; Abellán, G.; Hernández-Saz, J.; Molina, S. I.; Martí-Gastaldo, C.; Coronado, E. Small-pore driven high capacitance in a hierarchical carbon via carbonization of Ni-MOF-74 at low temperatures. Chem. Commun. 2016, 22, 9141–9144.

    Google Scholar 

  40. Xu, X. T.; Yang, T.; Zhang, Q. W.; Xia, W.; Ding, Z. B.; Eid, K.; Abdullah, A. M.; Hossain, S. A.; Zhang, S. H.; Tang, J. et al. Ultrahigh capacitive deionization performance by 3D interconnected MOF-derived nitrogen-doped carbon tubes. Chem. Eng. J. 2020, 390, 124493.

    CAS  Google Scholar 

  41. Xu, S. Z.; Lv, Y. L.; Zeng, X. F.; Cao, D. P. ZIF-derived nitrogen-doped porous carbons as highly efficient adsorbents for removal of organic compounds from wastewater. Chem. Eng. J. 2017, 323, 502–511.

    CAS  Google Scholar 

  42. Weng, J. Z.; Wang, S. Y.; Zhang, P. X.; Li, C. P.; Wang, G. A review of metal-organic framework-derived carbon electrode materials for capacitive deionization. New Carbon Mater. 2021, 36, 117–132.

    Google Scholar 

  43. Joseph, L.; Jun, B. M.; Jang, M.; Park, C. M.; Muñoz-Senmache, J. C.; Hernández-Maldonado, A. J.; Heyden, A.; Yu, M.; Yoon, Y. Removal of contaminants of emerging concern by metal-organic framework nanoadsorbents: A review. Chem. Eng. J. 2019, 369, 928–946.

    CAS  Google Scholar 

  44. Wang, H. F.; Chen, L. Y.; Pang, H.; Kaskel, S.; Xu, Q. MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions. Chem. Soc. Rev. 2020, 49, 1414–1448.

    CAS  Google Scholar 

  45. ben Mosbah, M.; Mechi, L.; Khiari, R.; Moussaoui, Y. Current state of porous carbon for wastewater treatment. Processes 2020, 8, 1651.

    Google Scholar 

  46. Lin, P.; Liao, M. X.; Yang, T.; Sheng, X. R.; Wu, Y.; Xu, X. T. Modification of metal-organic framework-derived nanocarbons for enhanced capacitive deionization performance: A mini-review. Front. Chem. 2020, 8, 575350.

    CAS  Google Scholar 

  47. Yan, T. T.; Xing, G. L.; Ben, T. One-step strategy to synthesize porous carbons by carbonized porous organic materials and their applications. Acta Chim. Sin. 2018, 76, 366–376.

    CAS  Google Scholar 

  48. Wu, F. M.; Gao, J. P.; Zhai, X. G.; Xie, M. H.; Sun, Y.; Kang, H. Y.; Tian, Q.; Qiu, H. X. Hierarchical porous carbon microrods derived from albizia flowers for high performance supercapacitors. Carbon 2019, 147, 242–251.

    CAS  Google Scholar 

  49. Sevilla, M.; Mokaya, R. Energy storage applications of activated carbons: Supercapacitors and hydrogen storage. Energy Environ. Sci. 2014, 7, 1250–1280.

    CAS  Google Scholar 

  50. Zhang, C.; Kong, R.; Wang, X.; Xu, Y. F.; Wang, F.; Ren, W. F.; Wang, Y. H.; Su, F. B.; Jiang, J. X. Porous carbons derived from hypercrosslinked porous polymers for gas adsorption and energy storage. Carbon 2017, 114, 608–618.

    CAS  Google Scholar 

  51. Zhang, X.; Chen, A.; Zhong, M.; Zhang, Z. H.; Zhang, X.; Zhou, Z.; Bu, X. H. Metal-organic frameworks (MOFs) and MOF-derived materials for energy storage and conversion. Electrochem. Energy Rev. 2019, 2, 29–104.

    CAS  Google Scholar 

  52. Wang, J. S.; Zhang, X.; Li, Z.; Ma, Y. Q.; Ma, L. Recent progress of biomass-derived carbon materials for supercapacitors. J. Power Sources 2020, 451, 227794.

    CAS  Google Scholar 

  53. Shen, F. H.; Liu, J.; Wu, D. W.; Dong, Y. C.; Liu, F.; Huang, H. Design of O2/SO2 dual-doped porous carbon as superior sorbent for elemental mercury removal from flue gas. J. Hazard. Mater. 2019, 366, 321–328.

    CAS  Google Scholar 

  54. Bae, Y. S.; Snurr, R. Q. Development and evaluation of porous materials for carbon dioxide separation and capture. Angew. Chem. Int. Ed. 2011, 50, 11586–11596.

    CAS  Google Scholar 

  55. Sevilla, M.; Fuertes, A. B. Sustainable porous carbons with a superior performance for CO2 capture. Energy Environ. Sci. 2011, 4, 1765–1771.

    CAS  Google Scholar 

  56. Li, M. M.; Xu, F.; Li, H. R.; Wang, Y. Nitrogen-doped porous carbon materials: Promising catalysts or catalyst supports for heterogeneous hydrogenation and oxidation. Catal. Sci. Technol. 2011, 6, 3670–3693.

    Google Scholar 

  57. Zhang, P.; Sun, F.; Xiang, Z. H.; Shen, Z. G.; Yun, J.; Cao, D. P. ZIF-derived in situ nitrogen-doped porous carbons as efficient metal-free electrocatalysts for oxygen reduction reaction. Energy Environ. Sci. 2014, 7, 442–450.

    CAS  Google Scholar 

  58. Chen, Y. Z.; Zhang, R.; Jiao, L.; Jiang, H. L. Metal-organic framework-derived porous materials for catalysis. Coord. Chem. Rev. 2018, 362, 1–23.

    CAS  Google Scholar 

  59. Liu, B.; Shioyama, H.; Akita, T.; Xu, Q. Metal-organic framework as a template for porous carbon synthesis. J. Am. Chem. Soc. 2008, 130, 5390–5391.

    CAS  Google Scholar 

  60. Hao, M. J.; Qiu, M. Q.; Yang, H.; Hu, B. W.; Wang, X. X. Recent advances on preparation and environmental applications of MOF-derived carbons in catalysis. Sci. Total Environ. 2021, 760, 143333.

    CAS  Google Scholar 

  61. Chen, S. R.; Li, Y. Q.; Mi, L. M. Porous carbon derived from metal organic framework for gas storage and separation: The size effect. Inorg. Chem. Commun. 2020, 118, 107999.

    CAS  Google Scholar 

  62. Li, A.; Tong, Y.; Cao, B.; Song, H. H.; Li, Z. H.; Chen, X. H.; Zhou, J. S.; Chen, G.; Luo, H. M. MOF-derived multifractal porous carbon with ultrahigh lithium-ion storage performance. Sci. Rep. 2017, 7, 40574.

    CAS  Google Scholar 

  63. Chaikittisilp, W.; Ariga, K.; Yamauchi, Y. A new family of carbon materials: Synthesis of MOF-derived nanoporous carbons and their promising applications. J. Mater. Chem. A 2013, 1, 14–19.

    CAS  Google Scholar 

  64. Yang, L.; Zeng, X. F.; Wang, W. C.; Cao, D. P. Recent progress in MOF-derived, heteroatom-doped porous carbons as highly efficient electrocatalysts for oxygen reduction reaction in fuel cells. Adv. Funct. Mater. 2018, 28, 1704537.

    Google Scholar 

  65. Salunkhe, R. R.; Kamachi, Y.; Torad, N. L.; Hwang, S. M.; Sun, Z. Q.; Dou, S. X.; Kim, J. H.; Yamauchi, Y. Fabrication of symmetric supercapacitors based on MOF-derived nanoporous carbons. J. Mater. Chem. A 2014, 2, 19848–19854.

    CAS  Google Scholar 

  66. Hu, H. Y.; Ruan, G. H.; Jiang, X. Q.; Pan, H.; Wu, Z. Q; Huang, Y. P. Enhanced ethopabate adsorption in monodispersed porous carbon derived from zeolitic imidazolate framework-8. New J. Chem. 2022, 46, 8224–8231.

