Skip to main content
Log in

Kinetically accelerated and high-mass loaded lithium storage enabled by atomic iron embedded carbon nanofibers

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Carbonaceous materials represent the dominant choice of materials for anodic lithium storage in many energy storage devices. Nevertheless, the nonpolar carbonaceous materials offer weak adsorption toward Li+ that largely denies the high-rate Li+ storage. Herein, the atomic Fe sites decorated carbon nanofibers (AICNFs) facilely produced by electrospinning are reported for kinetically accelerated Li+ storage. Theoretical calculation reveals that the atomic Fe sites possess coordination unsaturated electronic configuration, enabling suitable bonding energy and facilitated diffusion path of Li+. As a result, the optimal structure displays a high capacitive contribution up to 95.9% at a scan rate of 2.0 mV·s−1. In addition, ultrahigh capacity retention of 97% is afforded after 5,000 cycles at a current density of 3 A·g−1. Moreover, the interlaced fiber structure enabled by electrospinning benefits structural stability and improved conductivity even at thick electrodes, thus allowing a high areal capacity of 1.76 mAh·cm−2 at a loading of 8 mg·cm−2. Because of these structure and performance merits, the lithium-ion capacitor containing the AICNF-based anode delivers a high energy density and large power density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Masias, A.; Marcicki, J.; Paxton, W. A. Opportunities and challenges of lithium ion batteries in automotive applications. ACS Energy Lett. 2021, 6, 621–630.

    Article  CAS  Google Scholar 

  2. Su, D. Q.; Huang, M.; Zhang, J. H.; Guo, X. M.; Chen, J. L.; Xue, Y. C.; Yuan, A. H.; Kong, Q. H. High N-doped hierarchical porous carbon networks with expanded interlayers for efficient sodium storage. Nano Res. 2020, 13, 2862–2868.

    Article  CAS  Google Scholar 

  3. Li, Z. N.; Gadipelli, S.; Li, H. C.; Howard, C. A.; Brett, D. J. L.; Shearing, P. R.; Guo, Z. X.; Parkin, I. P.; Li, F. Tuning the interlayer spacing of graphene laminate films for efficient pore utilization towards compact capacitive energy storage. Nat. Energy 2020, 5, 160–168.

    Article  CAS  Google Scholar 

  4. Fu, W. B.; Zhao, E. B.; Ma, R. Y.; Sun, Z. F.; Yang, Y.; Sevilla, M.; Fuertes, A. B.; Magasinski, A.; Yushin, G. Anatase TiO2 confined in carbon nanopores for high-energy Li-ion hybrid supercapacitors operating at high rates and subzero temperatures. Adv. Energy Mater. 2020, 10, 1902993.

    Article  CAS  Google Scholar 

  5. Chen, K. H.; Goel, V.; Namkoong, M. J.; Wied, M.; Müller, S.; Wood, V.; Sakamoto, J.; Thornton, K.; Dasgupta, N. P. Enabling 6 C fast charging of Li-ion batteries with graphite/hard carbon hybrid anodes. Adv. Energy Mater. 2021, 11, 2003336.

    Article  CAS  Google Scholar 

  6. Zhao, X. W.; Wu, Y. Z.; Wang, Y. S.; Wu, H. S.; Yang, Y. W.; Wang, Z. P.; Dai, L. X.; Shang, Y. Y.; Cao, A. Y. High-performance Li-ion batteries based on graphene quantum dot wrapped carbon nanotube hybrid anodes. Nano Res. 2020, 13, 1044–1052.

    Article  CAS  Google Scholar 

  7. Wang, L.; Li, Y. Y.; Wang, S.; Zhou, P. F.; Zhao, Z. D.; Li, X. W.; Zhou, J.; Zhuo, S. P. Fluorinated nanographite as a cathode material for lithium primary batteries. ChemElertroChem 2019, 6, 2201–2207.

    Article  CAS  Google Scholar 

  8. Zhang, J. J.; Yu, A. S. Nanostructured transition metal oxides as advanced anodes for lithium-ion batteries. Sci. Bull. 2015, 60, 823–838.

