Skip to main content
Log in

Single-element amorphous palladium nanoparticles formed via phase separation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Physically vitrifying amorphous single-element metal requires ultrahigh cooling rates, which are still unachievable for most of the closest-packed metals. Here, we report a facile chemical synthetic strategy for single-element amorphous palladium nanoparticles with a purity of 99.35 at.% ± 0.23 at.% from palladium—silicon liquid droplets. In-situ transmission electron microscopy directly detected the solidification of palladium and the separation of silicon. Further hydrogen absorption experiment showed that the amorphous palladium expanded little upon hydrogen uptake, exhibiting a great potential application for hydrogen separation. Our results provide insight into the formation of amorphous metal at nanoscale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Greer, A. L. Metallic glasses. Science 1995, 267, 1947–1953.

    Article  CAS  Google Scholar 

  2. Kumar, G.; Desai, A.; Schroers, J. Bulk metallic glass: The smaller the better. Adv. Mater. 2011, 23, 461–476.

    Article  CAS  Google Scholar 

  3. Demetriou, M. D.; Launey, M. E.; Garrett, G.; Schramm, J. P.; Hofmann, D. C.; Johnson W. L.; Ritchie, R. O. A damage-tolerant glass. Nat. Mater. 2011, 10, 123–128.

    Article  CAS  Google Scholar 

  4. Inoue, A.; Takeuchi, A. Recent development and application products of bulk glassy alloys. Acta Mater. 2011, 59, 2243–2267.

    Article  CAS  Google Scholar 

  5. Turnbull, D. Under what conditions can a glass be formed. Contemp. Phys. 1969, 10, 473–488.

    Article  CAS  Google Scholar 

  6. Cohen, M. H.; Turnbull, D. Composition requirements for glass formation in metallic and ionic systems. Nature 1961, 189, 131–132.

    Article  CAS  Google Scholar 

  7. Zhong, L.; Wang, J. W.; Sheng, H. W.; Zhang, Z.; Mao, S. X. Formation of monatomic metallic glasses through ultrafast liquid quenching. Nature 2014, 512, 177–180.

    Article  CAS  Google Scholar 

  8. Tang, D. M.; Ren, C. L.; Lv, R. T.; Yu, W. J.; Hou, P. X.; Wang, M. S.; Wei, X. L.; Xu, Z.; Kawamoto, N.; Bando, Y. et al. Amorphization and directional crystallization of metals confined in carbon nanotubes investigated by in situ transmission electron microscopy. Nano Lett. 2015, 15, 4922–4927.

    Article  CAS  Google Scholar 

  9. Davies, H. A.; Aucote, J.; Hull, J. B. Amorphous nickel produced by splat quenching. Nature 1973, 246, 13–14.

    CAS  Google Scholar 

  10. Bhat, M. H.; Molinero, V.; Soignard, E.; Solomon, V. C.; Sastry, S.; Yarger, J. L.; Angell, C. A. Vitrification of a monatomic metallic liquid. Nature 2007, 448, 787–790.

    Article  CAS  Google Scholar 

  11. Yang, N. L.; Cheng, H. F.; Liu, X. Z.; Yun, Q. B.; Chen, Y.; Li, B.; Chen, B.; Zhang, Z. C.; Chen, X. et al. Amorphous/crystalline heterophase Pd nanosheets: One-pot synthesis and highly selective hydrogenation reaction. Adv. Mater. 2018, 30, 1803234.

    Article  Google Scholar 

  12. Adams, B. D.; Chen, A. C. The role of palladium in a hydrogen economy. Mater. Today 2011, 14, 282–289.

    Article  CAS  Google Scholar 

  13. Duwez, P.; Willens, R. H.; Crewdson, R. C. Amorphous phase in palladium—silicon alloys. J. Appl. Phys. 1965, 36, 2267–2269.

    Article  CAS  Google Scholar 

  14. Wu, G; Zheng, X. S.; Cui, P. X.; Jiang, H. Y.; Wang, X. Q.; Qu, Y. T.; Chen, W. X.; Lin, Y.; Li, H.; Han, X. et al. A general synthesis approach for amorphous noble metal nanosheets. Nat. Commun. 2019, 10, 4855.

    Article  Google Scholar 

  15. Chen, H. S.; Turnbull, D. Formation, stability and structure of palladium-silicon based alloy glasses. Acta Metall. 1969, 17, 1021–1031.

    Article  CAS  Google Scholar 

  16. Lee, K. L.; Kui, H. W. Phase separation in undercooled molten Pd80Si20: Part I. J. Mater. Res. 1999, 14, 3653–3662.

    Article  CAS  Google Scholar 

  17. Mele, L.; Konings, S.; Dona, P.; Evertz, F.; Mitterbauer, C.; Faber, P.; Schampers, R.; Jinschek, J. R. A MEMS-based heating holder for the direct imaging of simultaneous in-sttu heating and biasing experiments in scanning/transmission electron microscopes. Microsc. Res. Tech. 2016, 19, 239–250.