    CAS  Google Scholar 

  67. Zhang, L. J.; Su, Z. X.; Jiang, F. L.; Yang, L. L.; Qian, J. J.; Zhou, Y. F.; Li, W. M.; Hong, M. C. Highly graphitized nitrogen-doped porous carbon nanopolyhedra derived from ZIF-8 nanocrystals as efficient electrocatalysts for oxygen reduction reactions. Nanoscale 2014, 6, 6590–6602.

    CAS  Google Scholar 

  68. Li, X.; Sun, Q.; Liu, J.; Xiao, B. W.; Li, R. Y.; Sun, X. L. Tunable porous structure of metal organic framework derived carbon and the application in lithium-sulfur batteries. J. Power Sources 2016, 302, 174–179.

    CAS  Google Scholar 

  69. Pan, X. T.; Bai, L. X.; Wang, H.; Wu, Q. Y.; Wang, H. Y.; Liu, S.; Xu, B. L.; Shi, X. H.; Liu, H. Y. Metal-organic-framework-derived carbon nanostructure augmented sonodynamic cancer therapy. Adv. Mater. 2018, 30, 1800180.

    Google Scholar 

  70. Xu, H. B.; Zhou, S. H.; Xiao, L. L.; Wang, H. H.; Li, S. Z.; Yuan, Q. H. Fabrication of a nitrogen-doped graphene quantum dot from MOF-derived porous carbon and its application for highly selective fluorescence detection of Fe3+. J. Mater. Chem. C 2015, 3, 291–297.

    CAS  Google Scholar 

  71. Xu, J. W.; Wang, J. G.; Ge, L. H.; Sun, J. R.; Ma, W. Q.; Ren, M. M.; Cai, X. X.; Liu, W. L.; Yao, J. S. ZIF-8 derived porous carbon to mitigate shuttle effect for high performance aqueous zinc-iodine batteries. J. Colloid Interface Sci. 2022, 610, 98–105.

    CAS  Google Scholar 

  72. Li, X. Y.; Zhang, J. L.; Li, W. MOF-derived nitrogen-doped porous carbon as metal-free catalysts for acetylene hydrochlorination. J. Ind. Eng. Chem. 2016, 44, 146–154.

    Google Scholar 

  73. Zhang, Z.; Chen, Y.; Wang, P.; Wang, Z.; Zuo, C.; Chen, W. Q.; Ao, T. Q. Facile fabrication of N-doped hierarchical porous carbons derived from soft-templated ZIF-8 for enhanced adsorptive removal of tetracycline hydrochloride from water. J. Hazard. Mater. 2022, 423, 127103.

    CAS  Google Scholar 

  74. Torad, N. L.; Salunkhe, R. R.; Li, Y. Q.; Hamoudi, H.; Imura, M.; Sakka, Y.; Hu, C. C.; Yamauchi, Y. Electric double-layer capacitors based on highly graphitized nanoporous carbons derived from ZIF-67. Chem.—Eur. J. 2014, 20, 7895–7900.

    CAS  Google Scholar 

  75. Yang, J.; Chen, H. Q.; Shi, N.; Wang, T.; Liu, J.; Pan, W. P. Porous carbon with uniformly distributed cobalt nanoparticles derived from ZIF-67 for efficient removal of vapor elemental mercury: A combined experimental and DFT study. Chem. Eng. J. 2022, 428, 132095.

    CAS  Google Scholar 

  76. Wang, Q.; Zhang, Z. H.; Shi, S. J.; Wu, F.; Zhang, Z. G.; Li, G. N.; Suo, Y. G. Highly active cobalt- and nitrogen-doped carbon derived from ZIF-67@melamine towards oxygen reduction reaction. J. Electroanal. Chem. 2021, 894, 115397.

    CAS  Google Scholar 

  77. Li, J. B.; Yan, D.; Lu, T.; Yao, Y. F.; Pan, L. K. An advanced CoSe embedded within porous carbon polyhedra hybrid for high performance lithium-ion and sodium-ion batteries. Chem. Eng. J. 2017, 325, 14–24.

    CAS  Google Scholar 

  78. Cao, X. M.; Sun, Z. J.; Zhao, S. Y.; Wang, B.; Han, Z. B. MOF-derived sponge-like hierarchical porous carbon for flexible all-solidstate supercapacitors. Mater. Chem. Front. 2018, 2, 1692–1699.

    CAS  Google Scholar 

  79. Liu, N. N.; Liu, X. G.; Pan, J. Q. A new rapid synthesis of hexagonal prism Zn-MOF as a precursor at room temperature for energy storage through pre-ionization strategy. J. Colloid Interf. Sci. 2022, 606, 1364–1373.

    CAS  Google Scholar 

  80. Li, S. Q.; Zhang, X. D.; Huang, Y. M. Zeolitic imidazolate framework-8 derived nanoporous carbon as an effective and recyclable adsorbent for removal of ciprofloxacin antibiotics from water. J. Hazard. Mater. 2017, 321, 711–719.

    CAS  Google Scholar 

  81. Cheng, S. S.; Shang, N. Z.; Feng, C.; Gao, S. T.; Wang, C.; Wang, Z. Efficient multicomponent synthesis of propargylamines catalyzed by copper nanoparticles supported on metal-organic framework derived nanoporous carbon. Catal. Commun. 2017, 89, 91–95.

    CAS  Google Scholar 

  82. Chang, L. M.; Li, J. R.; Duan, X. Y.; Liu, W. Porous carbon derived from metal-organic framework (MOF) for capacitive deionization electrode. Electrochim. Acta 2015, 176, 956–964.

    CAS  Google Scholar 

  83. Yang, S. J.; Kim, T.; Im, J. H.; Kim, Y. S.; Lee, K.; Jung, H.; Park, C. R. MOF-derived hierarchically porous carbon with exceptional porosity and hydrogen storage capacity. Chem. Mater. 2012, 24, 464–470.

    CAS  Google Scholar 

  84. Yang, S. J.; Nam, S.; Kim, T.; Im, J. H.; Jung, H.; Kang, J. H.; Wi, S.; Park, B.; Park, C. R. Preparation and exceptional lithium anodic performance of porous carbon-coated ZnO quantum dots derived from a metal-organic framework. J. Am. Chem. Soc. 2013, 135, 7394–7397.

    CAS  Google Scholar 

  85. del Rio, M.; Escarabajal, J. C. G.; Palomino, G. T.; Cabello, C. P. Zinc/iron mixed-metal MOF-74 derived magnetic carbon nanorods for the enhanced removal of organic pollutants from water. Chem. Eng. J. 2022, 428, 131147.

    CAS  Google Scholar 

  86. Chen, D. Z.; Chen, C. Q.; Shen, W. S.; Quan, H. Y.; Chen, S. S.; Xie, S. S.; Luo, X. B.; Guo, L. MOF-derived magnetic porous carbon-based sorbent: Synthesis, characterization, and adsorption behavior of organic micropollutants. Adv. Powder Technol. 2017, 28, 1769–1779.

    CAS  Google Scholar 

  87. Van Tran, T.; Nguyen, D. T. C.; Le, H. T. N.; Tu, T. T. K.; Le, N. D.; Lim, K. T.; Bach, L. G.; Nguyen, T. D. MIL-53 (Fe)-directed synthesis of hierarchically mesoporous carbon and its utilization for ciprofloxacin antibiotic remediation. J. Environ. Chem. Eng. 2019, 3, 102881.

    Google Scholar 

  88. Tan, J. B.; Wu, J. Q.; Zhao, J. W.; Xie, L. J.; Li, G. R. Highly dispersed ultrafine Ni particles embedded into MOF-74 arrays by partial carbonization for highly efficient hydrogen evolution. Mater. Adv. 2020, 1, 1212–1219.

    CAS  Google Scholar 

  89. Mei, H. M.; Li, S.; Dong, J. R.; Zhang, L.; Su, C. Y. Porphyrinic metal-organic frameworks derived carbon-based nanomaterials for hydrogen evolution reaction. ChemistrySelect 2020, 5, 10988–10995.

    CAS  Google Scholar 

  90. Hou, Y.; Hu, X. J.; Tong, H. Y.; Huang, Y. B.; Cao, R. Unraveling the relationship of the pore structures between the metal-organic frameworks and their derived carbon materials. Inorg. Chem. Commun. 2020, 114, 107825.

    CAS  Google Scholar 

  91. Cabello, C. P.; Picó, M. F. F.; Maya, F.; del Rio, M.; Palomino, G. T. UiO-66 derived etched carbon/polymer membranes: Highperformance supports for the extraction of organic pollutants from water. Chem. Eng. J. 2018, 346, 85–93.