    Article  CAS  Google Scholar 

  9. Zhao, H. Y.; Zhang, F.; Zhang, S. M.; He, S. N.; Shen, F.; Han, X. G.; Yin, Y. D.; Gao, C. B. Scalable synthesis of sub-100 nm hollow carbon nanospheres for energy storage applications. Nano Res. 2018, 11, 1822–1833.

    Article  CAS  Google Scholar 

  10. Oh, Y. J.; Park, J. H.; Park, J. S.; Kim, S. S.; Hong, S. J.; Na, Y. W.; Kim, J. H.; Nam, S.; Yang, S. J. Fast-chargeable N-doped multi-oriented graphitic carbon as a Li-intercalation compound. Energy Storage Mater. 2022, 44, 416–424.

    Article  Google Scholar 

  11. Jung, S. K.; Hwang, I.; Chang, D.; Park, K. Y.; Kim, S. J.; Seong, W. M.; Eum, D.; Park, J.; Kim, B.; Kim, J. et al. Nanoscale phenomena in lithium-ion batteries. Chem. Rev. 2020, 120, 6684–6737.

    Article  CAS  Google Scholar 

  12. Hu, X.; Zhong, G. B.; Li, J. W.; Liu, Y. J.; Yuan, J.; Chen, J. X.; Zhan, H. B.; Wen, Z. H. Hierarchical porous carbon nanofibers for compatible anode and cathode of potassium-ion hybrid capacitor. Energy Environ. Sci. 2020, 13, 2431–2440.

    Article  Google Scholar 

  13. Lv, C. X.; Xu, W. J.; Liu, H. L.; Zhang, L. X.; Chen, S.; Yang, X. F.; Xu, X. J.; Yang, D. J. 3D sulfur and nitrogen codoped carbon nanofiber aerogels with optimized electronic structure and enlarged interlayer spacing boost potassium-ion storage. Small 2019, 15, 1900816.

    Article  Google Scholar 

  14. Ma, X. X.; Chen, X.; Bai, Y. K.; Shen, X.; Zhang, R.; Zhang, Q. The defect chemistry of carbon frameworks for regulating the lithium nucleation and growth behaviors in lithium metal anodes. Small 2021, 17, 2007142.

    Article  CAS  Google Scholar 

  15. Wang, Z. X.; Sun, Z. H.; Li, J.; Shi, Y.; Sun, C. G.; An, B. G.; Cheng, H. M.; Li, F. Insights into the deposition chemistry of Li ions in nonaqueous electrolyte for stable Li anodes. Chem. Soc. Rev. 2021, 50, 3178–3210.

    Article  CAS  Google Scholar 

  16. Chen, J. Y.; Li, H.; Fan, C.; Meng, Q. W.; Tang, Y. W.; Qiu, X. Y.; Fu, G. T.; Ma, T. Y. Dual single-atomic Ni−N4 and Fe−N4 sites constructing janus hollow graphene for selective oxygen electrocatalysis. Adv. Mater. 2020, 32, 2003134.

    Article  CAS  Google Scholar 

  17. Li, Y. C.; Hu, R. M.; Chen, Z. B.; Wan, X.; Shang, J. X.; Wang, F. H.; Shui, J. L. Effect of Zn atom in Fe−N−C catalysts for electrocatalytic reactions: Theoretical considerations. Nano Res. 2021, 14, 611–619.

    Article  CAS  Google Scholar 

  18. Xu, Y. S.; Zhu, L. P.; Cui, X. X.; Zhao, M. Y.; Li, Y. L.; Chen, L. L.; Jiang, W. C.; Jiang, T.; Yang, S. G.; Wang, Y. Graphitizing N-doped mesoporous carbon nanospheres via facile single atom iron growth for highly efficient oxygen reduction reaction. Nano Res. 2020, 13, 752–758.

    Article  CAS  Google Scholar 

  19. Ma, L. B.; Zhu, G. Y.; Wang, D. D.; Chen, H. X.; Lv, Y. H.; Zhang, Y. Z.; He, X. J.; Pang, H. Emerging metal single atoms in electrocatalysts and batteries. Adv. Funct. Mater. 2020, 30, 2003870.

