De Arquer, F. P. G.; Dinh, C. T.; Ozden, A.; Wicks, J.; McCallum, C.; Kirmani A. R.; Nam, D. H.; Gabardo, C.; Seifitokaldani, A.; Wang, X. et al. CO2 electrolysis to multicarbon products at activities greater than 1 A·cm−2. Science 2020, 367, 661–666.
Google Scholar
Huang J. E.; Li, F. W.; Ozden, A.; Rasouli, A. S.; De Arquer, F. P. G.; Liu, S. J.; Zhang, S. Z.; Luo, M. C.; Wang, X.; Lum, Y. W. et al. CO2 electrolysis to multicarbon products in strong acid. Science 2021, 372, 1074–1078.
CAS
Google Scholar
Clark, E. L.; Hahn, C.; Jaramillo, T. F.; Bell, A. T. Electrochemical CO2 reduction over compressively strained CuAg surface alloys with enhanced multi-carbon oxygenate selectivity. J. Am. Chem. Soc. 2017, 139, 15848–15857.
CAS
Google Scholar
Zhu, Q. G.; Sun, X. F.; Yang, D. X.; Ma, J.; Kang, X. C.; Zheng, L. R.; Zhang, J.; Wu, Z. H.; Han, B. X. Carbon dioxide electroreduction to C2 products over copper-cuprous oxide derived from electrosynthesized copper complex. Nat. Commun. 2019, 10, 3851.
Google Scholar
Kortlever, R.; Shen, J.; Schouten, K. J. P.; Calle-Vallejo, F.; Koper, M. T. M. Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. J. Phys. Chem. Lett. 2015, 6, 4073–4082.
CAS
Google Scholar
Goyal, A.; Marcandalli, G.; Mints, V. A.; Koper, M. T. M. Competition between CO2 reduction and hydrogen evolution on a gold electrode under well-defined mass transport conditions. J. Am. Chem. Soc. 2020, 142, 4154–4161.
CAS
Google Scholar
Wang, N.; Miao, R. K.; Lee, G.; Vomiero, A.; Sinton, D.; Ip, A. H.; Liang, H. Y.; Sargent, E. H. Suppressing the liquid product crossover in electrochemical CO2 reduction. SmartMat 2021, 2, 12–16.
Google Scholar
Wang, H. Q. Nanostructure@metal—organic frameworks (MOFs) for catalytic carbon dioxide (CO2) conversion in photocatalysis, electrocatalysis, and thermal catalysis. Nano Res. 2022, 15, 2834–2854.
Google Scholar
Zheng, G. C.; Mourdikoudis, S.; Zhang, Z. C. Plasmonic metallic heteromeric nanostructures. Small 2020, 16, 2002588.
CAS
Google Scholar
Lim, B.; Xia, Y. N. Metal nanocrystals with highly branched morphologies. Angew. Chem., Int. Ed. 2011, 50, 76–85.
CAS
Google Scholar
Shan, C. S.; Martin, E. T.; Peters, D. G.; Zaleski, J. M. Site-selective growth of AgPd nanodendrite-modified Au nanoprisms: High electrocatalytic performance for CO2 reduction. Chem. Mater. 2017, 29, 6030–6043.
CAS
Google Scholar
Ren, D.; Gao, J.; Pan, L. F.; Wang, Z. W.; Luo, J. S.; Zakeeruddin, S. M.; Hagfeldt, A.; Grätzel, M. Atomic layer deposition of ZnO on CuO enables selective and efficient electroreduction of carbon dioxide to liquid fuels. Angew. Chem., Int. Ed. 2019, 58, 15036–15040.
CAS
Google Scholar
Li, F. W.; Li, Y. C.; Wang, Z. Y.; Li, J.; Nam, D. H.; Lum, Y.; Luo, M. C.; Wang, X.; Ozden, A.; Hung, S. F. et al. Cooperative CO2-to-ethanol conversion via enriched intermediates at molecule-metal catalyst interfaces. Nat. Catal. 2020, 3, 75–82.
CAS
Google Scholar
Zhu, Y. T.; Cui, X. Y.; Liu, H. L.; Guo, Z. G.; Dang, Y. F.; Fan, Z. X.; Zhang, Z. C.; Hu, W. P. Tandem catalysis in electrochemical CO2 reduction reaction. Nano Res. 2021, 14, 4471–4486.
CAS
Google Scholar
He, C. H.; Duan, D. L.; Low, J.; Bai, Y.; Jiang, Y. W.; Wang, X. Y.; Chen, S. M.; Long, R.; Song, L.; Xiong, Y. J. Cu2−xS derived copper nanoparticles: A platform for unraveling the role of surface reconstruction in efficient electrocatalytic CO2-to-C2H4 conversion. Nano Res., in press, https://doi.org/10.1007/s12274-021-3532-7.