    Google Scholar 

  92. Cheng, S. S.; Shang, N. Z.; Zhou, X.; Feng, C.; Gao, S. T.; Wang, C.; Wang, Z. High catalytic activity of a bimetallic AgPd alloy supported on UiO-66 derived porous carbon for transfer hydrogenation of nitroarenes using formic acid-formate as the hydrogen source. New J. Chem. 2017, 41, 9857–9865.

    CAS  Google Scholar 

  93. Young, C.; Salunkhe, R. R.; Tang, J.; Hu, C. C.; Shahabuddin, M.; Yanmaz, E.; Hossain, S. A.; Kim, J. H.; Yamauchi, Y. Correction: Zeolitic imidazolate framework (ZIF-8) derived nanoporous carbon: The effect of carbonization temperature on the supercapacitor performance in an aqueous electrolyte. Phys. Chem. Chem. Phys. 2017, 19, 22596.

    CAS  Google Scholar 

  94. Zhong, M.; Kong, L. J.; Li, N.; Liu, Y. Y.; Zhu, J.; Bu, X. H. Synthesis of MOF-derived nanostructures and their applications as anodes in lithium and sodium ion batteries. Coordinat. Chem. Rev. 2019, 388, 172–201.

    CAS  Google Scholar 

  95. Sun, J. K.; Xu, Q. From metal-organic framework to carbon: Toward controlled hierarchical pore structures via a doubletemplate approach. Chem. Commun. 2014, 50, 13502–13505.

    CAS  Google Scholar 

  96. Salunkhe, R. R.; Kaneti, Y. V.; Kim, J.; Kim, J. H.; Yamauchi, Y. Nanoarchitectures for metal-organic framework-derived nanoporous carbons toward supercapacitor applications. Acc. Chem. Res. 2016, 49, 2796–2806.

    CAS  Google Scholar 

  97. Lu, Y.; Liang, J. N.; Deng, S. F.; He, Q. M.; Deng, S. Y.; Hu, Y. Z.; Wang, D. L. Hypercrosslinked polymers enabled micropore-dominant N, S Co-doped porous carbon for ultrafast electron/ion transport supercapacitors. Nano Energy 2019, 65, 103993.

    CAS  Google Scholar 

  98. Li, Y.; Shan, Y. Y.; Pang, H. Design and synthesis of nitrogen-doped hexagonal NiCoO nanoplates derived from Ni-Co-MOF for high-performance electrochemical energy storage. Chin. Chem. Lett. 2020, 31, 2280–2286.

    CAS  Google Scholar 

  99. Wang, Q. F.; Zou, R. Q.; Xia, W.; Ma, J.; Qiu, B.; Mahmood, A.; Zhao, R.; Yang, Y. Y. C.; Xia, D. G.; Xu, Q. Facile synthesis of ultrasmall CoS2 nanoparticles within thin N-doped porous carbon shell for high performance lithium-ion batteries. Small 2015, 11, 2511–2517.

    CAS  Google Scholar 

  100. Jiang, Q. Q.; Wang, L.; Wang, Y.; Qin, M. H.; Wu, R.; Huang, Z. X.; Yang, H. J.; Li, Y. X.; Zhou, T. F.; Hu, J. C. Rational design of MoSe2 nanosheet-coated MOF-derived N-doped porous carbon polyhedron for potassium storage. J. Colloid Interf. Sci. 2021, 600, 430–439.

    CAS  Google Scholar 

  101. Kim, J.; Kim, J.; Kim, J. H.; Park, H. S. Hierarchically open-porous nitrogen-incorporated carbon polyhedrons derived from metal-organic frameworks for improved CDI performance. Chem. Eng. J. 2020, 382, 122996.

    CAS  Google Scholar 

  102. Liu, Y.; Miao, W.; Fang, X.; Tang, Y. L.; Wu, D. L.; Mao, S. MOF-derived metal-free N-doped porous carbon mediated peroxydisulfate activation via radical and non-radical pathways: Role of graphitic N and C—O. Chem. Eng. J. 2020, 380, 122584.

    CAS  Google Scholar 

  103. Pan, Y.; Zhao, Y. X.; Mu, S. J.; Wang, Y.; Jiang, C. M.; Liu, Q. Z.; Fang, Q. R.; Xue, M.; Qiu, S. L. Cation exchanged MOF-derived nitrogen-doped porous carbons for CO2 capture and supercapacitor electrode materials. J. Mater. Chem. A 2017, 5, 9544–9552.

    CAS  Google Scholar 

  104. Cai, J. S.; Song, Y. Z.; Chen, X.; Sun, Z. T.; Yi, Y. Y.; Sun, J. Y.; Zhang, Q. MOF-derived conductive carbon nitrides for separator-modified Li-S batteries and flexible supercapacitors. J. Mater. Chem. A 2020, 8, 1757–1766.

    CAS  Google Scholar 

  105. Chen, L. F.; Lu, Y.; Yu, L.; Lou, X. W. Designed formation of hollow particle-based nitrogen-doped carbon nanofibers for highperformance supercapacitors. Energy Environ. Sci. 2017, 10, 1777–1783.

    CAS  Google Scholar 

  106. Ma, C.; Mo, Y. H.; Liu, L.; Yu, Y. F.; Chen, A. B. ZIF-derived mesoporous carbon materials prepared by activation via Na2SiO3 for supercapacitor. Chin. Chem. Lett. 2021, 32, 1485–1490.

    CAS  Google Scholar 

  107. Tan, T.; Tao, P. Y.; Li, X.; Imhanria, S.; Deng, J.; Wang, W. Nitrogen-modified metal-organic framework-based carbon: An effective non-precious electrocatalyst for oxygen reduction reaction. Catal. Commun. 2020, 146, 106135.

    CAS  Google Scholar 

  108. Wang, S. H.; Liu, L.; Wang, S. M.; Han, Z. B. MOF-templated nitrogen-doped porous carbon materials as efficient electrocatalysts for oxygen reduction reactions. Inorg. Chem. Front. 2017, 4, 1231–1237.

    CAS  Google Scholar 

  109. Zhang, J.; Yan, T. T.; Fang, J. H.; Shen, J. J.; Shi, L. Y.; Zhang, D. S. Enhanced capacitive deionization of saline water using N-doped rod-like porous carbon derived from dual-ligand metal-organic frameworks. Environ. Sci.:Nano 2020, 7, 926–937.

    CAS  Google Scholar 

  110. Li, W. H.; Hu, S. H.; Luo, X. Y.; Li, Z. L.; Sun, X. Z.; Li, M. S.; Liu, F. F.; Yu, Y. Confined amorphous red phosphorus in MOF-derived N-doped microporous carbon as a superior anode for sodium-ion battery. Adv. Mater. 2017, 29, 1605820.

    Google Scholar 

  111. Sui, X. Y.; Huang, X. K.; Pu, H. H.; Wang, Y. L.; Chen, J. H. Tailoring MOF-derived porous carbon nanorods confined red phosphorous for superior potassium-ion storage. Nano Energy 2021, 83, 105797.

    CAS  Google Scholar 

  112. Shi, X. D.; Chen, Y. X.; Lai, Y. Q.; Zhang, K.; Li, J.; Zhang, Z. A. Metal organic frameworks templated sulfur-doped mesoporous carbons as anode materials for advanced sodium ion batteries. Carbon 2017, 123, 250–258.

    CAS  Google Scholar 

  113. Wu, H. B.; Wei, S. Y.; Zhang, L.; Xu, R.; Hng, H. H.; Lou, X. W. Embedding sulfur in MOF-derived microporous carbon polyhedrons for lithium-sulfur batteries. Chem.—Eur. J. 2013, 19, 10804–10808.

    CAS  Google Scholar 

  114. Gu, Y. Y.; Miao, L.; Yin, Y.; Liu, M. X.; Gan, L. H.; Li, L. C. Highly N/O co-doped ultramicroporous carbons derived from nonporous metal-organic framework for high performance supercapacitors. Chin. Chem. Lett. 2021, 32, 1491–1496.

    CAS  Google Scholar 

  115. Liu, W.; Li, S. Q.; Liu, W. X.; Zhang, Q.; Shao, J.; Tian, J. L. MOF-derived B, N co-doped porous carbons as metal-free catalysts for highly efficient nitro aromatics reduction. J. Environ. Chem. Eng. 2021, 9, 105689.