    Article  CAS  Google Scholar 

  20. Geng, H. B.; Cheng, M.; Wang, B.; Yang, Y.; Zhang, Y. F.; Li, C. C. Electronic structure regulation of layered vanadium oxide via interlayer doping strategy toward superior high-rate and low-temperature zinc-ion batteries. Adv. Funct. Mater. 2020, 30, 1907684.

    Article  CAS  Google Scholar 

  21. Zhang, L.; Liang, P.; Shu, H. B.; Man, X. L.; Du, X. Q.; Chao, D. L.; Liu, Z. G.; Sun, Y. P.; Wan, H. Z.; Wang, H. Design rules of heteroatom-doped graphene to achieve high performance lithium-sulfur batteries: Both strong anchoring and catalysing based on first principles calculation. J. Colloid Interface Sci. 2018, 529, 426–431.

    Article  CAS  Google Scholar 

  22. Lu, Y.; Shin, K. H.; Yu, Y. F.; Hu, Y. Z.; Liang, J. N.; Chen, K.; Yuan, H. C.; Park, H. S.; Wang, D. L. Multiple active sites carbonaceous anodes for Na+ storage: Synthesis, electrochemical properties and reaction mechanism analysis. Adv. Funct. Mater. 2021, 31, 2007247.

    Article  CAS  Google Scholar 

  23. Wang, F. Y.; Miao, Z. C.; Mu, J. L.; Zhao, Y. Z.; Liang, M. F.; Meng, J.; Wu, X. Z.; Zhou, P. F.; Zhao, J. P.; Zhuo, S. P. et al. A Ni nanoparticles encapsulated in N-doped carbon catalyst for efficient electroreduction CO2: Identification of active sites for adsorption and activation of CO2 molecules. Chem. Eng. J. 2022, 428, 131323.

    Article  CAS  Google Scholar 

  24. Liu, Z. H.; Du, Y.; Zhang, P. F.; Zhuang, Z. C.; Wang, D. S. Bringing catalytic order out of chaos with nitrogen-doped ordered mesoporous carbon. Matter 2021, 4, 3161–3194.

    Article  CAS  Google Scholar 

  25. Hu, X.; Wang, G. X.; Li, J. W.; Huang, J. H.; Liu, Y. J.; Zhong, G. B.; Yuan, J.; Zhan, H. B.; Wen, Z. H. Significant contribution of single atomic Mn implanted in carbon nanosheets to highperformance sodium-ion hybrid capacitors. Energy Environ. Sci. 2021, 14, 4564–4573.

    Article  CAS  Google Scholar 

  26. Zhuang, Z. C.; Kang, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysis enables long-life, high-energy lithium-sulfur batteries. Nano Res. 2020, 13, 1856–1866.

    Article  CAS  Google Scholar 

  27. Zhang, S. L.; Ao, X.; Huang, J.; Wei, B.; Zhai, Y. L.; Zhai, D.; Deng, W. Q.; Su, C. L.; Wang, D. S.; Li, Y. D. Isolated single-atom Ni−N5 catalytic site in hollow porous carbon capsules for efficient lithium-sulfur batteries. Nano Lett. 2021, 21, 9691–9698.

    Article  CAS  Google Scholar 

  28. Qin, H. Q.; Chao, H. X.; Zhang, M. D.; Huang, Y. C.; Liu, H. Y.; Cheng, J. K.; Cao, L. F.; Xu, Q.; Guan, L.; Teng, X. L. et al. Precious potential regulation of carbon cathode enabling high-performance lithium-ion capacitors. Carbon 2021, 180, 110–117.

    Article  CAS  Google Scholar 

  29. Khan, K.; Yan, X. X.; Yu, Q. M.; Bae, S. H.; White, J. J.; Liu, J. X.; Liu, T. C.; Sun, C. J.; Kim, J.; Cheng, H. M. et al. Stone-wales defect-rich carbon-supported dual-metal single atom sites for Zn-air batteries. Nano Energy 2021, 90, 106488.

    Article  CAS  Google Scholar 

  30. Sun, X. H.; Tuo, Y. X.; Ye, C. L.; Chen, C.; Lu, Q.; Li, G. N.; Jiang, P.; Chen, S. H.; Zhu, P.; Ma, M. et al. Phosphorus induced electron localization of single iron sites for boosted CO2 electroreduction reaction. Angew. Chem., Int. Ed. 2021, 60, 23614–23618.

