Skip to main content

Selectivity regulation of CO2 electroreduction on asymmetric AuAgCu tandem heterostructures

Abstract

Rational design and synthesis of multimetallic nanostructures (NSs) are fundamentally important for electrochemical CO2 reduction reaction (CO2RR). Herein, a multi-step seed-mediated growth method is applied to synthesize asymmetric AuAgCu heterostructures using Au nanobipyramids as nucleation seeds, in which their composition and structures are well controlled. We find that the selectivity of C2 products for CO2RR could be effectively regulated by tandem catalysis and electronic effect over trimetallic AuAgCu heterostructures. Particularly, the Faraday efficiency toward ethanol could reach up to 37.5% at a potential of −0.8 V versus reversible hydrogen electrode over asymmetric Au1Ag1Cu5 heterostructures with segregated domains of three constituent metals. This work provides an efficient strategy for the synthesis of multicomponent architectures to boost their promising application in CO2RR.

This is a preview of subscription content, access via your institution.

References

  1. De Arquer, F. P. G.; Dinh, C. T.; Ozden, A.; Wicks, J.; McCallum, C.; Kirmani A. R.; Nam, D. H.; Gabardo, C.; Seifitokaldani, A.; Wang, X. et al. CO2 electrolysis to multicarbon products at activities greater than 1 A·cm−2. Science 2020, 367, 661–666.

    Google Scholar 

  2. Huang J. E.; Li, F. W.; Ozden, A.; Rasouli, A. S.; De Arquer, F. P. G.; Liu, S. J.; Zhang, S. Z.; Luo, M. C.; Wang, X.; Lum, Y. W. et al. CO2 electrolysis to multicarbon products in strong acid. Science 2021, 372, 1074–1078.

    CAS  Google Scholar 

  3. Clark, E. L.; Hahn, C.; Jaramillo, T. F.; Bell, A. T. Electrochemical CO2 reduction over compressively strained CuAg surface alloys with enhanced multi-carbon oxygenate selectivity. J. Am. Chem. Soc. 2017, 139, 15848–15857.

    CAS  Google Scholar 

  4. Zhu, Q. G.; Sun, X. F.; Yang, D. X.; Ma, J.; Kang, X. C.; Zheng, L. R.; Zhang, J.; Wu, Z. H.; Han, B. X. Carbon dioxide electroreduction to C2 products over copper-cuprous oxide derived from electrosynthesized copper complex. Nat. Commun. 2019, 10, 3851.

    Google Scholar 

  5. Kortlever, R.; Shen, J.; Schouten, K. J. P.; Calle-Vallejo, F.; Koper, M. T. M. Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. J. Phys. Chem. Lett. 2015, 6, 4073–4082.

    CAS  Google Scholar 

  6. Goyal, A.; Marcandalli, G.; Mints, V. A.; Koper, M. T. M. Competition between CO2 reduction and hydrogen evolution on a gold electrode under well-defined mass transport conditions. J. Am. Chem. Soc. 2020, 142, 4154–4161.

    CAS  Google Scholar 

  7. Wang, N.; Miao, R. K.; Lee, G.; Vomiero, A.; Sinton, D.; Ip, A. H.; Liang, H. Y.; Sargent, E. H. Suppressing the liquid product crossover in electrochemical CO2 reduction. SmartMat 2021, 2, 12–16.

    Google Scholar 

  8. Wang, H. Q. Nanostructure@metal—organic frameworks (MOFs) for catalytic carbon dioxide (CO2) conversion in photocatalysis, electrocatalysis, and thermal catalysis. Nano Res. 2022, 15, 2834–2854.

    Google Scholar 

  9. Zheng, G. C.; Mourdikoudis, S.; Zhang, Z. C. Plasmonic metallic heteromeric nanostructures. Small 2020, 16, 2002588.

    CAS  Google Scholar 

  10. Lim, B.; Xia, Y. N. Metal nanocrystals with highly branched morphologies. Angew. Chem., Int. Ed. 2011, 50, 76–85.

    CAS  Google Scholar 

  11. Shan, C. S.; Martin, E. T.; Peters, D. G.; Zaleski, J. M. Site-selective growth of AgPd nanodendrite-modified Au nanoprisms: High electrocatalytic performance for CO2 reduction. Chem. Mater. 2017, 29, 6030–6043.