    CAS  Google Scholar 

  116. Chen, L.; Chen, Z.; Liu, X. D.; Wang, X. L. Bimetallic metal-organic framework derived doped carbon nanostructures as highperformance electrocatalyst towards oxygen reactions. Nano Res. 2021, 14, 1533–1540.

    CAS  Google Scholar 

  117. Song, Z. X.; Liu, W. W.; Cheng, N. C.; Banis, M. N.; Li, X.; Sun, Q.; Xiao, B. W.; Liu, Y. L.; Lushington, A.; Li, R. Y. et al. Origin of the high oxygen reduction reaction of nitrogen and sulfur co-doped MOF-derived nanocarbon electrocatalysts. Mater. Horiz. 2017, 4, 900–907.

    CAS  Google Scholar 

  118. Zheng, S. S.; Li, X. R.; Yan, B. Y.; Hu, Q.; Xu, Y. X.; Xiao, X.; Xue, H. G.; Pang, H. Transition-metal (Fe, Co, Ni) based metal-organic frameworks for electrochemical energy storage. Adv. Energy Mater. 2017, 7, 1602733.

    Google Scholar 

  119. Wang, L.; Wen, B.; Yang, H. B.; Qiu, Y.; He, N. R. Hierarchical nest-like structure of Co/Fe MOF derived CoFe@C composite as wide-bandwidth microwave absorber. Compos. Part A:Appl. Sci. Manufact. 2020, 135, 105958.

    CAS  Google Scholar 

  120. Zeng, Q. W.; Wang, L.; Li, X.; You, W. B.; Zhang, J.; Liu, X. H.; Wang, M.; Che, R. C. Double ligand MOF-derived pomegranatelike Ni@C microspheres as high-performance microwave absorber. Appl. Surf. Sci. 2021, 538, 148051.

    CAS  Google Scholar 

  121. Ahsan, A.; Jabbari, V.; El-Gendy, A. A.; Curry, M. L.; Noveron, J. C. Ultrafast catalytic reduction of environmental pollutants in water via MOF-derived magnetic Ni and Cu nanoparticles encapsulated in porous carbon. Appl. Surf. Sci. 2019, 497, 143608.

    CAS  Google Scholar 

  122. Wang, L.; Bai, X. Y.; Wen, B.; Du, Z.; Lin, Y. Honeycomb-like Co/C composites derived from hierarchically nanoporous ZIF-67 as a lightweight and highly efficient microwave absorber. Compos. Part B:Eng. 2019, 166, 464–471.

    CAS  Google Scholar 

  123. Chen, Y. Z.; Wang, C. M.; Wu, Z. Y.; Xiong, Y. J.; Xu, Q.; Yu, S. H.; Jiang, H. L. From bimetallic metal-organic framework to porous carbon: High surface area and multicomponent active dopants for excellent electrocatalysis. Adv. Mater. 2015, 27, 5010–5016.

    CAS  Google Scholar 

  124. Zhang, H.; Zhang, W. X.; Shen, J. M.; Li, Y.; Yan, X.; Qi, J. W.; Sun, X. Y.; Shen, J. Y.; Han, W. Q.; Wang, L. J. et al. Ag-doped hollow ZIFs-derived nanoporous carbon for efficient hybrid capacitive deionization. Desalination 2020, 473, 114173.

    Google Scholar 

  125. Zou, G. Q.; Jia, X. N.; Huang, Z. D.; Li, S. M.; Liao, H. X.; Hou, H. S.; Huang, L. P.; Ji, X. B. Cube-shaped porous carbon derived from MOF-5 as advanced material for sodium-ion batteries. Electrochim. Acta 2011, 196, 413–421.

    Google Scholar 

  126. Zhang, M. D.; Dai, Q. B.; Zheng, H. G.; Chen, M. D.; Dai, L. M. Novel MOF-derived Co@N-C bifunctional catalysts for highly efficient Zn-air batteries and water splitting. Adv. Mater. 2018, 30, 1705431.

    Google Scholar 

  127. Zhang, C. L.; Lu, B. R.; Cao, F. H.; Wu, Z. Y.; Zhang, W.; Cong, H. P.; Yu, S. H. Electrospun metal-organic framework nanoparticle fibers and their derived electrocatalysts for oxygen reduction reaction. Nano Energy 2019, 55, 226–233.

    CAS  Google Scholar 

  128. Ma, F.; Cai, X. F.; Mao, J.; Yu, L.; Li, P. W. Adsorptive removal of aflatoxin B1 from vegetable oils via novel adsorbents derived from a metal-organic framework. J. Hazard. Mater. 2021, 412, 125170.

    CAS  Google Scholar 

  129. Yan, J.; Huang, Y.; Yan, Y. H.; Zhao, X. X.; Liu, P. B. The composition design of MOF-derived Co-Fe bimetallic autocatalysis carbon nanotubes with controllable electromagnetic properties. Compos. Part A:Appl. Sci. Manufact. 2020, 139, 106107.

    CAS  Google Scholar 

  130. Ahmed, S.; Shim, J.; Sun, H. J.; Rim, H. R.; Lee, H. K.; Park, G. Nickel decorated bimetallic catalysts derived from metal-organic frameworks as cathode materials for rechargeable zinc-air batteries. Mater. Lett. 2021, 283, 128781.

    CAS  Google Scholar 

  131. Xu, Y.; Huang, Z. H.; Wang, B.; Liang, Z. Z.; Zhang, C. C.; Wang, Y. Z.; Zhang, W.; Zheng, H. Q.; Cao, R. A two-dimensional multi-shelled metal-organic framework and its derived bimetallic N-doped porous carbon for electrocatalytic oxygen reduction. Chem. Commun. 2019, 55, 14805–14808.

    CAS  Google Scholar 

  132. Qian, J. J.; Li, T. T.; Hu, Y.; Huang, S. M. A bimetallic carbide derived from a MOF precursor for increasing electrocatalytic oxygen evolution activity. Chem. Commun. 2017, 53, 13027–13030.

    CAS  Google Scholar 

  133. Khan, I. A.; Qian, Y. H.; Badshah, A.; Nadeem, M. A.; Zhao, D. Highly porous carbon derived from MOF-5 as a support of ORR electrocatalysts for fuel cells. ACS Appl. Mater. Interfaces 2011, 8, 17268–17275.

    Google Scholar 

  134. Torad, N. L.; Hu, M.; Ishihara, S.; Sukegawa, H.; Belik, A. A.; Imura, M.; Ariga, K.; Sakka, Y.; Yamauchi, Y. Direct synthesis of MOF-derived nanoporous carbon with magnetic Co nanoparticles toward efficient water treatment. Small 2014, 10, 2096–2107.

    CAS  Google Scholar 

  135. Tang, J.; Salunkhe, R. R.; Zhang, H. B.; Malgras, V.; Ahamad, T.; Alshehri, S. M.; Kobayashi, N.; Tominaka, S.; Ide, Y.; Kim, J. H. et al. Bimetallic metal-organic frameworks for controlled catalytic graphitization of nanoporous carbons. Sci. Rep. 2016, 6, 30295.

    CAS  Google Scholar 

  136. Chi, Y.; Yang, W. P.; Xing, Y. C.; Li, Y.; Pang, H.; Xu, Q. Ni/Co bimetallic organic framework nanosheet assemblies for highperformance electrochemical energy storage. Nanoscale 2020, 12, 10685–10692.

    CAS  Google Scholar 

  137. Li, M. M.; Feng, W. J.; Su, W. X.; Wang, X. CoNi-embedded nitrogen-enriched porous carbon framework for long-life lithium-sulfur batteries. J. Solid State Electrochem. 2019, 23, 2317–2324.

    CAS  Google Scholar 

  138. Tijerina, L. M.; González, C. M. G.; Kharisov, B. I.; Quezada, T. E. S.; Méndez, Y. P.; Kharissova, O. V.; de la Fuente, I. G. Synthesis of MOF-derived bimetallic nanocarbons CuNi@C with potential applications as counter electrodes in solar cells. Mendeleev Commun. 2019, 29, 400–402.

    CAS  Google Scholar 

  139. Ding, M.; Shi, W. H.; Guo, L.; Leong, Z. Y.; Baji, A.; Yang, H. Y. Bimetallic metal-organic framework derived porous carbon nanostructures for high performance membrane capacitive desalination. J. Mater. Chem. A 2017, 5, 6113–6121.

