Skip to main content
Log in

Rapid construction of highly-dispersed cobalt nanoclusters embedded in hollow cubic carbon walls as an effective polysulfide promoter in high-energy lithium-sulfur batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The ultrahigh specific energy density and low cost of lithium-sulfur batteries are suitable for the next generation of energy storage. However, the shuttle issue and sluggish conversion kinetics of polysulfides remain unsolved. Confining metal nanoclusters with strong polarity in conductive porous carbon is an effective strategy for tackling such knotty issues. Herein, we design and synthesize hollow cubic carbon embedded with highly dispersed cobalt nanoclusters as an effective sulfur reservoir for lithium sulfur batteries. The large cavity structure and well-dispersed cobalt nanoclusters, with uniform sizes near 11 nm, enable the hosting structure to hold the high sulfur loading, 70% capacity retention after 500 cycles at 2 C with a high sulfur loading of 6.5 mg·cm−2, effective stress release, accelerated polysulfide conversion, superior rate performance, strong physical confinement and chemical absorption capability. Further density functional theoretical calculations demonstrate that the well-dispersed cobalt nanoclusters in the hosting structure play a critical electrocatalytic role in boosting the capability of absorbing and converting polysulfides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhang, Y. S.; Zhang, P.; Li, B.; Zhang, S. J.; Liu, K. L.; Hou, R. H.; Zhang, X. L.; Silva, S. R. P.; Shao, G. S. Vertically aligned graphene nanosheets on multi-yolk/shell structured TiC@C nanofibers for stable Li-S batteries. Energy Storage Mater.2020, 27, 159–168.

    Article  Google Scholar 

  2. Sun, L.; Xie, J.; Huang, S. C.; Liu, Y. X.; Zhang, L.; Wu, J.; Jin, Z. Rapid CO2 exfoliation of Zintl phase CaSi2-derived ultrathin free-standing Si/SiOx/C nanosheets for high-performance lithium storage. Sci. China Mater., 2022, 65, 51–58. DOI: https://doi.org/10.1007/s40843-021-1708-6.

    Article  CAS  Google Scholar 

  3. Xie, J.; Sun, L.; Liu, Y. X.; Xi X. G.; Chen, R. Y.; Jin, Z. SiOx/C-Ag nanosheets derived from Zintl phase CaSi2 via a facile redox reaction for high performance lithium storage. Nano Res.2021, 15, 395–400.

    Article  CAS  Google Scholar 

  4. Ye, Z. Q.; Jiang, Y.; Li, L.; Wu, F.; Chen, R. J. A high-efficiency CoSe electrocatalyst with hierarchical porous polyhedron nanoarchitecture for accelerating polysulfides conversion in Li-S Batteries. Adv. Mater.2020, 32, 2002168.

    Article  CAS  Google Scholar 

  5. Pang, Q.; Shyamsunder, A.; Narayanan, B.; Kwok, C. Y.; Curtiss, L. A.; Nazar, L. F. Tuning the electrolyte network structure to invoke quasi-solid state sulfur conversion and suppress lithium dendrite formation in Li-S batteries. Nat. Energy2018, 3, 783–791.

    Article  CAS  Google Scholar 

  6. Yang, A. K.; Zhou, G. M.; Kong, X.; Vilá, R. A.; Pei, A.; Wu, Y. C.; Yu, X. Y.; Zheng, X. L.; Wu, C. L.; Liu, B. F. et al. Electrochemical generation of liquid and solid sulfur on two-dimensional layered materials with distinct areal capacities. Nat. Nanotechnol.2020, 15, 231–237.

    Article  CAS  Google Scholar 

  7. He, D. Q.; Meng, J. T.; Chen, X. Y.; Liao, Y. Q.; Cheng, Z. X.; Yuan, L. X.; Li, Z.; Huang, Y. H. Ultrathin conductive interlayer with high-density antisite defects for advanced lithium-sulfur batteries. Adv. Funct. Mater.2021, 31, 2001201.