Choi, C.; Cai, J.; Lee, C.; Lee, H. M.; Xu, M. J.; Huang, Y. Intimate atomic Cu—Ag interfaces for high CO2RR selectivity towards CH4 at low over potential. Nano Res. 2021, 14, 3497–3501.
CAS
Google Scholar
Huang, J. F.; Mensi, M.; Oveisi, E.; Mantella, V.; Buonsanti, R. Structural sensitivities in bimetallic catalysts for electrochemical CO2 reduction revealed by Ag—Cu nanodimers. J. Am. Chem. Soc. 2019, 141, 2490–2499.
CAS
Google Scholar
Wang, J. Q.; Li, Z.; Dong, C. K.; Feng, Y.; Yang, J.; Liu, H.; Du, X. W. Silver/copper interface for relay electroreduction of carbon dioxide to ethylene. ACS Appl. Mater. Interfaces 2019, 11, 2763–2767.
CAS
Google Scholar
Gao, J.; Zhang, H.; Guo, X. Y.; Luo, J. S.; Zakeeruddin, S. M.; Ren, D.; Grätzel, M. Selective C—C coupling in carbon dioxide electroreduction via efficient spillover of intermediates as supported by operando Raman spectroscopy. J. Am. Chem. Soc. 2019, 141, 18704–18714.
CAS
Google Scholar
Iyengar, P.; Kolb, M. J.; Pankhurst, J. R.; Calle-Vallejo, F.; Buonsanti, R. Elucidating the facet-dependent selectivity for CO2 electroreduction to ethanol of Cu—Ag tandem catalysts. ACS Catal. 2021, 11, 4456–4463.
CAS
Google Scholar
Hoang, T. T. H.; Verma, S.; Ma, S. C.; Fister, T. T.; Timoshenko, J.; Frenkel, A. I.; Kenis, P. J. A.; Gewirth, A. A. Nanoporous copper—silver alloys by additive-controlled electrodeposition for the selective electroreduction of CO2 to ethylene and ethanol. J. Am. Chem. Soc. 2018, 140, 5791–5797.
CAS
Google Scholar
Lee, S.; Park, G.; Lee, J. Importance of Ag—Cu biphasic boundaries for selective electrochemical reduction of CO2 to ethanol. ACS Catal. 2017, 7, 8594–8604.
CAS
Google Scholar
Li, Y. C.; Wang, Z. Y.; Yuan, T. G.; Nam, D. H.; Luo, M. C.; Wicks, J.; Chen, B.; Li, J.; Li, F.; De Arquer, F. P. G. et al. Binding site diversity promotes CO2 electroreduction to ethanol. J. Am. Chem. Soc. 2019, 141, 8584–8591.
CAS
Google Scholar
An, C.; Shen, Y. L.; Yan, W. X.; Dai, L. X.; An, C. H. Surface-tuning nanoporous AuCu3 engineering syngas proportion by electrochemical conversion of CO2. Nano Res. 2021, 14, 3907–3912.
CAS
Google Scholar
Zhang, B. B.; Wang, Y. H.; Xu, S. M.; Chen, K.; Yang, Y. G.; Kong, Q. H. Tuning nanocavities of Au@Cu2O yolk—shell nanoparticles for highly selective electroreduction of CO2 to ethanol at low potential. RSC Adv. 2020, 10, 19192–19198.
CAS
Google Scholar
Morales-Guio, C. G.; Cave, E. R.; Nitopi, S. A.; Feaster, J. T.; Wang, L.; Kuhl, K. P.; Jackson, A.; Johnson, N. C.; Abram, D. N.; Hatsukade, T. et al. Improved CO2 reduction activity towards C2+ alcohols on a tandem gold on copper electrocatalyst. Nat. Catal. 2018, 1, 764–771.
CAS
Google Scholar
Jia, H. L.; Yang, Y. Y.; Chow, T. H.; Zhang, H.; Liu, X. Y.; Wang, J. F.; Zhang, C. Y. Symmetry-broken Au—Cu heterostructures and their tandem catalysis process in electrochemical CO2 reduction. Adv. Funct. Mater. 2021, 31, 2101255.
CAS
Google Scholar
Ren, D.; Ang, B. S. H.; Yeo, B. S. Tuning the selectivity of carbon dioxide electroreduction toward ethanol on oxide-derived CuxZn catalysts. ACS Catal. 2016, 6, 8239–8247.