    CAS  Google Scholar 

  140. Wang, H.; Bai, Y.; Jiang, X. B.; Zeng, M. Bimetal-organic framework derived from ZIF-67 as anodes for high performance lithium-ion batteries. Appl. Surf. Sci. 2021, 546, 149119.

    CAS  Google Scholar 

  141. Zou, L. L.; Kitta, M.; Hong, J. H.; Suenaga, K.; Tsumori, N.; Liu, Z.; Xu, Q. Fabrication of a spherical superstructure of carbon nanorods. Adv. Mater. 2019, 31, 1900440.

    Google Scholar 

  142. Wei, R. C.; Gu, Y.; Zou, L. L.; Xi, B. J.; Zhao, Y. X.; Ma, Y. N.; Qian, Y. T.; Xiong, S. L.; Xu, Q. Nanoribbon superstructures of graphene nanocages for efficient electrocatalytic hydrogen evolution. Nano Lett. 2020, 20, 7342–7349.

    CAS  Google Scholar 

  143. Qiu, Y.; Lin, Y.; Yang, H. B.; Wang, L.; Wang, M. Q.; Wen, B. Hollow Ni/C microspheres derived from Ni-metal organic framework for electromagnetic wave absorption. Chem. Eng. J. 2020, 383, 123207.

    CAS  Google Scholar 

  144. Li, Z. N.; Han, X. J.; Ma, Y.; Liu, D. W.; Wang, Y. H.; Xu, P.; Li, C. L.; Du, Y. C. MOFs-derived hollow Co/C microspheres with enhanced microwave absorption performance. ACS Sustainable Chem. Eng. 2018, 6, 8904–8913.

    CAS  Google Scholar 

  145. Azad, U. P.; Ghosh, S.; Verma, C. J.; Singh, A. K.; Singh, A. K.; Prakash, R. Study of the capacitive behavior of MOF-derived nanocarbon polyhedra. ChemistrySelect 2018, 3, 6107–6111.

    CAS  Google Scholar 

  146. Xia, W.; Zhu, J. H.; Guo, W. H.; An, L.; Xia, D. G.; Zou, R. Q. Well-defined carbon polyhedrons prepared from nano metal-organic frameworks for oxygen reduction. J. Mater. Chem. A 2014, 2, 11606–11613.

    CAS  Google Scholar 

  147. Zhao, R.; Wu, X. X.; Gao, Y. X.; Liu, Y. N.; Gao, J. J.; Chen, Y. M.; Zheng, Z.; Gan, W.; Yuan, Q. H. A unique bimetallic MOF derived carbon-MWCNTs hybrid structure for selective electrochemical determination of lead ion in aqueous solution. Microchem. J. 2020, 158, 105271.

    CAS  Google Scholar 

  148. Wan, S. A.; Wu, J. D.; Wang, D. P.; Liu, H. L.; Zhang, Z. C.; Ma, J. M.; Wang, C. Co/N-doped carbon nanotube arrays grown on 2D MOFs-derived matrix for boosting the oxygen reduction reaction in alkaline and acidic media. Chin. Chem. Lett. 2021, 32, 816–821.

    CAS  Google Scholar 

  149. Li, Y. W.; Lu, M. T.; Wu, Y. H.; Ji, Q. H.; Xu, H.; Gao, J. K.; Qian, G. D.; Zhang, Q. C. Morphology regulation of metal-organic framework-derived nanostructures for efficient oxygen evolution electrocatalysis. J. Mater. Chem. A 2020, 8, 18215–18219.

    Google Scholar 

  150. Wang, Z. H.; Jin, H. H.; Meng, T.; Liao, K.; Meng, W. Q.; Yang, J. L.; He, D. P.; Xiong, Y. L.; Mu, S. C. Fe, Cu-coordinated ZIF-derived carbon framework for efficient oxygen reduction reaction and zinc-air batteries. Adv. Funct. Mater. 2018, 28, 1802596.

    Google Scholar 

  151. Yang, Y.; Wu, X. Z.; He, C.; Huang, J. B.; Yin, S. Q.; Zhou, M.; Ma, L.; Zhao, W. F.; Qiu, L.; Cheng, C. et al. Metal-organic framework/Ag-based hybrid nanoagents for rapid and synergistic bacterial eradication. ACS Appl. Mater. Interfaces 2020, 12, 13698–13708.

    CAS  Google Scholar 

  152. Yuan, Q. Y.; Yu, Y. X.; Gong, Y. J.; Bi, X. F. Three-dimensional N-doped carbon nanotube frameworks on Ni foam derived from a metal-organic framework as a bifunctional electrocatalyst for overall water splitting. ACS Appl. Mater. Interfaces 2020, 12, 3592–3602.

    CAS  Google Scholar 

  153. Yan, J.; Huang, Y.; Han, X. P.; Gao, X. G.; Liu, P. B. Metal organic framework (ZIF-67)-derived hollow CoS2/N-doped carbon nanotube composites for extraordinary electromagnetic wave absorption. Compos. Part B:Eng. 2019, 163, 67–76.

    CAS  Google Scholar 

  154. Jin, H. H.; Zhou, H.; He, D. P.; Wang, Z. H.; Wu, Q. L.; Liang, Q. R.; Liu, S. L.; Mu, S. C. MOF-derived 3D Fe-N-S co-doped carbon matrix/nanotube nanocomposites with advanced oxygen reduction activity and stability in both acidic and alkaline media. Appl. Catal. B:Environ. 2019, 250, 143–149.

    CAS  Google Scholar 

  155. Dou, S.; Li, X. Y.; Tao, L.; Huo, J.; Wang, S. Y. Cobalt nanoparticle-embedded carbon nanotube/porous carbon hybrid derived from MOF-encapsulated Co3O4 for oxygen electrocatalysis. Chem. Commun. 2016, 52, 9727–9730.

    CAS  Google Scholar 

  156. Zou, L. L.; Hou, C. C.; Liu, Z.; Pang, H.; Xu, Q. Superlong single-crystal metal-organic framework nanotubes. J. Am. Chem. Soc. 2018, 140, 15393–15401.

    CAS  Google Scholar 

  157. Yan, L. T.; Cao, L.; Dai, P. C.; Gu, X.; Liu, D. D.; Li, L. J.; Wang, Y.; Zhao, X. B. Metal-organic frameworks derived nanotube of nickel-cobalt bimetal phosphides as highly efficient electrocatalysts for overall water splitting. Adv. Funct. Mater. 2017, 23, 1703455.

    Google Scholar 

  158. Mohammad, H.; Martin, A. D.; Hill, P. I.; Hodson, N.; Brown, N.; Roberts, E. P. L. Effect of electrochemical regeneration on the surface of a graphite adsorbent loaded with an organic contaminant. Int. J. Environ. Sci. Technol. 2020, 13, 3131–3142.

    Google Scholar 

  159. Vedenyapina, M. D.; Borisova, D. A.; Simakova, A. P.; Proshina, L. P.; Vedenyapin, A. A. Adsorption of diclofenac sodium from aqueous solutions on expanded graphite. Solid Fuel Chem. 2013, 47, 59–63.

    CAS  Google Scholar 

  160. Zhu, Q. L.; Xia, W.; Zheng, L. R.; Zou, R. Q.; Liu, Z.; Xu, Q. Atomically dispersed Fe/N-doped hierarchical carbon architectures derived from a metal-organic framework composite for extremely efficient electrocatalysis. ACS Energy Lett. 2017, 2, 504–511.

    CAS  Google Scholar 

  161. Sun, D. D.; Liu, S. T.; Zhang, G. J.; Zhou, J. S. NiTe2/N-doped graphitic carbon nanosheets derived from Ni-hexamine coordination frameworks for Na-ion storage. Chem. Eng. J. 2019, 359, 1659–1667.

    CAS  Google Scholar 

  162. Shen, J. Q.; Wang, P.; Jiang, H. S.; Wang, H.; Pollet, B. G.; Wang, R. F.; Ji, S. MOF derived graphitic carbon nitride/oxygen vacancies-rich zinc oxide nanocomposites with enhanced supercapacitive performance. Ionics 2020, 26, 5155–5165.