    Article  CAS  Google Scholar 

  8. Chen, K.; Fang, R. P.; Lian, Z.; Zhang, X. Y.; Tang, P.; Li, B.; He, K.; Wang, D. W.; Cheng, H. M.; Sun, Z. H. et al. An in-situ solidification strategy to block polysulfides in lithium-sulfur batteries. Energy Storage Mater.2021, 37, 224–232.

    Article  CAS  Google Scholar 

  9. Li, Z.; Guan, B. Y.; Zhang, J. T.; Lou, X. W. A compact nanoconfined sulfur cathode for high-performance lithium-sulfur batteries. Joule2017, 1, 576–587.

    Article  CAS  Google Scholar 

  10. Zhao, M.; Li, B. Q.; Peng, H. J.; Yuan, H.; Wei, J. Y.; Huang, J. Q. Lithium-sulfur batteries under lean electrolyte conditions: Challenges and opportunities. Angew. Chem., Int. Ed.2020, 59, 12636–12652.

    Article  CAS  Google Scholar 

  11. Wang, T.; Zhang, Q. S.; Zhong, J.; Chen, M. X.; Deng, H. L.; Cao, J. H.; Wang, L.; Peng, L. L.; Zhu, J.; Lu, B. 3D holey graphene/polyacrylonitrile sulfur composite architecture for high loading lithium sulfur batteries. Adv. Energy Mater.2021, 11, 2100448.

    Article  CAS  Google Scholar 

  12. Baumann, A. E.; Downing, J. R.; Burns, D. A.; Hersam, M. C.; Thoi V. S. Graphene-metal-organic framework composite sulfur electrodes for Li-S batteries with high volumetric capacity. ACS Appl. Mater. Interfaces2020, 12, 37173–37181.

    Article  CAS  Google Scholar 

  13. Jin, B. Y.; Yang, L. F.; Zhang, J. W.; Cai, Y. J.; Zhu, J.; Lu, J. G.; Hou, Y.; He, Q. G.; Xing, H. B.; Zhan, X. L. et al. Bioinspired binders actively controlling ion migration and accommodating volume change in high sulfur loading lithium-sulfur batteries. Adv. Energy Mater.2019, 9, 1902938.

    Article  CAS  Google Scholar 

  14. Chen, J. J.; Yuan, R. M.; Feng, J. M.; Zhang, Q.; Huang, J. X.; Fu, G.; Zheng, M. S.; Ren, B.; Dong, Q. F. Conductive Lewis base matrix to recover the missing link of Li2S8 during the sulfur redox cycle in Li-S Battery. Chem. Mater.2015, 27, 2048–2055.

    Article  CAS  Google Scholar 

  15. Nelson, J.; Misra, S.; Yang, Y.; Jackson, A.; Liu, Y. J.; Wang, H. L.; Dai, H. J.; Andrews, J. C.; Cui, Y.; Toney, M. F. In operando X-ray diffraction and transmission X-ray microscopy of lithium sulfur batteries. J. Am. Chem. Soc.2012, 134, 6337–6343.

    Article  CAS  Google Scholar 

  16. Liu, Y. Z.; Li, G. R.; Chen, Z. W.; Peng, X. S. CNT-threaded N-doped porous carbon film as binder-free electrode for high-capacity supercapacitor and Li-S battery. J. Mater. Chem. A2017, 5, 9775–9784.

    Article  CAS  Google Scholar 

  17. Ma, L. B.; Zhang, W. J.; Wang, L.; Hu, Y.; Zhu, G. Y.; Wang, Y. R.; Chen, R. P.; Chen, T.; Tie, Z. X.; Jin, Z. Strong capillarity, chemisorption, and electrocatalytic capability of crisscrossed nanostraws enabled flexible, high-rate, and long-cycling lithium-sulfur batteries. ACS Nano2018, 12, 4868–4876.

    Article  CAS  Google Scholar 

  18. Wang, L.; Wan, J. W.; Wang, J. Y.; Wang, D. Small structures bring big things: Performance control of hollow multishelled structures. Small Struct.2021, 2, 2000041.

