Skip to main content

Quantitatively investigating the self-attraction of nanowires

Abstract

The self-attraction of nanowires (NWs) would lead to NWs bunching up together when fabricated in high density and the short circuit of NW-based devices during service. However, the underlying mechanism of the self-attraction of NWs remains debatable due to the lack of in situ characterization of the attraction. In this study, a versatile method of in situ investigating the self-attraction of NWs was developed. The attractive force between two NWs and their distance can be determined quantitatively in the process of attraction under an optical microscope, eliminating the influence of electron beam in electron microscopes. With this approach, the self-attraction of SiC NWs was investigated and a two-stage mechanism for the self-attraction was proposed. The electrostatic force between two individual SiC NWs increased as their distance decreased, and acted as the initial driving force for the attraction of NWs. SiC NWs remained in contact under van der Waals force until they separated when external force exceeded van der Waals force. The charge density and the Hamaker constant of SiC NWs were determined to be 1.9 × 10−4 C·m−2 and 1.56 × 10−19 J, which played an important role in the attraction of NWs. The results shed light on the mechanism of self-attraction among NWs and provide new insights into fabricating high-quality NWs and developing high-performance NW-based devices.

This is a preview of subscription content, access via your institution.

References

  1. Lan, C. Y.; Yip, S. P.; Kang, X. L.; Meng, Y.; Bu, X. M.; Ho, J. C. Gate bias stress instability and hysteresis characteristics of InAs nanowire field-effect transistors. ACS Appl. Mater. Interfaces 2020, 12, 56330–56337.

    CAS  Google Scholar 

  2. Xiang, J.; Lu, W.; Hu, Y. J.; Wu, Y.; Yan, H.; Lieber, C. M. Ge/Si Nanowire heterostructures as high-performance field-effect transistors. Nature 2006, 441, 489–493.

    CAS  Google Scholar 

  3. Yamada, T.; Hayamizu, Y.; Yamamoto, Y.; Yomogida, Y.; Izadi-Najafabadi, A.; Futaba, D. N.; Hata, K. A stretchable carbon nanotube strain sensor for human-motion detection. Nat. Nanotechnol. 2011, 6, 296–301.

    CAS  Google Scholar 

  4. Liu, G. S.; Yang, F.; Xu, J. Z.; Kong, Y. F.; Zheng, H. J.; Chen, L.; Chen, Y. F.; Wu, M. X.; Yang, B. R.; Luo, Y. H. et al. Ultrasonically patterning silver nanowire-acrylate composite for highly sensitive and transparent strain sensors based on parallel cracks. ACS Appl. Mater. Interfaces 2020, 12, 47729–47738.

    CAS  Google Scholar 

  5. Yong, C. K.; Joyce, H. J.; Lloyd-Hughes, J.; Gao, Q.; Tan, H. H.; Jagadish, C.; Johnston, M. B.; Herz, L. M. Ultrafast dynamics of exciton formation in semiconductor nanowires. Small 2012, 8, 1725–1731.

    CAS  Google Scholar 

  6. Wang, X. D.; Summers, C. J.; Wang, Z. L. Self-attraction among aligned Au/ZnO nanorods under electron beam. Appl. Phys. Lett. 2005, 86, 013111.

    Google Scholar 

  7. Dai, X.; Dayeh, S. A.; Veeramuthu, V.; Larrue, A.; Wang, J.; Su, H. B.; Soci, C. Tailoring the vapor-liquid-solid growth toward the self-assembly of GaAs nanowire junctions. Nano Lett. 2011, 11, 4947–4952.

    CAS  Google Scholar 

  8. Liu, J. Z.; Lee, S.; Lee, K.; Ahn, Y. H.; Park, J. Y.; Koh, K. H. Bending and bundling of metal-free vertically aligned ZnO nanowires due to electrostatic interaction. Nanotechnology 2008, 19, 185607.

    Google Scholar 

  9. Tang, Y.; Zhao, D. X.; Chen, J.; Wanderka, N.; Shen, D. Z.; Fang, F.; Guo, Z.; Zhang, J. Y.; Wang, X. H. Capillary-driven assembly of ZnO nanowire arrays into micropatterns. Mater. Chem. Phys. 2010, 121, 541–548.

    CAS  Google Scholar 

  10. Khorasaninejad, M.; Abedzadeh, N.; Jawanda, A. S.; Nixon, O.; Anantram, M. P.; Saini, S. S. Bunching characteristics of silicon nanowire arrays. J. Appl. Phys. 2012, 111, 044328.

