Skip to main content

Oil-polluted water purification via the carbon-nanotubes-doped organohydrogel platform

Abstract

Solar-driven evaporators are promising for tackling freshwater scarcity but still challenged in simultaneously realizing comprehensive performances at one platform for sustainable and efficient application in real-world environments, such as stable-floating, scalability, salt-resistance, efficient vaporization, and anti-oil-fouling property. Herein, we design a hybrid organohydrogel evaporator to achieve the enduring oil contamination repulsion with maintaining accelerated evaporation process, and integrate capacities of ultra-stable floating, hindered salt-crystallization, large-scale fabrication for practical purification of seawater and polluted solutions. The raised water surface surrounding evaporators, induced by low density of organogel-phase, results in oil contamination resistance through the lateral capillary repulsion effect. Meanwhile, the organogel-phase containing photo-thermal carbon-nanotubes with low thermal capacity and conduction can form locally confined hot dots under solar irradiation and reduce heat dissipation on heating excessive water. Therefore, based on this approach, accelerated long-term practical purification of oil-contaminated solutions without any extra disposal is realized. Considering other properties of ultra-stable floating, large-scale fabrication, and anti-salt crystallization, these innovative organohydrogel evaporators open pathways for purifying oil-slick-polluted water via interfacial evaporation and are anticipated accelerating industrialization of efficient and sustainable solar-driven water purification.

This is a preview of subscription content, access via your institution.

References

  1. Sutherland, B. R. Arid forecasts for alternative energy-efficient desalination. Joule 2019, 3, 1410–1411.

    CAS  Article  Google Scholar 

  2. Boussouga, Y. A.; Richards, B. S.; Schäfer, A. I. Renewable energy powered membrane technology: System resilience under solar irradiance fluctuations during the treatment of fluoride-rich natural waters by different nanofiltration/reverse osmosis membranes. J. Memb. Sci. 2021, 617, 118452.

    CAS  Article  Google Scholar 

  3. Chowdhury, M. R.; Steffes, J.; Huey, B. D.; McCutcheon, J. R. 3D printed polyamide membranes for desalination. Science 2018, 361, 682–686.

    CAS  Article  Google Scholar 

  4. Lin, S. H. Energy efficiency of desalination: Fundamental insights from intuitive interpretation. Environ. Sci. Technol. 2020, 54, 76–84.

    CAS  Article  Google Scholar 

  5. Wang, L.; Lin, S. H. Mechanism of selective ion removal in membrane capacitive deionization for water softening. Environ. Sci. Technol. 2019, 53, 5797–5804.

    CAS  Article  Google Scholar 

  6. Dudchenko, A. V.; Chen, C. X.; Cardenas, A.; Rolf, J.; Jassby, D. Frequency-dependent stability of CNT Joule heaters in ionizable media and desalination processes. Nat. Nanotechnol. 2017, 12, 557–563.

    CAS  Article  Google Scholar 

  7. Tao, P.; Ni, G.; Song, C. Y.; Shang, W.; Wu, J. B.; Zhu, J.; Chen, G.; Deng, T. Solar-driven interfacial evaporation. Nat. Energy 2018, 3, 1031–1041.

    Article  Google Scholar 

  8. Ghasemi, H.; Ni, G.; Marconnet, A. M.; Loomis, J.; Yerci, S.; Miljkovic, N.; Chen, G. Solar steam generation by heat localization. Nat. Commun. 2014, 5, 4449.

    CAS  Article  Google Scholar 

  9. Zhao, F.; Guo, Y. H.; Zhou, X. Y.; Shi, W.; Yu, G. H. Materials for solar-powered water evaporation. Nat. Rev. Mater. 2020, 5, 388–401.

    Article  Google Scholar 

  10. Hou, Y. Q.; Wang, M.; Chen, X. Y.; Hou, X. Continuous water-water hydrogen bonding network across the rim of carbon nanotubes facilitating water transport for desalination. Nano Res. 2021, 14, 2171–2178.

    CAS  Article  Google Scholar 

  11. Zhou, L.; Tan, Y. L.; Ji, D. X.; Zhu, B.; Zhang, P.; Xu, J.; Gan, Q. Q.; Yu, Z. F.; Zhu, J. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation. Sci. Adv. 2016, 2, e1501227.