    CAS  Google Scholar 

  163. Zhang, S. H.; Yang, Q.; Xu, X. T.; Liu, X. H.; Li, Q.; Guo, J. R.; Torad, N. L.; Alshehri, S. M.; Ahamad, T.; Hossain, S. A. et al. Assembling well-arranged covalent organic frameworks on MOF-derived graphitic carbon for remarkable formaldehyde sensing. Nanoscale 2020, 12, 15611–15619.

    CAS  Google Scholar 

  164. Xiong, P. X.; Zhao, X. X.; Xu, Y. H. Nitrogen-doped carbon nanotubes derived from metal-organic frameworks for potassium-ion battery anodes. ChemSusChem 2018, 11, 202–208.

    CAS  Google Scholar 

  165. Pachfule, P.; Shinde, D.; Majumder, M.; Xu, Q. Fabrication of carbon nanorods and graphene nanoribbons from a metal-organic framework. Nat. Chem. 2016, 8, 718–724.

    CAS  Google Scholar 

  166. Gao, J. J.; Zhang, F.; Gan, W.; Gui, Y. W.; Qiu, H. J.; Li, H. L.; Yuan, Q. H. MOF-derived 2D/3D hierarchical N-doped graphene as support for advanced Pt utilization in ethanol fuel cell. ACS Appl. Mater. Interfaces 2020, 12, 47667–47676.

    CAS  Google Scholar 

  167. Wu, S. K.; Shen, X. P.; Zhu, G. X.; Zhou, H.; Ji, Z. Y.; Ma, L. B.; Xu, K. Q.; Yang, J.; Yuan, A. H. Metal organic framework derived NiFe@N-doped graphene microtube composites for hydrogen evolution catalyst. Carbon 2017, 116, 68–76.

    CAS  Google Scholar 

  168. Yang, Y.; Lun, Z. Y.; Xia, G. L.; Zheng, F. C.; He, M. N.; Chen, Q. W. Non-precious alloy encapsulated in nitrogen-doped graphene layers derived from MOFs as an active and durable hydrogen evolution reaction catalyst. Energy Environ. Sci. 2015, 8, 3563–3571.

    CAS  Google Scholar 

  169. Yang, G.; Liu, J. J.; Zhou, M.; Bai, J.; Bo, X. J. Fast and facile room-temperature synthesis of MOF-derived Co nanoparticle/nitrogen-doped porous graphene in air atmosphere for overall water splitting. ACS Sustainable Chem. Eng. 2020, 8, 11947–11955.

    CAS  Google Scholar 

  170. Hu, L.; Chen, Q. W. Hollow/porous nanostructures derived from nanoscale metal-organic frameworks towards high performance anodes for lithium-ion batteries. Nanoscale 2014, 6, 1236–1257.

    CAS  Google Scholar 

  171. Xu, Y. W.; Xu, L. Q.; Li, Q. P.; Su, K. Z.; Hu, Y.; Miao, T. T.; Qian, J. J. Metal-organic framework-impregnated calixarene-based cluster-derived hierarchically porous bimetallic phosphide nanocomposites for efficient water splitting. Energy Technol. 2020, 8, 2000059.

    CAS  Google Scholar 

  172. Zhang, W. X.; Yu, Y.; Huang, R. T.; Shi, X. Y. Efficient photocatalytic reduction of CO2 to CO using NiFe2O4@N/C/SnO2 derived from FeNi metal-organic framework. ACS Appl. Mater. Interfaces 2021, 13, 40571–40581.

    CAS  Google Scholar 

  173. Zhou, Y.; Tang, B.; Wang, S. K.; Long, J. L. Cu-MOF@Co-MOF derived Co-Cu alloy nanoparticles and N atoms co-doped carbon matrix as efficient catalyst for enhanced oxygen reduction. Int. J. Hydrogen Energy 2020, 45, 15785–15795.

    CAS  Google Scholar 

  174. Kim, K.; Lopez, K. J.; Sun, H. J.; An, J. C.; Park, G.; Shim, J. Electrochemical performance of bifunctional Co/graphitic carbon catalysts prepared from metal-organic frameworks for oxygen reduction and evolution reactions in alkaline solution. J. Appl. Electrochem. 2018, 48, 1231–1241.

    CAS  Google Scholar 

  175. Athar, M.; Rzepka, P.; Thoeny, D.; Ranocchiari, M.; van Bokhoven, J. A. Thermal degradation of defective high-surface-area UiO-66 in different gaseous environments. RSC Adv. 2021, 11, 38849–38855.

    CAS  Google Scholar 

  176. Xu, G. D.; Zuo, Y. X.; Huang, B. Metal-organic framework-74-Ni/carbon nanotube composite as sulfur host for high performance lithium-sulfur batteries. J. Electroanal. Chem. 2018, 830–831, 43–49.

    Google Scholar 

  177. Zhang, Y. F.; Bo, X. J.; Nsabimana, A.; Han, C.; Li, M.; Guo, L. P. Electrocatalytically active cobalt-based metal-organic framework with incorporated macroporous carbon composite for electrochemical applications. J. Mater. Chem. A 2011, 3, 732–738.

    Google Scholar 

  178. Okereafor, U.; Makhatha, M.; Mekuto, L.; Uche-Okereafor, N.; Sebola, T.; Mavumengwana, V. Toxic metal implications on agricultural soils, plants, animals, aquatic life and human health. Int. J. Environ. Res. Public Health 2020, 17, 2204.

    CAS  Google Scholar 

  179. Saleh, H. N.; Panahande, M.; Yousefi, M.; Asghari, F. B.; Conti, G. O.; Talaee, E.; Mohammadi, A. A. Carcinogenic and non-carcinogenic risk assessment of heavy metals in groundwater wells in neyshabur plain, Iran. Biol. Trace Elem. Res. 2019, 190, 251–261.

    CAS  Google Scholar 

  180. Carolin, C. F.; Kumar, P. S.; Saravanan, A.; Joshiba, G. J.; Naushad, M. Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review. J. Environ. Chem. Eng. 2017, 5, 2782–2799.

    CAS  Google Scholar 

  181. Yang, J.; Guo, J.; Guo, X. W.; Chen, L. S. In-situ growth carbon nanotubes deriving from a new metal-organic framework for highperformance all-solid-state supercapacitors. Mater. Lett. 2019, 236, 739–742.

    CAS  Google Scholar 

  182. Liu, C.; Wang, P.; Liu, X. K.; Yi, X. T.; Liu, D. H.; Zhou, Z. Q. Ultrafast removal of cadmium(II) by green cyclodextrin metal-organic-framework-based nanoporous carbon: Adsorption mechanism and application. Chem. Asian J. 2019, 14, 261–268.

    CAS  Google Scholar 

  183. Bakhtiari, N.; Azizian, S.; Alshehri, S. M.; Torad, N. L.; Malgras, V.; Yamauchi, Y. Study on adsorption of copper ion from aqueous solution by MOF-derived nanoporous carbon. Microporous Mesoporous Mater. 2015, 217, 173–177.

    CAS  Google Scholar 

  184. Lai, Y. X.; Wang, F.; Zhang, Y. M.; Ou, P.; Wu, P. P.; Fang, Q. L.; Chen, Z.; Li, S. UiO-66 derived N-doped carbon nanoparticles coated by PANI for simultaneous adsorption and reduction of hexavalent chromium from waste water. Chem. Eng. J. 2019, 378, 122069.

    CAS  Google Scholar 

  185. Fang, Y.; Wen, J.; Zhang, H. B.; Wang, Q.; Hu, X. H. Enhancing Cr(VI) reduction and immobilization by magnetic core-shell structured NZVI@MOF derivative hybrids. Environ. Pollut. 2020, 260, 114021.

    CAS  Google Scholar 

  186. Gao, G.; Nie, L. J.; Yang, S. J.; Jin, P. K.; Chen, R. Z.; Ding, D. H.; Wang, X. C.; Wang, W. D.; Wu, K.; Zhang, Q. H. Well-defined strategy for development of adsorbent using metal organic frameworks (MOF) template for high performance removal of hexavalent chromium. Appl. Surf. Sci. 2018, 457, 1208–1217.

    CAS  Google Scholar 

  187. Hasan, Z.; Cho, J.; Rinklebe, J.; Ok, Y. S.; Cho, D. W.; Song, H. Metal organic framework derived Cu-carbon composite: An efficient non-noble metal catalyst for reduction of hexavalent chromium and pendimethalin. J. Ind. Eng. Chem. 2017, 52, 331–337.