    Article  Google Scholar 

  18. Busch, R.; Schneider, S.; Peker, A.; Johnson, W. L. Decomposition and primary crystallization in undercooled Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 melts. Appl. Phys. Lett. 1995, 67, 1544–1546.

    Article  CAS  Google Scholar 

  19. Schneider, S.; Thiyagarajan, P.; Johnson, W. L. Formation of nanocrystals based on decomposition in the amorphous Zr41.2Ti13.8Cu12.5Ni10Be22.5 alloy. Appl. Phys. Lett. 1999, 68, 493–495.

    Article  CAS  Google Scholar 

  20. Hong, S. Y.; Guo, W. H.; Kui, H. W. Metastable liquid miscibility gap in Pd-Si and its glass-forming ability: Part III. J. Mater. Res. 1999, 14, 3668–3672.

    Article  CAS  Google Scholar 

  21. Takagi, D.; Kobayashi, Y.; Hibino, H.; Suzuki, S.; Homma, Y. Mechanism of gold-catalyzed carbon material growth. Nano Lett. 2008, 8, 832–835.

    Article  CAS  Google Scholar 

  22. Baxi, H. C.; Massalski, T. B. The pdsi (Palladiumsilicon) system. J. Phase Equilib. 1991, 12, 349–356.

    Article  CAS  Google Scholar 

  23. Glover, C. J.; Foran, G. J.; Ridgway, M. C. Structure of amorphous silicon investigated by EXAFS. Nucl. Instr. Meth. Phys. Res. B 2003, 199, 195–199.

    Article  CAS  Google Scholar 

  24. Umesaki, N.; Kamijo, N.; Tanaka, I.; Nihara, K. XAFS studies of amorphous silicon nitride. Jpn. J. Appl. Phys. 1993, 32, 649–651.

    Article  CAS  Google Scholar 

  25. Debieu, O.; Nalini, R. P.; Cardin, J.; Portier, X.; Perrière, J.; Gourbilleau, F. Structural and optical characterization of pure Si-rich nitride thin films. Nanoscale Res. Lett. 2013, 8, 31.

    Article  Google Scholar 

  26. Faruq, M.; Villesuzanne, A.; Shao, G. S. Molecular-dynamics simulations of binary Pd-Si metal alloys: Glass formation, crystallisation and cluster properties. J. Non-Cryst. Solids 2018, 487, 72–86.

    Article  CAS  Google Scholar 

  27. Schülli, T. U.; Daudin, R.; Renaud, G.; Vaysset, A.; Geaymond, O.; Pasturel, A. Substrate-enhanced supercooling in AuSi eutectic droplets. Nature 2010, 464, 1174–1177.

    Article  Google Scholar 

  28. Konda, S.; Chen, A. C. Palladium based nanomaterials for enhanced hydrogen spillover and storage. Mater. Today 2015, 19, 100–108.

    Article  Google Scholar 

  29. Borgschulte, A. The hydrogen grand challenge. Front. Energy Res. 2014, 4, 11.

    Google Scholar 

  30. Baldi, A.; Narayan, T. C.; Koh, A. L.; Dionne, J. A. In situ detection of hydrogen-induced phase transitions in individual palladium nanocrystals. Nat. Mater. 2014, 13, 1143–1148.

    Article  CAS  Google Scholar 

  31. Narayan, T. C.; Baldi, A.; Koh, A. L.; Sinclair, R.; Dionne, J. A. Reconstructing solute-induced phase transformations within individual nanocrystals. Nat. Mater. 2019, 15, 768–774.

    Article  Google Scholar 

  32. Fan, Z. X.; Zhang, H. Crystal phase-controlled synthesis, properties and applications of noble metal nanomaterials. Chem. Soc. Rev. 2019, 45, 63–82.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51602143, 51702150, 11874194, 11774142, and 11874194), the Science and Technology Innovation Committee Foundation of Shenzhen (Nos. KQTD2016022619565991, JCYJ20200109141205978, and ZDSYS20141118160434515), the Natural Science Foundation of Guangdong Province (No. 2015A030308001), and the Leading Talents of Guangdong Province Program (No. 00201517). The authors thank Prof. Cai-Zhuang Wang, Prof. Meng Gu, Dr. Song Liu, Dr. Minghui Wu, Mr. Wei Li, and Mr. Yunhua He for helpful discussion. The authors are grateful for the Pico Center at SUSTech core research facilities. The computing time was supported by the Center for Computational Science and Engineering of Southern University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiaqing He.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, D.S., Huang, Y., Myers, B.D. et al. Single-element amorphous palladium nanoparticles formed via phase separation. Nano Res. 15, 5575–5580 (2022). https://doi.org/10.1007/s12274-022-4173-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4173-1

Keywords

Navigation