    Article  CAS  Google Scholar 

  12. Wang, J.; Li, Y. Y.; Deng, L.; Wei, N. N.; Weng, Y. K.; Dong, S.; Qi, D. P.; Qiu, J.; Chen, X. D.; Wu, T. High-performance photothermal conversion of narrow-bandgap Ti2O3 nanoparticles. Adv. Mater. 2011, 29, 1603730.

    Article  CAS  Google Scholar 

  13. Lei, W. W.; Khan, S.; Chen, L.; Suzuki, N.; Terashima, C.; Liu, K. S.; Fujishima, A.; Liu, M. J. Hierarchical structures hydrogel evaporator and superhydrophilic water collect device for efficient solar steam evaporation. Nano Res. 2021, 14, 1135–1140.

    CAS  Article  Google Scholar 

  14. Wang, Z. X.; Horseman, T.; Straub, A. P.; Yip, N. Y.; Li, D. Y.; Elimelech, M.; Lin, S. H. Pathways and challenges for efficient solar-thermal desalination. Sci. Adv. 2019, 5, eaax0763.

    CAS  Article  Google Scholar 

  15. He, W.; Zhou, L.; Wang, M.; Cao, Y.; Chen, X. M.; Hou, X. Structure development of carbon-based solar-driven water evaporation systems. Sci. Bull. 2021, 66, 1472–1483.

    CAS  Article  Google Scholar 

  16. Li, X. Q.; Xu, W. C.; Tang, M. Y.; Zhou, L.; Zhu, B.; Zhu, S. N.; Zhu, J. Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path. Proc. Natl. Acad. Sci. USA 2016, 113, 13953–13958.

    CAS  Article  Google Scholar 

  17. Singh, S. C.; ElKabbash, M.; Li, Z. L.; Li, X. H.; Regmi, B.; Madsen, M.; Jalil, S. A.; Zhan, Z. B.; Zhang, J. H.; Guo, C. L. Solar-trackable super-wicking black metal panel for photothermal water sanitation. Nat. Sustain. 2020, 3, 938–946.

    Article  Google Scholar 

  18. Liang, H. X.; Liao, Q. H.; Chen, N.; Liang, Y.; Lv, G. Q.; Zhang, P. P.; Lu, B.; Qu, L. T. Thermal efficiency of solar steam generation approaching 100% through capillary water transport. Angew. Chem., Int. Ed. 2019, 58, 19041–19046.

    CAS  Article  Google Scholar 

  19. Zhao, F.; Zhou, X. Y.; Shi, Y.; Qian, X.; Alexander, M.; Zhao, X. P.; Mendez, S.; Yang, R. G.; Qu, L. T.; Yu, G. H. Highly efficient solar vapour generation via hierarchically nanostructured gels. Nat. Nanotechnol. 2018, 13, 489–495.

    CAS  Article  Google Scholar 

  20. Guo, Y. H.; Lu, H. Y.; Zhao, F.; Zhou, X. Y.; Shi, W.; Yu, G. H. Biomass-derived hybrid hydrogel evaporators for cost-effective solar water purification. Adv. Mater. 2020, 32, 1907061.

    CAS  Article  Google Scholar 

  21. Lu, Q. C.; Shi, W. X.; Yang, H. Z.; Wang, X. Nanoconfined water-molecule channels for high-yield solar vapor generation under weaker sunlight. Adv. Mater. 2020, 32, 2001544.

    CAS  Article  Google Scholar 

  22. Li, W.; Li, X. F.; Chang, W.; Wu, J.; Liu, P. F.; Wang, J. J.; Yao, X.; Yu, Z. Z. Vertically aligned reduced graphene oxide/Ti3C2Tx mxene hybrid hydrogel for highly efficient solar steam generation. Nano Res. 2020, 13, 3048–3056.

    CAS  Article  Google Scholar 

  23. Hou, X.; Hu, Y. H.; Grinthal, A.; Khan, M.; Aizenberg, J. Liquid-based gating mechanism with tunable multiphase selectivity and antifouling behaviour. Nature 2015, 519, 70–73.

    CAS  Article  Google Scholar 

  24. Hou, X.; Li, J. Y.; Tesler, A. B.; Yao, Y. X.; Wang, M.; Min, L. L.; Sheng, Z. Z.; Aizenberg, J. Dynamic air/liquid pockets for guiding microscale flow. Nat. Commun. 2018, 9, 733.

