Skip to main content
Log in

Bio-derived crystalline silk nanosheets for versatile macroscopic assemblies

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

An Erratum to this article was published on 07 July 2022

This article has been updated

Abstract

Silk fibroin with sophisticated hierarchical architectures from nano to macro scale shows excellent mechanical properties, good biocompatibility, and outstanding processability. In particular, the crystalline region in silk fibroin contributes high strength and toughness. However, it is difficult to obtain the crystalline silk nanofibrils or nanosheets through top-down methods. The existing silk-derived components are mainly amorphous and sacrifice the delicate structure of the pristine silk. Herein, we report a gentle method to extract the crystalline silk nanosheet (SNS) from the degummed silk fibers. The crystalline SNS has seven strands of β-sheet nanocrystal layer and shows a thickness of 2.75 nm. It can assemble into a membrane via a vacuum filtration process and shows high transparency, excellent thermal stability, outstanding cytocompatibility, and efficient dye interception. Moreover, without external stimuli, the crystalline SNS is capable of reversibly self-assembling to well-organized microfibers. The crystalline SNS is not only a new member of silk fibroin derivatives, but also a promising assemblable unit for versatile applications. We anticipate this work will provide a new insight into the construction and applications of diverse two-dimensional (2D) functional silk materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Tan, C. L.; Cao, X. H.; Wu, X. J.; He, Q. Y.; Yang, J.; Zhang, X.; Chen, J. Z.; Zhao, W.; Han, S. K.; Nam, G. H. et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 2017, 117, 6225–6331.

    Article  CAS  Google Scholar 

  2. Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z. Y.; De, S.; McGovern, I. T.; Holland, B.; Byrne, M.; Gun’Ko, Y. K. et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 2008, 3, 563–568.

    Article  CAS  Google Scholar 

  3. Warner, J. H.; Rümmeli, M. H.; Bachmatiuk, A.; Büchner, B. Atomic resolution imaging and topography of boron nitride sheets produced by chemical exfoliation. ACS Nano 2010, 4, 1299–1304.

    Article  CAS  Google Scholar 

  4. Naguib, M.; Mochalin, V. N.; Barsoum, M. W.; Gogotsi, Y. 25th anniversary article: MXenes: A new family of two-dimensional materials. Adv. Mater. 2014, 26, 992–1005.

    Article  CAS  Google Scholar 

  5. Bang, G. S.; Nam, K. W.; Kim, J. Y.; Shin, J.; Choi, J. W.; Choi, S. Y. Effective liquid-phase exfoliation and sodium ion battery application of MOS2 nanosheets. ACS Appl. Mater. Interfaces 2014, 6, 7084–7089.

    Article  CAS  Google Scholar 

  6. Coleman, J. N.; Lotya, M.; O’Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J. et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 2011, 331, 568–571.

    Article  CAS  Google Scholar 

  7. You, J.; Li, M. J.; Ding, B. B.; Wu, X. C.; Li, C. X. Crab chitin-based 2D soft nanomaterials for fully biobased electric devices. Adv. Mater. 2017, 29, 1606895.

    Article  Google Scholar 

  8. Kim, U. J.; Park, J.; Kim, H. J.; Wada, M.; Kaplan, D. L. Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin. Biomaterials 2005, 26, 2775–2785.

    Article  CAS  Google Scholar 

  9. Cheng, B. C.; Yan, Y. F.; Qi, J. J.; Deng, L. F.; Shao, Z. W.; Zhang, K. Q.; Li, B.; Sun, Z. L.; Li, X. M. Cooperative assembly of a peptide gelator and silk fibroin afford an injectable hydrogel for tissue engineering. ACS Appl. Mater. Interfaces 2018, 10, 12474–12484.

    Article  CAS  Google Scholar 

  10. Lei, Z. Y.; Zhu, W. C.; Zhang, X. C.; Wang, X. J.; Wu, P. Y. Bio-inspired ionic skin for theranostics. Adv. Funct. Mater. 2021, 31, 2008020.

    Article  CAS  Google Scholar 

  11. Zhang, F.; You, X. R.; Dou, H.; Liu, Z.; Zuo, B. Q.; Zhang, X. G. Facile fabrication of robust silk nanofibril films via direct dissolution of silk in CaCl2-formic acid solution. ACS Appl. Mater. Interfaces 2015, 7, 3352–3361.

    Article  CAS  Google Scholar 

  12. Niu, Q. Q.; Peng, Q. F.; Lu, L.; Fan, S. N.; Shao, H. L.; Zhang, H. H.; Wu, R. L.; Hsiao, B. S.; Zhang, Y. P. Single molecular layer of silk nanoribbon as potential basic building block of silk materials. ACS Nano 2018, 12, 11860–11870.

    Article  CAS  Google Scholar 

  13. Cai, J.; Zhang, L. N. Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous solutions. Macromol. Biosci. 2005, 5, 539–548.

    Article  CAS  Google Scholar 

  14. Ling, S. J.; Li, C. M.; Jin, K.; Kaplan, D. L.; Buehler, M. J. Liquid exfoliated natural silk nanofibrils: Applications in optical and electrical devices. Adv. Mater. 2016, 28, 7783–7790.