    CAS  Google Scholar 

  188. Ren, X. M.; Chen, C. L.; Nagatsu, M.; Wang, X. K. Carbon nanotubes as adsorbents in environmental pollution management: A review. Chem. Eng. J. 2011, 170, 395–410.

    CAS  Google Scholar 

  189. Bai, Z. Q.; Yuan, L. Y.; Zhu, L.; Liu, Z. R.; Chu, S. Q.; Zheng, L. R.; Zhang, J.; Chai, Z. F.; Shi, W. Q. Introduction of amino groups into acid-resistant MOFs for enhanced U(VI) sorption. J. Mater. Chem. A 2011, 3, 525–534.

    Google Scholar 

  190. Lingamdinne, L. P.; Koduru, J. R.; Karri, R. R. A comprehensive review of applications of magnetic graphene oxide based nanocomposites for sustainable water purification. J. Environ. Manage. 2019, 231, 622–634.

    CAS  Google Scholar 

  191. Lv, Z. M.; Wang, H. Y.; Chen, C. L.; Yang, S. M.; Chen, L.; Alsaedi, A.; Hayat, T. Enhanced removal of uranium(VI) from aqueous solution by a novel Mg-MOF-74-derived porous MgO/carbon adsorbent. J. Colloid Interf. Sci. 2019, 537, A1–A10.

    CAS  Google Scholar 

  192. He, X.; Wu, M.; Ao, Z. M.; Lai, B.; Zhou, Y. B.; An, T. C.; Wang, S. B. Metal-organic frameworks derived C/TiO2 for visible light photocatalysis: Simple synthesis and contribution of carbon species. J. Hazard. Mater. 2021, 403, 124048.

    CAS  Google Scholar 

  193. Bhadra, B. N.; Song, J. Y.; Lee, S. K.; Hwang, Y. K.; Jhung, S. H. Adsorptive removal of aromatic hydrocarbons from water over metal azolate framework-6-derived carbons. J. Hazard. Mater. 2018, 344, 1069–1077.

    CAS  Google Scholar 

  194. Huang, P. F.; Lei, J. W.; Sun, Z. R.; Hu, X. Fabrication of MOF-derivated CuOx-C electrode for electrochemical degradation of ceftazidime from aqueous solution. Chemosphere 2021, 268, 129157.

    CAS  Google Scholar 

  195. Wang, C. P.; Yin, H.; Tian, P. J.; Sun, X. J.; Pan, X. Y.; Chen, K. F.; Chen, W. J.; Wu, Q. H.; Luo, S. Y. Remarkable adsorption performance of MOF-199 derived porous carbons for benzene vapor. Environ. Res. 2020, 184, 109323.

    CAS  Google Scholar 

  196. Bhadra, B. N.; Jhung, S. H. A remarkable adsorbent for removal of contaminants of emerging concern from water: Porous carbon derived from metal azolate framework-6. J. Hazard. Mater. 2017, 340, 179–188.

    CAS  Google Scholar 

  197. Li, Z. H.; Yuan, Y.; Wu, H.; Li, X. H.; Yuan, M. L.; Wang, H. Z.; Wu, X. X.; Liu, S.; Zheng, X. M.; Kim, M. et al. Investigation of MOF-derived humidity-proof hierarchical porous carbon frameworks as highly-selective toluene absorbents and sensing materials. J. Hazard. Mater. 2021, 411, 125034.

    CAS  Google Scholar 

  198. Ahmed, I.; Panja, T.; Khan, N. A.; Sarker, M.; Yu, J. S.; Jhung, S. H. Nitrogen-doped porous carbons from ionic liquids@MOF: Remarkable adsorbents for both aqueous and nonaqueous media. ACS Appl. Mater. Interfaces 2017, 9, 10276–10285.

    CAS  Google Scholar 

  199. Zhu, Y. G.; Zhao, Y.; Li, B.; Huang, C. L.; Zhang, S. Y.; Yu, S.; Chen, Y. S.; Zhang, T.; Gillings, M. R.; Su, J. Q. Continental-scale pollution of estuaries with antibiotic resistance genes. Nat. Microbiol. 2017, 2, 16270.

    CAS  Google Scholar 

  200. Bhadra, B. N.; Jhung, S. H. Adsorptive removal of wide range of pharmaceuticals and personal care products from water using bio-MOF-1 derived porous carbon. Microporous Mesoporous Mater. 2018, 270, 102–108.

    CAS  Google Scholar 

  201. Brodin, T.; Piovano, S.; Fick, J.; Klaminder, J.; Heynen, M.; Jonsson, M. Ecological effects of pharmaceuticals in aquatic systems-impacts through behavioural alterations. Philos. Trans. Roy. Soc. B:Biol. Sci. 2014, 369, 20130580.

    Google Scholar 

  202. Basheer, A. A. New generation nano-adsorbents for the removal of emerging contaminants in water. J. Mol. Liq. 2018, 261, 583–593.

    CAS  Google Scholar 

  203. Lin, K. Y. A.; Chang, H. A.; Chen, R. C. MOF-derived magnetic carbonaceous nanocomposite as a heterogeneous catalyst to activate oxone for decolorization of rhodamine B in water. Chemosphere 2015, 130, 66–72.

    CAS  Google Scholar 

  204. Chen, D. Z.; Wang, S. J.; Zhang, Z. M.; Quan, H. Y.; Wang, Y. C.; Jiang, Y. J.; Hurlock, M. J.; Zhang, Q. Molten NaCl-induced MOF-derived carbon-polyhedron decorated carbon-nanosheet with high defects and high N-doping for boosting the removal of carbamazepine from water. Environ. Sci.:Nano 2020, 7, 1205–1213.

    CAS  Google Scholar 

  205. Zhang, C. Y.; He, D.; Ma, J. X.; Tang, W. W.; Waite, T. D. Faradaic reactions in capacitive deionization (CDI)-problems and possibilities: A review. Water Res. 2018, 128, 314–330.

    CAS  Google Scholar 

  206. Phuoc, N. M.; Jung, E.; Tran, N. A. T.; Lee, Y. W.; Yoo, C. Y.; Kang, B. G.; Cho, Y. Enhanced desalination performance of capacitive deionization using nanoporous carbon derived from ZIF-67 metal organic frameworks and CNTs. Nanomaterials 2020, 10, 2091.

    CAS  Google Scholar 

  207. Wang, K.; Liu, Y.; Ding, Z. B.; Li, Y. Q.; Lu, T.; Pan, L. K. Metal-organic-frameworks-derived NaTi2(PO4)3/carbon composites for efficient hybrid capacitive deionization. J. Mater. Chem. A 2019, 7, 12126–12133.

    CAS  Google Scholar 

  208. Ding, M.; Fan, S.; Huang, S. Z.; Pam, M. E.; Guo, L.; Shi, Y. M.; Yang, H. Y. Tunable pseudocapacitive behavior in metal-organic framework-derived TiO2@porous carbon enabling high-performance membrane capacitive deionization. ACS Appl. Energy Mater. 2019, 2, 1812–1822.

    CAS  Google Scholar 

  209. Gao, T.; Zhou, F.; Ma, W.; Li, H. B. Metal-organic-framework derived carbon polyhedron and carbon nanotube hybrids as electrode for electrochemical supercapacitor and capacitive deionization. Electrochim. Acta 2018, 263, 85–93.

    CAS  Google Scholar 

  210. Liu, Y.; Xu, X. T.; Wang, M.; Lu, T.; Sun, Z.; Pan, L. K. Metal-organic framework-derived porous carbon polyhedra for highly efficient capacitive deionization. Chem. Commun. 2015, 51, 12020–12023.

    CAS  Google Scholar 

  211. Duan, X. Y.; Liu, W.; Chang, L. M. Porous carbon prepared by using ZIF-8 as precursor for capacitive deionization. J. Taiwan Inst. Chem. Eng. 2016, 62, 132–139.

    CAS  Google Scholar 

  212. Li, C. P.; Wu, Y. Q.; Zhang, F. Y.; Gao, L. X.; Zhang, D. Q.; An, Z. X. Capacitive deionization of NaCl solution with hierarchical porous carbon materials derived from Mg-MOFs. Sep. Purif. Technol. 2021, 277, 119618.

    CAS  Google Scholar 

  213. Hussain, T.; Nie, P. F.; Hu, B.; Shang, X. H.; Yang, J. M.; Liu, J. Y. Facile synthesis of Mg-formate MOF-derived mesoporous carbon for fast capacitive deionization. J. Mater. Sci. 2021, 56, 10282–10292.