    Article  CAS  Google Scholar 

  19. Zhao, J. L.; Yang, M.; Yang, N. L.; Wang J. Y.; Wang, D. Hollow micro-/nanostructure reviving lithium-sulfur batteries. Chem. Res. Chin. Univ.2020, 36, 313–319.

    Article  CAS  Google Scholar 

  20. Li, J. B.; Chen, C. Y.; Chen, Y. W.; Li, Z. H.; Xie, W. F.; Zhang, X.; Shao, M. F.; Wei, M. Polysulfide confinement and highly efficient conversion on hierarchical mesoporous carbon nanosheets for Li-S batteries. Adv. Energy Mater.2019, 9, 1901935.

    Article  CAS  Google Scholar 

  21. Hu, C. J.; Yang, C. K.; Yang, J. J.; Han, N. N.; Yuan, R. Y.; Chen, Y. C.; Liu, H.; Xie, T. H.; Chen, R. D.; Zhou, H. H. et al. An entangled cobalt-nitrogen-carbon nanotube array electrode with synergetic confinement and electrocatalysis of polysulfides for stable Li-S batteries. ACS Appl. Energy Mater.2019, 2, 2904–2912.

    Article  CAS  Google Scholar 

  22. Chen, T.; Ma, L. B.; Cheng, B. R.; Chen, R. P.; Hu, Y.; Zhu, G. Y.; Wang, Y. R.; Liang, J.; Tie, Z. X.; Liu, J. et al. Metallic and polar Co9S8 inlaid carbon hollow nanopolyhedra as efficient polysulfide mediator for lithium-sulfur batteries. Nano Energy2017, 38, 239–248.

    Article  CAS  Google Scholar 

  23. Li, C. X.; Xi, Z. C.; Guo, D. X.; Chen, X. J.; Yin, L. W. Chemical immobilization effect on lithium polysulfides for lithium-sulfur Batteries. Small2018, 14, 1701986.

    Article  CAS  Google Scholar 

  24. Chen, T. M.; Shang, Z. C.; Yuan, B.; Wu, N. X.; Abuzar, M.; Yang, J. Y.; Gu, X. X.; Miao, C. Y.; Ling, M.; Li, S. Rational design of Co-NiSe2@N-Doped carbon hollow structure for enhanced Li-S battery performance. Energy Technol.2020, 8, 2000302.

    Article  CAS  Google Scholar 

  25. Du, L. Y.; Cheng, X. Y.; Gao, F. J.; Li, Y. B.; Bu, Y. F.; Zhang, Z. Q.; Wu, Q.; Yang, L. J.; Wang, X. Z.; Hu, Z. Electrocatalysis of S-doped carbon with weak polysulfide adsorption enhances lithium-sulfur battery performance. Chem. Commun.2019, 55, 6365–6368.

    Article  CAS  Google Scholar 

  26. Zhang, K. L.; Zhang, F.; Pan, H. L.; Yu, J.; Wang, L.; Wang, D.; Wang, L. B.; Hu, G.; Zhang, J. H.; Qian, Y. T. Dual taming of polysufides by phosphorus-doped carbon for improving electrochemical performances of lithium-sulfur battery. Electrochim. Acta2020, 354, 136648.

    Article  CAS  Google Scholar 

  27. Su, L.; Zhang, J. Q.; Chen, Y.; Yang, W.; Ma, Z. P.; Shao, G. J.; Wang, G. X. Cobalt-embedded hierarchically-porous hollow carbon microspheres as multifunctional confined reactors for high-loading Li-S batteries. Nano Energy2021, 85, 105981.

    Article  CAS  Google Scholar 

  28. Yu, M. L.; Zhou, S.; Wang, Z. Y.; Wang, Y. W.; Zhang, N.; Wang, S.; Zhao, J. J.; Qiu, J. S. Accelerating polysulfide redox conversion on bifunctional electrocatalytic electrode for stable Li-S batteries. Energy Storage Mater.2019, 20, 98–107.