    CAS  Google Scholar 

  12. Ren, D.; Gao, J.; Pan, L. F.; Wang, Z. W.; Luo, J. S.; Zakeeruddin, S. M.; Hagfeldt, A.; Grätzel, M. Atomic layer deposition of ZnO on CuO enables selective and efficient electroreduction of carbon dioxide to liquid fuels. Angew. Chem., Int. Ed. 2019, 58, 15036–15040.

    CAS  Google Scholar 

  13. Li, F. W.; Li, Y. C.; Wang, Z. Y.; Li, J.; Nam, D. H.; Lum, Y.; Luo, M. C.; Wang, X.; Ozden, A.; Hung, S. F. et al. Cooperative CO2-to-ethanol conversion via enriched intermediates at molecule-metal catalyst interfaces. Nat. Catal. 2020, 3, 75–82.

    CAS  Google Scholar 

  14. Zhu, Y. T.; Cui, X. Y.; Liu, H. L.; Guo, Z. G.; Dang, Y. F.; Fan, Z. X.; Zhang, Z. C.; Hu, W. P. Tandem catalysis in electrochemical CO2 reduction reaction. Nano Res. 2021, 14, 4471–4486.

    CAS  Google Scholar 

  15. He, C. H.; Duan, D. L.; Low, J.; Bai, Y.; Jiang, Y. W.; Wang, X. Y.; Chen, S. M.; Long, R.; Song, L.; Xiong, Y. J. Cu2−xS derived copper nanoparticles: A platform for unraveling the role of surface reconstruction in efficient electrocatalytic CO2-to-C2H4 conversion. Nano Res., in press, https://doi.org/10.1007/s12274-021-3532-7.

  16. Choi, C.; Cai, J.; Lee, C.; Lee, H. M.; Xu, M. J.; Huang, Y. Intimate atomic Cu—Ag interfaces for high CO2RR selectivity towards CH4 at low over potential. Nano Res. 2021, 14, 3497–3501.

    CAS  Google Scholar 

  17. Huang, J. F.; Mensi, M.; Oveisi, E.; Mantella, V.; Buonsanti, R. Structural sensitivities in bimetallic catalysts for electrochemical CO2 reduction revealed by Ag—Cu nanodimers. J. Am. Chem. Soc. 2019, 141, 2490–2499.

    CAS  Google Scholar 

  18. Wang, J. Q.; Li, Z.; Dong, C. K.; Feng, Y.; Yang, J.; Liu, H.; Du, X. W. Silver/copper interface for relay electroreduction of carbon dioxide to ethylene. ACS Appl. Mater. Interfaces 2019, 11, 2763–2767.

    CAS  Google Scholar 

  19. Gao, J.; Zhang, H.; Guo, X. Y.; Luo, J. S.; Zakeeruddin, S. M.; Ren, D.; Grätzel, M. Selective C—C coupling in carbon dioxide electroreduction via efficient spillover of intermediates as supported by operando Raman spectroscopy. J. Am. Chem. Soc. 2019, 141, 18704–18714.

    CAS  Google Scholar 

  20. Iyengar, P.; Kolb, M. J.; Pankhurst, J. R.; Calle-Vallejo, F.; Buonsanti, R. Elucidating the facet-dependent selectivity for CO2 electroreduction to ethanol of Cu—Ag tandem catalysts. ACS Catal. 2021, 11, 4456–4463.

    CAS  Google Scholar 

  21. Hoang, T. T. H.; Verma, S.; Ma, S. C.; Fister, T. T.; Timoshenko, J.; Frenkel, A. I.; Kenis, P. J. A.; Gewirth, A. A. Nanoporous copper—silver alloys by additive-controlled electrodeposition for the selective electroreduction of CO2 to ethylene and ethanol. J. Am. Chem. Soc. 2018, 140, 5791–5797.