    CAS  Google Scholar 

  214. Zong, M. Z.; Huo, S. L.; Liu, Y.; Zhang, X. L.; Li, K. X. Hydrangea-like nitrogen-doped porous carbons derived from NH2-MIL-53(Al) for high-performance capacitive deionization. Sep. Purif. Technol. 2021, 256, 117818.

    CAS  Google Scholar 

  215. Shen, J. M.; Li, Y.; Wang, C. H.; Luo, R.; Li, J. S.; Sun, X. Y.; Shen, J. Y.; Han, W. Q.; Wang, L. J. Hollow ZIFs-derived nanoporous carbon for efficient capacitive deionization. Electrochim. Acta 2018, 273, 34–42.

    CAS  Google Scholar 

  216. Xu, X. T.; Li, J. L.; Wang, M.; Liu, Y.; Lu, T.; Pan, L. K. Shuttlelike porous carbon rods from carbonized metal-organic frameworks for high-performance capacitive deionization. ChemElectroChem 2016, 3, 993–998.

    CAS  Google Scholar 

  217. Gao, T.; Li, H. B.; Zhou, F.; Gao, M. M.; Liang, S.; Luo, M. Mesoporous carbon derived from ZIF-8 for high efficient electrosorption. Desalination 2019, 451, 133–138.

    CAS  Google Scholar 

  218. Li, H. B.; Pan, L. K.; Nie, C. Y.; Liu, Y.; Sun, Z. Reduced graphene oxide and activated carbon composites for capacitive deionization. J. Mater. Chem. 2012, 22, 15556–15561.

    CAS  Google Scholar 

  219. Kurak, K. A.; Anderson, A. B. Nitrogen-treated graphite and oxygen electroreduction on pyridinic edge sites. J. Phys. Chem. C 2009, 113, 6730–6734.

    CAS  Google Scholar 

  220. Mondol, M. H.; Jhung, S. H. Adsorptive removal of pesticides from water with metal-organic framework-based materials. Chem. Eng. J. 2021, 421, 129688.

    CAS  Google Scholar 

  221. Ahmed, I.; Bhadra, B. N.; Lee, H. J.; Jhung, S. H. Metal-organic framework-derived carbons: Preparation from ZIF-8 and application in the adsorptive removal of sulfamethoxazole from water. Catal. Today 2018, 301, 90–97.

    CAS  Google Scholar 

  222. Liu, R. T.; Chi, L. N.; Feng, J. M.; Wang, X. Z. MOFs-derived conductive structure for high-performance removal/release of phosphate as electrode material. Water Res. 2020, 184, 116198.

    CAS  Google Scholar 

  223. Sarker, M.; Ahmed, I.; Jhung, S. H. Adsorptive removal of herbicides from water over nitrogen-doped carbon obtained from ionic liquid@ZIF-8. Chem. Eng. J. 2017, 323, 203–211.

    CAS  Google Scholar 

  224. Cao, S.; Chen, T. T.; Zheng, S. S.; Bai, Y.; Pang, H. Highperformance capacitive deionization and killing microorganism in surface-water by ZIF-9 derived carbon composites. Small Methods 2021, 5, 2101070.

    CAS  Google Scholar 

  225. Zhu, Z. H.; Wang, Z. B.; Yan, Z. B.; Zhou, R. Q.; Wang, Z. P.; Chen, C. N. Facile synthesis of MOF-derived porous spinel zinc manganese oxide/carbon nanorods hybrid materials for supercapacitor application. Ceram. Int. 2018, 44, 20163–20169.

    CAS  Google Scholar 

  226. Li, X. Y.; Yin, Z.; Ma, W. M.; Wang, C.; Yu, Y. N.; Cheng, Y. Aperiodic chemical sequence in a rod-spacer metal-organic framework from linear tetrazole-benzene-carboxylate linker. Inorg. Chem. Commun. 2020, 116, 107925.

    CAS  Google Scholar 

  227. Lin, Y. F.; Chen, G.; Wan, H.; Chen, F. S.; Liu, X. H.; Ma, R. Z. 2D Free-standing nitrogen-doped Ni-Ni3S2@carbon nanoplates derived from metal-organic frameworks for enhanced oxygen evolution reaction. Small 2019, 15, 1900348.

    Google Scholar 

  228. Hwang, J.; Yan, R. Y.; Oschatz, M.; Schmidt, B. V. K. J. Solvent mediated morphology control of zinc MOFs as carbon templates for application in supercapacitors. J. Mater. Chem. A 2018, 6, 23521–23530.

    CAS  Google Scholar 

  229. Jin, W. W.; Li, H. J.; Zou, J. Z.; Inguva, S.; Zhang, Q.; Zeng, S. Z.; Xu, G. Z.; Zeng, X. R. 2D ultrathin carbon nanosheets derived from interconnected Al-MOF as excellent hosts to anchor selenium for Li-Se battery. Mater. Lett. 2019, 252, 211–214.

    CAS  Google Scholar 

  230. Banerjee, A.; Upadhyay, K. K.; Puthusseri, D.; Aravindan, V.; Madhavi, S.; Ogale, S. MOF-derived crumpled-sheet-assembled perforated carbon cuboids as highly effective cathode active materials for ultra-high energy density Li-ion hybrid electrochemical capacitors (Li-HECs). Nanoscale 2014, 6, 4387–4394.

    CAS  Google Scholar 

  231. Wang, R. T.; Jin, D. D.; Zhang, Y. B.; Wang, S. J.; Lang, J. W.; Yan, X. B.; Zhang, L. Engineering metal organic framework derived 3D nanostructures for high performance hybrid supercapacitors. J. Mater. Chem. A 2017, 5, 292–302.

    CAS  Google Scholar 

  232. Amali, A. J.; Hoshino, H.; Wu, C.; Ando, M.; Xu, Q. From metal-organic framework to intrinsically fluorescent carbon nanodots. Chem.—Eur. J. 2014, 20, 8279–8282.

    CAS  Google Scholar 

  233. Wang, C. H.; Kaneti, Y. V.; Bando, Y.; Lin, J. J.; Liu, C.; Li, J. S.; Yamauchi, Y. Metal-organic framework-derived one-dimensional porous or hollow carbon-based nanofibers for energy storage and conversion. Mater. Horiz. 2018, 5, 394–407.

    CAS  Google Scholar 

  234. Hu, W. H.; Zheng, M. B.; Xu, B. Y.; Wei, Y.; Zhu, W.; Li, Q.; Pang, H. Design of hollow carbon-based materials derived from metal-organic frameworks for electrocatalysis and electrochemical energy storage. J. Mater. Chem. A 2021, 9, 3880–3917.

    CAS  Google Scholar 

  235. Mukhiya, T.; Muthurasu, A.; Tiwari, A. P.; Chhetri, K.; Chae, S. H.; Kim, H.; Dahal, B.; Lee, B. M.; Kim, H. Y. Integrating the essence of a metal-organic framework with electrospinning: A new approach for making a metal nanoparticle confined N-doped carbon nanotubes/porous carbon nanofibrous membrane for energy storage and conversion. ACS Appl. Mater. Interfaces 2021, 13, 23732–23742.

    CAS  Google Scholar 

  236. Tang, R.; Zhou, S. J.; Zhang, L. Y.; Yin, L. W. Metal-organic framework derived narrow bandgap cobalt carbide sensitized titanium dioxide nanocage for superior photo-electrochemical water oxidation performance. Adv. Funct. Mater. 2018, 28, 1706154.

    Google Scholar 

  237. Hu, X. J.; Liu, X. J.; Chen, K.; Wang, G.; Wang, H. Core-shell MOF-derived N-doped yolk-shell carbon nanocages homogenously filled with ZnSe and CoSe2 nanodots as excellent anode materials for lithium- and sodium-ion batteries. J. Mater. Chem. A 2019, 7, 11016–11037.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. U1904215 and 21875207), the Natural Science Foundation of Jiangsu Province (No. BK20200044), and Changjiang scholars program of the Ministry of Education (No. Q2018270).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huan Pang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, J., Tang, Y., Zheng, S. et al. The synthesis of MOF derived carbon and its application in water treatment. Nano Res. 15, 6793–6818 (2022). https://doi.org/10.1007/s12274-022-4327-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4327-1

Keywords

Navigation