    Article  CAS  Google Scholar 

  25. Wang, M. M.; Zhang, J.; Wang, P.; Li, C. P.; Xu, X. L.; Jin, Y. D. Bifunctional plasmonic colloidosome/graphene oxide-based floating membranes for recyclable high-efficiency solar-driven clean water generation. Nano Res. 2018, 11, 3854–3863.

    CAS  Article  Google Scholar 

  26. Dong, X. Y.; Cao, L. T.; Si, Y.; Ding, B.; Deng, H. B. Ellular structured CNTs@SiO2 nanofibrous aerogels with vertically aligned vessels for salt-resistant solar desalination. Adv. Mater. 2020, 32, 1908269.

    CAS  Article  Google Scholar 

  27. Kuang, Y. D.; Chen, C. J.; He, S. M.; Hitz, E. M.; Wang, Y. L.; Gan, W. T.; Mi, R. Y.; Hu, L. B. A high-performance self-regenerating solar evaporator for continuous water desalination. Adv. Mater. 2019, 31, 1900498.

    Article  CAS  Google Scholar 

  28. Liu, H.; Chen, C. J.; Chen, G.; Kuang, Y. D.; Zhao, X. P.; Song, J. W.; Jia, C.; Xu, X.; Hitz, E.; Xie, H. et al. High-performance solar steam device with layered channels: Artificial tree with a reversed design. Adv. Energy Mater. 2018, 5, 1701616.

    Article  CAS  Google Scholar 

  29. Crone, T. J.; Tolstoy, M. Magnitude of the 2010 Gulf of Mexico oil leak. Science 2010, 330, 634.

    CAS  Article  Google Scholar 

  30. Escobar, H. Mystery oil spill threatens marine sanctuary in Brazil. Science 2019, 366, 672.

    CAS  Article  Google Scholar 

  31. Wu, S. H.; Gong, B. Y.; Yang, H. C.; Tian, Y. K.; Xu, C. X.; Guo, X. Z.; Xiong, G. P; Luo, T. F.; Yan, J. H.; Cen, K. F. et al. Plasmamade graphene nanostructures with molecularly dispersed F and Na sites for solar desalination of oil-contaminated seawater with complete in-water and in-air oil rejection. ACS Appl. Mater. Interfaces 2020, 12, 38512–38521.

    CAS  Article  Google Scholar 

  32. Ma, Q. L.; Yin, P. F.; Zhao, M. T.; Luo, Z. Y.; Huang, Y.; He, Q. Y.; Yu, Y. F.; Liu, Z. Q.; Hu, Z. N.; Chen, B. et al. Mof-based hierarchical structures for solar-thermal clean water production. Adv. Mater. 2019, 31, 1808249.

    Article  CAS  Google Scholar 

  33. Zou, Y.; Zhao, J. Y.; Zhu, J. Y.; Guo, X. Y.; Chen, P.; Duan, G. G.; Liu, X. H.; Li, Y. W. A mussel-inspired polydopamine-filled cellulose aerogel for solar-enabled water remediation. ACS Appl. Mater. Interfaces 2021, 13, 7617–7624.

    CAS  Article  Google Scholar 

  34. Ju, G. N.; Yang, X.; Li, L.; Cheng, M. J.; Shi, F. Removal of oil spills through a self-propelled smart device. Chem. Asian J. 2019, 14, 2435–2439.

    CAS  Article  Google Scholar 

  35. Jiang, J. K.; Gao, J.; Zhang, H. D.; He, W. Q.; Zhang, J. Q.; Daniel, D.; Yao, X. Directional pumping of water and oil microdroplets on slippery surface. Proc. Natl. Acad. Sci. USA 2019, 116, 2482–2487.

    CAS  Article  Google Scholar 

  36. Cavallaro, M. Jr.; Botto, L.; Lewandowski, E. P.; Wang, M.; Stebe, K. J. Curvature-driven capillary migration and assembly of rod-like particles. Proc. Natl. Acad. Sci. USA 2011, 105, 20923–20928.