    Article  CAS  Google Scholar 

  15. Ling, S. J.; Qin, Z.; Li, C. M.; Huang, W. W.; Kaplan, D. L.; Buehler, M. J. Polymorphic regenerated silk fibers assembled through bioinspired spinning. Nat. Commun. 2017, 8, 1387.

    Article  Google Scholar 

  16. Matsumoto, T.; Tatsumi, D.; Tamai, N.; Takaki, T. Solution properties of celluloses from different biological origins in LiCl·DMAc. Cellulose 2001, 8, 275–282.

    Article  CAS  Google Scholar 

  17. Phillips, D. M.; Drummy, L. F.; Conrady, D. G.; Fox, D. M.; Naik, R. R.; Stone, M. O.; Trulove, P. C.; De Long, H. C.; Mantz, R. A. Dissolution and regeneration of Bombyx mori silk fibroin using ionic liquids. J. Am. Chem. Soc. 2004, 126, 14350–14351.

    Article  CAS  Google Scholar 

  18. Yao, M.; Su, D. H.; Wang, W. Q.; Chen, X.; Shao, Z. Z. Fabrication of air-stable and conductive silk fibroin gels. ACS Appl. Mater. Interfaces 2018, 10, 38466–38475.

    Article  CAS  Google Scholar 

  19. Dong, X. D.; Zhao, Q.; Xiao, L. Y.; Lu, Q.; Kaplan, D. L. Amorphous silk nanofiber solutions for fabricating silk-based functional materials. Biomacromolecules 2016, 17, 3000–3006.

    Article  CAS  Google Scholar 

  20. Shao, Z. Z.; Vollrath, F. Surprising strength of silkworm silk. Nature 2002, 418, 741.

    Article  CAS  Google Scholar 

  21. Yan, Y. F.; Cheng, B. C.; Chen, K. Z.; Cui, W. G.; Qi, J.; Li, X. M.; Deng, L. F. Enhanced osteogenesis of bone marrow-derived mesenchymal stem cells by a functionalized silk fibroin hydrogel for bone defect repair. Adv. Healthc. Mater. 2019, 8, 1801043.

    Article  Google Scholar 

  22. Kundu, B.; Rajkhowa, R.; Kundu, S. C.; Wang, X. G. Silk fibroin biomaterials for tissue regenerations. Adv. Drug Deliv. Rev. 2013, 65, 457–470.

    Article  CAS  Google Scholar 

  23. Tao, Y. Z.; Xu, W. L.; Yan, Y.; Cao, Y. Preparation and characterization of silk fibroin nanocrystals. Polym. Int. 2012, 61, 760–767.

    Article  CAS  Google Scholar 

  24. Niu, Q. Q.; Huang, L.; Lv, S. S.; Shao, H. L.; Fan, S. N.; Zhang, Y. P. Pulse-driven bio-triboelectric nanogenerator based on silk nanoribbons. Nano Energy 2020, 74, 104837.

    Article  CAS  Google Scholar 

  25. Shen, T. T.; Wang, T.; Cheng, G. T.; Huang, L.; Chen, L.; Wu, D. Y. Dissolution behavior of silk fibroin in a low concentration CaCl2-methanol solvent: From morphology to nanostructure. Int. J. Biol. Macromol. 2018, 113, 458–463.

    Article  CAS  Google Scholar 

  26. Keten, S.; Xu, Z. P.; Ihle, B.; Buehler, M. J. Nanoconfinement controls stiffness, strength and mechanical toughness of β-sheet crystals in silk. Nat. Mater. 2010, 9, 359–367.

    Article  CAS  Google Scholar 

  27. Zhou, L.; Chen, X.; Shao, Z. Z.; Huang, Y. F.; Knight, D. P. Effect of metallic ions on silk formation in the mulberry silkworm. Bombyxmori. J. Phys. Chem. B 2005, 109, 16937–16945.

    Article  CAS  Google Scholar 

  28. Deligianni, D. D.; Katsala, N. D.; Koutsoukos, P. G.; Missirlis, Y. F. Effect of surface roughness of hydroxyapatite on human bone marrow cell adhesion, proliferation, differentiation and detachment strength. Biomaterials 2000, 22, 87–96.

    Article  Google Scholar 

  29. Williams, R. J.; Smith, A. M.; Collins, R.; Hodson, N.; Das, A. K.; Ulijn, R. V. Enzyme-assisted self-assembly under thermodynamic control. Nat. Nanotechnol. 2009, 4, 19–24.

    Article  CAS  Google Scholar 

  30. He, H. B.; Feng, M.; Chen, Q. D.; Zhang, X. Q.; Zhan, H. B. Light-induced reversible self-assembly of gold nanoparticles surface-immobilized with coumarin ligands. Angew. Chem., Int. Ed. 2016, 55, 936–940.

    Article  CAS  Google Scholar 

  31. Liu, R. H.; Deng, Q. Q.; Yang, Z.; Yang, D. W.; Han, M. Y.; Liu, X. Y. “Nano-fishnet” structure making silk fibers tougher. Adv. Funct. Mater. 2016, 26, 5534–5541.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (Nos. 51973035 and 51733003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhouyue Lei or Peiyi Wu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, B., Lei, Z. & Wu, P. Bio-derived crystalline silk nanosheets for versatile macroscopic assemblies. Nano Res. 15, 5538–5544 (2022). https://doi.org/10.1007/s12274-022-4124-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4124-x

Keywords

Navigation