CAS
Google Scholar
Chang, J.; Zhang, A. M.; Huang, Z. C.; Chen, Y. S.; Zhang, Q.; Cui, D. X. Monodisperse Au@Ag core—shell nanoprobes with ultrasensitive SERS-activity for rapid identification and Raman imaging of living cancer cells. Talanta 2019, 198, 45–54.
CAS
Google Scholar
Zhang, Z. C.; Liu, G. G.; Cui, X. Y.; Chen, B.; Zhu, Y. H.; Gong, Y.; Saleem, F.; Xi, S. B.; Du, Y. H.; Borgna, A. et al. Crystal phase and architecture engineering of lotus-thalamus-shaped Pt-Ni anisotropic superstructures for highly efficient electrochemical hydrogen evolution. Adv. Mater. 2018, 30, 1801741.
Google Scholar
Wang, Y. F.; Han, P.; Lv, X. M.; Zhang, L. J.; Zheng, G. F. Defect and interface engineering for aqueous electrocatalytic CO2 reduction. Joule 2018, 2, 2551–2582.
CAS
Google Scholar
Ross, M. B.; De Luna, P.; Li, Y. F.; Dinh, C. T.; Kim, D.; Yang, P. D.; Sargent, E. H. Designing materials for electrochemical carbon dioxide recycling. Nat. Catal. 2019, 2, 648–658.
CAS
Google Scholar
Ma, S. C.; Sadakiyo, M.; Heima, M.; Luo, R.; Haasch, R. T.; Gold, J. I.; Yamauchi, M.; Kenis, P. J. A. Electroreduction of carbon dioxide to hydrocarbons using bimetallic Cu-Pd catalysts with different mixing patterns. J. Am. Chem. Soc. 2017, 139, 47–50.
CAS
Google Scholar
Yang, Y.; Zhang, Y.; Hu, J. S.; Wan, L. J. Progress in the mechanisms and materials for CO2 electroreduction toward C2+ products. Acta Phys. Chim. Sin. 2020, 36, 1906085.
Google Scholar
Vasileff, A.; Xu, C. C.; Jiao, Y.; Zheng, Y.; Qiao, S. Z. Surface and interface engineering in copper-based bimetallic materials for selective CO2 electroreduction. Chem 2018, 4, 1809–1831.
CAS
Google Scholar
Schouten, K. J. P.; Qin, Z. S.; Gallent, E. P.; Koper, M. T. M. Two pathways for the formation of ethylene in CO reduction on single-crystal copper electrodes. J. Am. Chem. Soc. 2012, 134, 9864–9867.
CAS
Google Scholar
Yang, C. H.; Gao, Z. Q.; Wang, D. J.; Li, S. Y.; Li, J. J.; Zhu, Y. T.; Wang, H. Q.; Yang, W. J.; Gao, X. J.; Zhang, Z. C. et al. Bimetallic phthalocyanine heterostructure used for highly selective electrocatalytic CO2 reduction. Sci. China Mater. 2022, 65, 155–162.
CAS
Google Scholar
Back, S.; Yeom, M. S.; Jung, Y. Active sites of Au and Ag nanoparticle catalysts for CO2 electroreduction to CO. ACS Catal. 2015, 5, 5089–5096.
CAS
Google Scholar
Yang, C. H.; Nosheen, F.; Zhang, Z. C. Recent progress in structural modulation of metal nanomaterials for electrocatalytic CO2 reduction. Rare Met. 2021, 40, 1412–1430.
CAS
Google Scholar
Zhu, W. L.; Michalsky, R.; Metin, Ö.; Lv, H. F.; Guo, S. J.; Wright, C.; Sun, X. L.; Peterson, A. A.; Sun, S. H. Correction to “Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO”. J. Am. Chem. Soc. 2017, 139, 9408.
CAS
Google Scholar
Peng, X.; Karakalos, S. G.; Mustain, W. E. Preferentially oriented ag nanocrystals with extremely high activity and faradaic efficiency for CO2 electrochemical reduction to CO. ACS Appl. Mater. Interfaces 2018, 10, 1734–1742.
CAS
Google Scholar
Li, J. J.; Abbas, S. U.; Wang, H. Q.; Zhang, Z. C.; Hu, W. P. Recent advances in interface engineering for electrocatalytic CO2 reduction reaction. Nano-Micro Lett. 2021, 13, 216.
CAS
Google Scholar
Zhou, Y. S.; Che, F. L.; Liu, M.; Zou, C. Q.; Liang, Z. Q.; De Luna, P.; Yuan, H. F.; Li, J.; Wang, Z. Q.; Xie, H. P. et al. Dopant-induced electron localization drives CO2 reduction to C2 hydrocarbons. Nat. Chem. 2018, 10, 974–980.
CAS
Google Scholar