    CAS  Google Scholar 

  22. Lee, S.; Park, G.; Lee, J. Importance of Ag—Cu biphasic boundaries for selective electrochemical reduction of CO2 to ethanol. ACS Catal. 2017, 7, 8594–8604.

    CAS  Google Scholar 

  23. Li, Y. C.; Wang, Z. Y.; Yuan, T. G.; Nam, D. H.; Luo, M. C.; Wicks, J.; Chen, B.; Li, J.; Li, F.; De Arquer, F. P. G. et al. Binding site diversity promotes CO2 electroreduction to ethanol. J. Am. Chem. Soc. 2019, 141, 8584–8591.

    CAS  Google Scholar 

  24. An, C.; Shen, Y. L.; Yan, W. X.; Dai, L. X.; An, C. H. Surface-tuning nanoporous AuCu3 engineering syngas proportion by electrochemical conversion of CO2. Nano Res. 2021, 14, 3907–3912.

    CAS  Google Scholar 

  25. Zhang, B. B.; Wang, Y. H.; Xu, S. M.; Chen, K.; Yang, Y. G.; Kong, Q. H. Tuning nanocavities of Au@Cu2O yolk—shell nanoparticles for highly selective electroreduction of CO2 to ethanol at low potential. RSC Adv. 2020, 10, 19192–19198.

    CAS  Google Scholar 

  26. Morales-Guio, C. G.; Cave, E. R.; Nitopi, S. A.; Feaster, J. T.; Wang, L.; Kuhl, K. P.; Jackson, A.; Johnson, N. C.; Abram, D. N.; Hatsukade, T. et al. Improved CO2 reduction activity towards C2+ alcohols on a tandem gold on copper electrocatalyst. Nat. Catal. 2018, 1, 764–771.

    CAS  Google Scholar 

  27. Jia, H. L.; Yang, Y. Y.; Chow, T. H.; Zhang, H.; Liu, X. Y.; Wang, J. F.; Zhang, C. Y. Symmetry-broken Au—Cu heterostructures and their tandem catalysis process in electrochemical CO2 reduction. Adv. Funct. Mater. 2021, 31, 2101255.

    CAS  Google Scholar 

  28. Ren, D.; Ang, B. S. H.; Yeo, B. S. Tuning the selectivity of carbon dioxide electroreduction toward ethanol on oxide-derived CuxZn catalysts. ACS Catal. 2016, 6, 8239–8247.

    CAS  Google Scholar 

  29. Chang, J.; Zhang, A. M.; Huang, Z. C.; Chen, Y. S.; Zhang, Q.; Cui, D. X. Monodisperse Au@Ag core—shell nanoprobes with ultrasensitive SERS-activity for rapid identification and Raman imaging of living cancer cells. Talanta 2019, 198, 45–54.

    CAS  Google Scholar 

  30. Zhang, Z. C.; Liu, G. G.; Cui, X. Y.; Chen, B.; Zhu, Y. H.; Gong, Y.; Saleem, F.; Xi, S. B.; Du, Y. H.; Borgna, A. et al. Crystal phase and architecture engineering of lotus-thalamus-shaped Pt-Ni anisotropic superstructures for highly efficient electrochemical hydrogen evolution. Adv. Mater. 2018, 30, 1801741.

    Google Scholar 

  31. Wang, Y. F.; Han, P.; Lv, X. M.; Zhang, L. J.; Zheng, G. F. Defect and interface engineering for aqueous electrocatalytic CO2 reduction. Joule 2018, 2, 2551–2582.

    CAS  Google Scholar 

  32. Ross, M. B.; De Luna, P.; Li, Y. F.; Dinh, C. T.; Kim, D.; Yang, P. D.; Sargent, E. H. Designing materials for electrochemical carbon dioxide recycling. Nat. Catal. 2019, 2, 648–658.