    Google Scholar 

  11. Kaganer, V. M.; Fernández-Garrido, S.; Dogan, P.; Sabelfeld, K. K.; Brandt, O. Nucleation, growth, and bundling of GaN nanowires in molecular beam epitaxy: Disentangling the origin of nanowire coalescence. Nano Lett. 2016, 16, 3717–3725.

    CAS  Google Scholar 

  12. Togonal, A. S.; He, L. N.; Cabarrocas, P. R. I.; Rusli. Effect of wettability on the agglomeration of silicon nanowire arrays fabricated by metal-assisted chemical etching. Langmuir 2014, 30, 10290–10298.

    CAS  Google Scholar 

  13. Chang, J. Y.; Min, B. K.; Kim, J.; Lee, S. J.; Lin, L. W. Electrostatically actuated carbon nanowire nanotweezers. Smart Mater. Struct. 2009, 18, 065017.

    Google Scholar 

  14. Feng, X. L.; Matheny, M. H.; Zorman, C. A.; Mehregany, M.; Roukes, M. L. Low voltage nanoelectromechanical switches based on silicon carbide nanowires. Nano Lett. 2010, 10, 2891–2896.

    CAS  Google Scholar 

  15. Andzane, J.; Prikulis, J.; Meija, R.; Kosmaca, J.; Biswas, S.; Holmes, J. D.; Erts, D. Application of Ge nanowire for two-input bistable nanoelectromechanical switch. Mater. Sci. 2013, 19, 254–257.

    Google Scholar 

  16. Bitzer, L. A.; Speich, C.; Schäfer, D.; Erni, D.; Prost, W.; Tegude, F. J.; Benson, N.; Schmechel, R. Modelling of electron beam induced nanowire attraction. J. Appl. Phys. 2016, 119, 145101.

    Google Scholar 

  17. Chen, B.; Gao, Q.; Chang, L.; Wang, Y. B.; Chen, Z. B.; Liao, X. Z.; Tan, H. H.; Zou, J.; Ringer, S. P.; Jagadish, C. Attraction of semiconductor nanowires: An in situ observation. Acta Mater. 2013, 61, 7166–7172.

    CAS  Google Scholar 

  18. Russo, C. J.; Henderson, R. Charge accumulation in electron cryomicroscopy. Ultramicroscopy 2018, 187, 43–49.

    CAS  Google Scholar 

  19. Ma, J. W.; Lee, W. J.; Bae, J. M.; Jeong, K. S.; Oh, S. H.; Kim, J. H.; Kim, S. H.; Seo, J. H.; Ahn, J. P.; Kim, H. et al. Carrier mobility enhancement of tensile strained Si and SiGe nanowires via surface defect engineering. Nano Lett. 2015, 15, 7204–7210.

    CAS  Google Scholar 

  20. Chisholm, C.; Bei, H.; Lowry, M. B.; Oh, J.; Syed Asif, S. A.; Warren, O. L.; Shan, Z. W.; George, E. P.; Minor, A. M. Dislocation starvation and exhaustion hardening in Mo Alloy Nanofibers. Acta Mater. 2012, 60, 2258–2264.

    CAS  Google Scholar 

  21. Lan, Y. W.; Chang, W. H.; Chang, Y. C.; Chang, C. S.; Chen, C. D. Effect of focused ion beam deposition induced contamination on the transport properties of nano devices. Nanotechnology 2015, 26, 055705.

    CAS  Google Scholar 

  22. Wang, Y. C.; Zhang, W.; Wang, L. Y.; Zhuang, Z.; Ma, E.; Li, J.; Shan, Z. W. In situ TEM study of deformation-induced crystalline-to-amorphous transition in silicon. NPG Asia Mater. 2016, 8, e291.

    CAS  Google Scholar 

  23. Tham, D.; Nam, C. Y.; Fischer, J. E. Microstructure and composition of focused-ion-beam-deposited Pt contacts to GaN nanowires. Adv. Mater. 2006, 18, 290–294.

    CAS  Google Scholar 

  24. Cheng, G. M.; Chang, T. H.; Qin, Q. Q.; Huang, H. C.; Zhu, Y. Mechanical properties of silicon carbide nanowires: Effect of size-dependent defect density. Nano Lett. 2014, 14, 754–758.

    CAS  Google Scholar 

  25. Cui, J. F.; Zhang, Z. Y.; Jiang, H. Y.; Liu, D. D.; Zou, L.; Guo, X. G.; Lu, Y.; Parkin, I. P.; Guo, D. M. Ultrahigh recovery of fracture strength on mismatched fractured amorphous surfaces of silicon carbide. ACS Nano 2019, 13, 7483–7492.