    Article  CAS  Google Scholar 

  31. Zhang, Z. P.; Sun, J. T.; Wang, F.; Dai, L. M. Efficient oxygen reduction reaction (ORR) catalysts based on single iron atoms dispersed on a hierarchically structured porous carbon framework. Angew. Chem., Int. Ed. 2018, 57, 9038–9043.

    Article  CAS  Google Scholar 

  32. Ren, H.; Wang, Y.; Yang, Y.; Tang, X.; Peng, Y. Q.; Peng, H. Q.; Xiao, L.; Lu, J. T.; Abruña, H. D.; Zhuang, L. Fe/N/C nanotubes with atomic Fe sites: A highly active cathode catalyst for alkaline polymer electrolyte fuel cells. ACS Catal. 2017, 7, 6485–6492.

    Article  CAS  Google Scholar 

  33. Gao, L. F.; Zhang, G. Q.; Cai, J.; Huang, L.; Zhou, J.; Zhang, L. N. Rationally exfoliating chitin into 2D hierarchical porous carbon nanosheets for high-rate energy storage. Nano Res. 2020, 13, 1604–1613.

    Article  CAS  Google Scholar 

  34. Zhuang, Z. L.; Liu, C.; Yan, Y. Y.; Ma, P. C.; Tan, D. Q. Zn−CxNy nanoparticle arrays derived from a metal-organic framework for ultralow-voltage hysteresis and stable Li metal anodes. J. Mater. Chem. A 2021, 9, 27095–27101.

    Article  CAS  Google Scholar 

  35. Wang, T. T.; Sang, X. H.; Zheng, W. Z.; Yang, B.; Yao, S. Y.; Lei, C. J.; Li, Z. J.; He, Q. G.; Lu, J. G.; Lei, L. C. et al. Gas diffusion strategy for inserting atomic iron sites into graphitized carbon supports for unusually high-efficient CO2 electroreduction and high-performance Zn−CO2 batteries. Adv. Mater. 2020, 32, 2002430.

    Article  CAS  Google Scholar 

  36. Ni, W. P.; Liu, Z. X.; Zhang, Y.; Ma, C.; Deng, H. Q.; Zhang, S. G.; Wang, S. Y. Electroreduction of carbon dioxide driven by the intrinsic defects in the carbon plane of a single Fe−N4 site. Adv. Mater. 2021, 33, 2003238.

    Article  CAS  Google Scholar 

  37. Xiao, M. L.; Xing, Z. H.; Jin, Z.; Liu, C. P.; Ge, J. J.; Zhu, J. B.; Wang, Y.; Zhao, X.; Chen, Z. W. Preferentially engineering FeN4 edge sites onto graphitic nanosheets for highly active and durable oxygen electrocatalysis in rechargeable Zn-air batteries. Adv. Mater. 2020, 32, 2004900.

    Article  CAS  Google Scholar 

  38. Yu, D. S.; Ma, Y. C.; Hu, F.; Lin, C. C.; Li, L. L.; Chen, H. Y.; Han, X. P.; Peng, S. J. Dual-sites coordination engineering of single atom catalysts for flexible metal-air batteries. Adv. Energy Mater. 2021, 11, 2101242.

    Article  CAS  Google Scholar 

  39. Wang, X. S.; Pan, Y. Y.; Ning, H.; Wang, H. M.; Guo, D. L.; Wang, W. H.; Yang, Z. X.; Zhao, Q. S.; Zhang, B. X.; Zheng, L. R. et al. Hierarchically micro- and meso-porous Fe−N4O-doped carbon as robust electrocatalyst for CO2 reduction. Appl. Catal. B:Environ. 2020, 266, 118630.

    Article  CAS  Google Scholar 

  40. Liu, F.; Meng, J. S.; Jiang, G. P.; Li, J. T.; Wang, H.; Xiao, Z. T.; Yu, R. H.; Mai, L. Q.; Wu, J. S. Coordination engineering of metal single atom on carbon for enhanced and robust potassium storage. Matter 2021, 4, 4006–4021.