    Article  Google Scholar 

  37. Hinrichsen, G.; Hoffmann, A.; Schleeh, T.; Macht, C. Continuous production of ultrathin polymeric nanofilms using the spontaneous film formation technique. Adv. Polym. Technol. 2003, 22, 120–125.

    CAS  Article  Google Scholar 

  38. Zhou, X. Y.; Zhao, F.; Guo, Y. H.; Rosenberger, B.; Yu, G. H. Architecting highly hydratable polymer networks to tune the water state for solar water purification. Sci. Adv. 2019, 5, eaaw5484.

    CAS  Article  Google Scholar 

  39. Zhou, X. Y.; Guo, Y. H.; Zhao, F.; Yu, G. H. Hydrogels as an emerging material platform for solar water purification. ACC. Chem. Res. 2019, 52, 3244–3253.

    CAS  Article  Google Scholar 

  40. Zhou, X. Y.; Zhao, F.; Guo, Y. H.; Zhang, Y.; Yu, G. H. A hydrogel-based antifouling solar evaporator for highly efficient water desalination. Energy Environ. Sci. 2018, 11, 1985–1992.

    CAS  Article  Google Scholar 

  41. Guo, Y. H.; Zhao, F.; Zhou, X. Y.; Chen, Z. C.; Yu, G. H. Tailoring nanoscale surface topography of hydrogel for efficient solar vapor generation. Nano Lett. 2019, 19, 2530–2536.

    CAS  Article  Google Scholar 

  42. World Health Organization. Safe Drinking-water from Desalination [Online]. http://apps.who.int/iris/bitstream/handle/10665/70621/WHO_HSE_WSH_11.03_eng.pdf?sequence=1 (accessed Dec 8, 2021).

  43. Wu, S. H.; Xiong, G. P.; Yang, H. C.; Gong, B. Y.; Tian, Y. K.; Xu, C. X.; Wang, Y.; Fisher, T.; Yan, J. H.; Cen, K. F. et al. Multifunctional solar waterways: Plasma-enabled self-cleaning nanoarchitectures for energy-efficient desalination. Adv. Energy Mater. 2019, 9, 1901286.

    Article  CAS  Google Scholar 

  44. Zou, Y.; Wu, X. A.; Li, H. T.; Yang, L.; Zhang, C. Q.; Wu, H. X.; Li, Y. W.; Xiao, L. Metal-phenolic network coated cellulose foams for solar-driven clean water production. Carbohydr. Polym. 2021, 254, 117404.

    CAS  Article  Google Scholar 

  45. Hu, C. S.; Li, H. J.; Wang, J. Y.; Haleem, A.; Li, X. C.; Siddiq, M.; He, W. D. Mushroom-like rGO/PAM hybrid cryogels with efficient solar-heating water evaporation. ACS Appl. Energy Mater. 2019, 2, 7554–7563.

    CAS  Article  Google Scholar 

  46. He, M. T.; Liu, H. J.; Wang, L. M.; Qin, X. H; Yu, J. Y. One-step fabrication of a stretchable and anti-oil-fouling nanofiber membrane for solar steam generation. Mater. Chem. Front. 2021, 5, 3673–3680.

    CAS  Article  Google Scholar 

  47. Chen, L. H.; Xia, M. M.; Du, J. B.; Luo, X. F.; Zhang, L.; Li, A. Superhydrophilic and oleophobic porous architectures based on basalt fibers as oil-repellent photothermal materials for solar steam generation. Chemsuschem 2020, 13, 493–500.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the finical support from the National Key R&D Program of China (Nos. 2018YFA0209500 and 2019YFA0709300), the National Natural Science Foundation of China (Nos. 21621091, 21972155, 21975209, 22005255, 22035008, and 52025132), Projects of International Cooperation and Exchanges NSFC (No. 1A1111KYSB20200010), and National Program for Special Support of Eminent Professionals and the Fundamental Research Funds for Central Universities (No. 20720190037).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Miao Wang, Xu Hou or Shutao Wang.

Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Wan, X., Li, H. et al. Oil-polluted water purification via the carbon-nanotubes-doped organohydrogel platform. Nano Res. 15, 5653–5662 (2022). https://doi.org/10.1007/s12274-022-4118-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4118-8

Keywords

  • solar-driven evaporation
  • organohydrogel
  • anti-oil-fouling
  • thermal management
  • ultra-stable floating