    Article  Google Scholar 

  29. Liu, J. T.; Xiao, S. H.; Zhang, Z. Y.; Chen, Y.; Xiang, Y.; Liu, X. Q.; Chen, J. S.; Chen, P. Naturally derived honeycomb-like N, S-codoped hierarchical porous carbon with MS2 (M = Co, Ni) decoration for high-performance Li-S battery. Nanoscale2020, 12, 5114–5124.

    Article  CAS  Google Scholar 

  30. Liang, G. M.; Wu, J. X.; Qian, X. Y.; Liu, M.; Li, Q.; He, Y. B.; Kim, J. K.; Li, B. H.; Kang, F. Y. Ultrafine TiO2 decorated carbon nanofibers as multifunctional interlayer for high-performance lithium-sulfur battery. ACS Appl. Mater. Interfaces2016, 8, 23105–23113.

    Article  CAS  Google Scholar 

  31. Liu, M.; Li, Q.; Qin, X. Y.; Liang, G. M.; Han, W. J.; Zhou, D.; He, Y. B.; Li, B. H.; Kang, F. Y. Suppressing self-discharge and shuttle effect of lithium-sulfur batteries with V2O5-decorated carbon nanofiber interlayer. Small2017, 13, 1602539.

    Article  CAS  Google Scholar 

  32. Song, X.; Chen, G. P.; Wang, S. Q.; Huang, Y. P.; Jiang, Z. Y.; Ding, L. X.; Wang, H. H. Self-assembled close-packed MnO2 nanoparticles anchored on a polyethylene separator for lithium-sulfur batteries. ACS Appl. Mater. Interfaces2018, 10, 26274–26282.

    Article  CAS  Google Scholar 

  33. Hu, Q. Q.; Lu, J. Q.; Yang, C.; Zhang, C. C.; Hu, J. L.; Chang, S. Y.; Dong, H. Y.; Wu, C. Y.; Hong, Y.; Zhang, L. Z. Promoting reversible redox kinetics by separator architectures based on CoS2/HPGC interlayer as efficient polysulfide-trapping shield for Li-S batteries. Small2020, 16, 2002046.

    Article  CAS  Google Scholar 

  34. Zhang, B.; Luo, C.; Deng, Y. Q.; Huang, Z. J.; Zhou, G. M.; Lv, W.; He, Y. B.; Wan, Y.; Kang, F. Y.; Yang, Q. H. Optimized catalytic WS2-WO3 heterostructure design for accelerated polysulfide conversion in lithium-sulfur batteries. Adv. Energy Mater.2020, 10, 2000091.

    Article  CAS  Google Scholar 

  35. Zhou, F.; Li, Z.; Luo, X.; Wu, T.; Jiang, B.; Lu, L. L.; Yao, H. B.; Antonietti, M.; Yu, S. H. Low cost metal carbide nanocrystals as binding and electrocatalytic sites for high performance Li-S batteries. Nano Lett.2018, 18, 1035–1043.

    Article  CAS  Google Scholar 

  36. Wu, J. H.; Wang, S. Y.; Lei, Z. W.; Guan, R. N.; Chen, M. Q.; Du, P. W.; Lu, Y. L.; Cao, R. G.; Yang, S. F. Pomegranate-like C60@cobalt/nitrogen-codoped porous carbon for high-performance oxygen reduction reaction and lithium-sulfur battery. Nano Res.2021, 14, 2596–2605.

    Article  CAS  Google Scholar 

  37. Ye, J.; Li, C. X.; Yan, Y. S. Core-shell ZIF-67/ZIF-8-derived sea urchin-like cobalt/nitrogen Co-doped carbon nanotube hollow frameworks for ultrahigh adsorption and catalytic activities. J. Taiwan Inst. Chem. Eng.2020, 112, 202–211.

    Article  CAS  Google Scholar 

  38. Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B1993, 47, 558–561.