    Article  CAS  Google Scholar 

  41. Chen, J. T.; Yang, B. J.; Hou, H. J.; Li, H. X.; Liu, L.; Zhang, L.; Yan, X. B. Disordered, large interlayer spacing, and oxygen-rich carbon nanosheets for potassium ion hybrid capacitor. Adv. Energy Mater. 2019, 9, 1803894.

    Article  Google Scholar 

  42. Chao, H. X.; Qin, H. Q.; Zhang, M. D.; Huang, Y. C.; Cao, L. F.; Guo, H. L.; Wang, K.; Teng, X. L.; Cheng, J. K.; Lu, Y. K. et al. Boosting the pseudocapacitive and high mass-loaded lithium/sodium storage through bonding polyoxometalate nanoparticles on MXene nanosheets. Adv. Funct. Mater. 2021, 31, 2007636.

    Article  CAS  Google Scholar 

  43. Brezesinski, T.; Wang, J.; Tolbert, S. H.; Dunn, B. Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat. Mater. 2010, 9, 146–151.

    Article  CAS  Google Scholar 

  44. Hu, X.; Liu, Y. J.; Chen, J. X.; Yi, L. C.; Zhan, H. B.; Wen, Z. H. Fast redox kinetics in Bi-heteroatom doped 3D porous carbon nanosheets for high-performance hybrid potassium-ion battery capacitors. Adv. Energy Mater. 2019, 9, 1901533.

    Article  CAS  Google Scholar 

  45. Zou, K. Y.; Cai, P.; Cao, X. Y.; Zou, G. Q.; Hou, H. S.; Ji, X. B. Carbon materials for high-performance lithium-ion capacitor. Curr. Opin. Electrochem. 2020, 21, 31–39.

    Article  CAS  Google Scholar 

  46. Wang, F.; Feng, T.; Jin, X. J.; Zhou, Y. L.; Xu, Y. J.; Gao, Y. H.; Li, H. S.; Lei, J. F. Atomic Co/Ni active sites assisted MOF-derived rich nitrogen-doped carbon hollow nanocages for enhanced lithium storage. Chem.Eng. J. 2021, 420, 127583.

    Article  CAS  Google Scholar 

  47. Wang, J.; Zhang, J.; Cheng, S.; Yang, J.; Xi, Y. L.; Hou, X. G.; Xiao, Q. B.; Lin, H. Z. Long-life dendrite-free lithium metal electrode achieved by constructing a single metal atom anchored in a diffusion modulator layer. Nano Lett. 2021, 21, 3245–3253.

    Article  CAS  Google Scholar 

  48. Lee, J. H.; Kang, S. G.; Kim, I. T.; Kwon, S.; Lee, I.; Lee, S. G. Adsorption mechanisms of lithium oxides (LixO2) on N-doped graphene: A density functional theory study with implications for lithium-air batteries. Theor. Chem. Acc. 2016, 135, 50.

    Article  Google Scholar 

  49. Jin, L. M.; Shen, C.; Shellikeri, A.; Wu, Q.; Zheng, J. S.; Andrei, P.; Zhang, J. G.; Zheng, J. P. Progress and perspectives on pre-lithiation technologies for lithium ion capacitors. Energy Environ. Sci. 2020, 13, 2341–2362.

    Article  CAS  Google Scholar 

  50. Zhang, J.; Wu, H. Z.; Wang, J.; Shi, J. L.; Shi, Z. Q. Pre-lithiation design and lithium ion intercalation plateaus utilization of mesocarbon microbeads anode for lithium-ion capacitors. Electrochim. Acta 2015, 182, 156–164.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the National Natural Science Foundation of China (Nos. 21975258, 22179145, and 22138013), the startup support grant from China University of Petroleum (East China), and Shandong Provincial Natural Science Foundation (No. ZR2020ZD08).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Han Hu or Mingbo Wu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Q., Li, Y., Wu, C. et al. Kinetically accelerated and high-mass loaded lithium storage enabled by atomic iron embedded carbon nanofibers. Nano Res. 15, 6176–6183 (2022). https://doi.org/10.1007/s12274-022-4266-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4266-x

Keywords

Navigation