    CAS  Google Scholar 

  33. Ma, S. C.; Sadakiyo, M.; Heima, M.; Luo, R.; Haasch, R. T.; Gold, J. I.; Yamauchi, M.; Kenis, P. J. A. Electroreduction of carbon dioxide to hydrocarbons using bimetallic Cu-Pd catalysts with different mixing patterns. J. Am. Chem. Soc. 2017, 139, 47–50.

    CAS  Google Scholar 

  34. Yang, Y.; Zhang, Y.; Hu, J. S.; Wan, L. J. Progress in the mechanisms and materials for CO2 electroreduction toward C2+ products. Acta Phys. Chim. Sin. 2020, 36, 1906085.

    Google Scholar 

  35. Vasileff, A.; Xu, C. C.; Jiao, Y.; Zheng, Y.; Qiao, S. Z. Surface and interface engineering in copper-based bimetallic materials for selective CO2 electroreduction. Chem 2018, 4, 1809–1831.

    CAS  Google Scholar 

  36. Schouten, K. J. P.; Qin, Z. S.; Gallent, E. P.; Koper, M. T. M. Two pathways for the formation of ethylene in CO reduction on single-crystal copper electrodes. J. Am. Chem. Soc. 2012, 134, 9864–9867.

    CAS  Google Scholar 

  37. Yang, C. H.; Gao, Z. Q.; Wang, D. J.; Li, S. Y.; Li, J. J.; Zhu, Y. T.; Wang, H. Q.; Yang, W. J.; Gao, X. J.; Zhang, Z. C. et al. Bimetallic phthalocyanine heterostructure used for highly selective electrocatalytic CO2 reduction. Sci. China Mater. 2022, 65, 155–162.

    CAS  Google Scholar 

  38. Back, S.; Yeom, M. S.; Jung, Y. Active sites of Au and Ag nanoparticle catalysts for CO2 electroreduction to CO. ACS Catal. 2015, 5, 5089–5096.

    CAS  Google Scholar 

  39. Yang, C. H.; Nosheen, F.; Zhang, Z. C. Recent progress in structural modulation of metal nanomaterials for electrocatalytic CO2 reduction. Rare Met. 2021, 40, 1412–1430.

    CAS  Google Scholar 

  40. Zhu, W. L.; Michalsky, R.; Metin, Ö.; Lv, H. F.; Guo, S. J.; Wright, C.; Sun, X. L.; Peterson, A. A.; Sun, S. H. Correction to “Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO”. J. Am. Chem. Soc. 2017, 139, 9408.

    CAS  Google Scholar 

  41. Peng, X.; Karakalos, S. G.; Mustain, W. E. Preferentially oriented ag nanocrystals with extremely high activity and faradaic efficiency for CO2 electrochemical reduction to CO. ACS Appl. Mater. Interfaces 2018, 10, 1734–1742.

    CAS  Google Scholar 

  42. Li, J. J.; Abbas, S. U.; Wang, H. Q.; Zhang, Z. C.; Hu, W. P. Recent advances in interface engineering for electrocatalytic CO2 reduction reaction. Nano-Micro Lett. 2021, 13, 216.

    CAS  Google Scholar 

  43. Zhou, Y. S.; Che, F. L.; Liu, M.; Zou, C. Q.; Liang, Z. Q.; De Luna, P.; Yuan, H. F.; Li, J.; Wang, Z. Q.; Xie, H. P. et al. Dopant-induced electron localization drives CO2 reduction to C2 hydrocarbons. Nat. Chem. 2018, 10, 974–980.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22071172 and 52025025) and the National Key R&D Prrgram of China (No. 2017YFA0204503).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhicheng Zhang or Wenping Hu.

Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Gao, Z., Zhang, Z. et al. Selectivity regulation of CO2 electroreduction on asymmetric AuAgCu tandem heterostructures. Nano Res. (2022). https://doi.org/10.1007/s12274-022-4234-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-022-4234-5

Keywords

  • CO2 reduction
  • electrocatalysis
  • tandem catalysis
  • multimetallic nanostructure
  • asymmetric heterostructure