    Article  CAS  Google Scholar 

  39. Blochl, P. E. Projector augmented-wave method. Phys. Rev. B1994, 50, 17953.

    Article  CAS  Google Scholar 

  40. Dudarev, S. L.; Castell, M. R.; Botton, G. A.; Savrasov, S. Y.; Muggelberg, C.; Briggs, G. A. D.; Sutton, A. P.; Goddard, D. T. Understanding STM images and EELS spectra of oxides with strongly correlated electrons: A comparison of nickel and uranium oxides. Micron2000, 31, 363–372.

    Article  CAS  Google Scholar 

  41. Rondinelli, J. M.; Spaldin, N. A. Structural effects on the spin-state transition in epitaxially strained LaCoO3 films. Phys. Rev. B2009, 79, 054409.

    Article  CAS  Google Scholar 

  42. Shen, J. D.; Xu, X. J.; Liu, J.; Liu, Z. B.; Li, F. K.; Hu, R. Z.; Liu, J. W.; Hou, X. H.; Feng, Y. Z.; Yu, Y. et al. Mechanistic understanding of metal phosphide host for sulfur cathode in high-energy-density lithium-sulfur batteries. ACS Nano2019, 13, 8986–8996.

    Article  CAS  Google Scholar 

  43. Liu, B.; Lei, D. N.; Wang, J.; Zhang, Q. F.; Zhang, Y. G.; He, W.; Zheng, H. F.; Sa, B. S.; Xie, Q. S.; Peng, D. L. et al. 3D uniform nitrogen-doped carbon skeleton for ultra-stable sodium metal anode. Nano Res.2020, 13, 2136–2142.

    Article  CAS  Google Scholar 

  44. Huang, Y.; Fang, Y. J.; Lu, X. F.; Luan, D. Y.; Lou, X. W. Co3O4 hollow nanoparticles embedded in mesoporous walls of carbon nanoboxes for efficient lithium storage. Angew. Chem., Int. Ed.2020, 59, 19914–19918.

    Article  CAS  Google Scholar 

  45. Zhang, W.; Jiang, X. F.; Zhao, Y. Y.; Carné-Sánchez, A.; Malgras, V.; Kim, J.; Kim, J. H.; Wang, S. B.; Liu, J.; Jiang, J. S. et al. Hollow carbon nanobubbles: Monocrystalline MOF nanobubbles and their pyrolysis. Chem. Sci.2017, 8, 3538–3546.

    Article  CAS  Google Scholar 

  46. Wang, X. X.; Na, Z. L.; Yin, D. M.; Wang, C. L.; Wu, Y. M.; Huang, G.; Wang, L. M. Phytic acid-assisted formation of hierarchical porous CoP/C nanoboxes for enhanced lithium storage and hydrogen generation. ACS Nano2018, 12, 12238–12246.

    Article  CAS  Google Scholar 

  47. Qiao, Z. S.; Zhang, Y. G.; Meng, Z. H.; Xie, Q. S.; Lin, L.; Zheng, H. F.; Sa, B. S.; Lin, J.; Wang, L. S.; Peng, D. L. Anchoring polysulfides and accelerating redox reaction enabled by Fe-based compounds in lithium-sulfur batteries. Adv. Funct. Mater.2021, 31, 2100970.

    Article  CAS  Google Scholar 

  48. Gao, Z.; Schwab, Y.; Zhang, Y. Y.; Song, N. N.; Li, X. D. Ferromagnetic nanoparticle-assisted polysulfide trapping for enhanced lithium-sulfur batteries. Adv. Funct. Mater.2018, 28, 1800563.

    Article  CAS  Google Scholar 

  49. Kumar, P.; Jena, P.; Patro, P. K.; Lenka, R. K.; Sinha, A. S. K.; Singh, P.; Singh, R. K. Influence of lanthanum doping on structural and electrical/electrochemical properties of double perovskite Sr2CoMoO6 as anode materials for intermediate-temperature solid oxide fuel cells. ACS Appl. Mater. Interfaces2019, 11, 24659–24667.

    Article  CAS  Google Scholar 

  50. Huang, J. W.; Li, Y. R.; Xia, Y. F.; Zhu, J. T.; Yi, Q. H.; Wang, H.; Xiong, J.; Sun, Y. H.; Zou, G. F. Flexible cobalt phosphide network electrocatalyst for hydrogen evolution at all pH values. Nano Res.2017, 10, 1010–1020.

    Article  CAS  Google Scholar 

  51. Sun, T.; Zhao, X.; Li, B.; Shu, H.; Luo, L.; Xia, W.; Chen, M.; Zeng, P.; Yang, X.; Gao, P. et al. NiMoO4 Nanosheets anchored on N—S doped carbon clothes with hierarchical structure as a bidirectional catalyst toward accelerating polysulfides conversion for Li—S battery. Adv. Funct. Mater.2021, 31, 2101285.

    Article  CAS  Google Scholar 

  52. Sun, Z. H.; Zhang, J. Q.; Yin, L. C.; Hu, G. J.; Fang, R. P.; Cheng, H. M.; Li, F. Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries. Nat. Commun.2017, 8, 14627.

    Article  Google Scholar 

  53. Deng, C.; Wang, Z. W.; Wang, S. P.; Yu, J. X. Inhibition of polysulfide diffusion in lithium-sulfur batteries: Mechanism and improvement strategies. J. Mater. Chem. A2019, 7, 12381–12413.

    Article  CAS  Google Scholar 

  54. Rehman, S.; Khan, K.; Zhao, Y. F.; Hou, Y. L. Nanostructured cathode materials for lithium-sulfur batteries: Progress, challenges and perspectives. J. Mater. Chem. A2017, 5, 3014–3038.

    Article  CAS  Google Scholar 

  55. Huang, X.; Tang, J. Y.; Luo, B.; Knibbe, R.; Lin, T. E.; Hu, H.; Rana, M.; Hu, Y. X.; Zhu, X. B.; Gu, Q. F. et al. Sandwich-like ultrathin TiS2 nanosheets confined within N, S codoped porous carbon as an effective polysulfide promoter in lithium-sulfur batteries. Adv. Energy Mater.2019, 9, 1901872.

    Article  CAS  Google Scholar 

  56. Tian, W. Z.; Xi, B. J.; Feng, Z. Y.; Li, H. B.; Feng, J. K.; Xiong, S. L. Sulfiphilic few-layered MoSe2 nanoflakes decorated rGO as a highly efficient sulfur host for lithium-sulfur batteries. Adv. Energy Mater.2019, 9, 1901896.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2017YFA0208200), the Fundamental Research Funds for the Central Universities of China (No. 0205-14380219), the National Natural Science Foundation of China (Nos. 22109069, 22022505, 21872069, 21802119, and 21808195), the Natural Science Foundation of Jiangsu Province (Nos. BK20181056 and BK20180008), the Funding For School-Level Research Projects of Yancheng Institute of Technology (Nos. xjr2019006, and xjr2019055), the 2021 Suzhou Gusu Leading Talents of Science and Technology Innovation and Entrepreneurship in Wujiang District, the Open Fund of Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province and some enterprise projects (Nos. WJGTT-XT3, 19KJA540001, and JNHB-068).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhong Jin or Huan Pang.

Electronic Supplementary Material

12274_2022_4134_MOESM1_ESM.pdf

Rapid construction of highly-dispersed cobalt nanoclusters embedded in hollow cubic carbon walls as an effective polysulfide promoter in highenergy lithium-sulfur batteries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, L., Liu, Y., Zhang, K. et al. Rapid construction of highly-dispersed cobalt nanoclusters embedded in hollow cubic carbon walls as an effective polysulfide promoter in high-energy lithium-sulfur batteries. Nano Res. 15, 5105–5113 (2022). https://doi.org/10.1007/s12274-022-4134-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4134-8

Keywords

Navigation