    CAS  Google Scholar 

  26. Cui, J. F.; Zhang, Z. Y.; Liu, D. D.; Zhang, D. L.; Hu, W.; Zou, L.; Lu, Y.; Zhang, C.; Lu, H. H.; Tang, C. et al. Unprecedented piezoresistance coefficient in strained silicon carbide. Nano Lett. 2019, 19, 6569–6576.

    CAS  Google Scholar 

  27. Hoffmann, S.; Utke, I.; Moser, B.; Michler, J.; Christiansen, S. H.; Schmidt, V.; Senz, S. Werner, P; Gösele, U; Ballif, C. Measurement of the bending strength of vapor-liquid-solid grown silicon nanowires. Nano Lett. 2006, 6, 622–625.

    CAS  Google Scholar 

  28. Wang, Y. B.; Wang, L. F.; Joyce, H. J.; Gao, Q.; Liao, X. Z.; Mai, Y. W.; Tan, H. H.; Zou, J.; Ringer, S. P.; Gao, H. J. et al. Super deformability and Young’s modulus of GaAs nanowires. Adv. Mater. 2011, 23, 1356–1360.

    CAS  Google Scholar 

  29. Bechelany, M.; Brioude, A.; Cornu, D.; Ferro, G.; Miele, P. A Raman spectroscopy study of individual SiC nanowires. Adv. Funct Mater. 2007, 17, 939–943.

    CAS  Google Scholar 

  30. Xu, F.; Qin, Q. Q.; Mishra, A.; Gu, Y.; Zhu, Y. Mechanical properties of ZnO nanowires under different loading modes. Nano Res. 2010, 3, 271–280.

    CAS  Google Scholar 

  31. Wang, Y. C.; Ding, J.; Fan, Z.; Tian, L.; Li, M.; Lu, H. H.; Zhang, Y. Q.; Ma, E.; Li, J.; Shan, Z. W. Tension-compression asymmetry in amorphous silicon. Nat. Mater. 2021, 20, 1371–1377.

    CAS  Google Scholar 

  32. Kim, J. Y.; Jang, D. C.; Greer, J. R. Crystallographic orientation and size dependence of tension-compression asymmetry in molybdenum nano-pillars. Int. J. Plast. 2012, 28, 46–52.

    CAS  Google Scholar 

  33. Wong, E. W.; Sheehan, P. E.; Lieber, C. M. Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes. Science 1997, 277, 1971–1975.

    CAS  Google Scholar 

  34. Jackson, K. M.; Dunning, J.; Zorman, C. A.; Mehregany, M.; Sharpe, W. N. Mechanical properties of epitaxial 3C silicon carbide thin films. J. Microelectromechan. Syst. 2005, 14, 664–672.

    CAS  Google Scholar 

  35. Moronuki, N.; Kojima, M.; Kakuta, A. Single-crystal SiC thin-film produced by epitaxial growth and its application to micromechanical devices. Thin Solid Films 2008, 516, 5344–5348.

    CAS  Google Scholar 

  36. Agrawal, R.; Peng, B.; Gdoutos, E. E.; Espinosa, H. D. Elasticity size effects in ZnO nanowires-a combined experimental-computational approach. Nano Lett. 2008, 8, 3668–3674.

    CAS  Google Scholar 

  37. Ni, H.; Li, X. D. Young’s modulus of ZnO nanobelts measured using atomic force microscopy and nanoindentation techniques. Nanotechnology 2006, 17, 3591–3597.

    CAS  Google Scholar 

  38. Song, J. H.; Wang, X. D.; Riedo, E.; Wang, Z. L. Elastic property of vertically aligned nanowires. Nano Lett. 2005, 5, 1954–1958.

    CAS  Google Scholar 

  39. Hoffmann, S.; Östlund, F.; Michler, J.; Fan, H. J.; Zacharias, M.; Christiansen, S. H.; Ballif, C. Fracture strength and Young’s modulus of ZnO nanowires. Nanotechnology 2007, 18, 205503.

    Google Scholar 

  40. Hu, Y. W.; Li, J.; Tian, J. F.; Xuan, Y.; Deng, B. W.; McNear, K. L.; Lim, D. G.; Chen, Y.; Yang, C.; Cheng, G. J. Parallel nanoshaping of brittle semiconductor nanowires for strained electronics. Nano Lett. 2016, 16, 7536–7544.

    CAS  Google Scholar 

  41. Wang, J.; Lu, C. S.; Wang, Q.; Xiao, P.; Ke, F. J.; Bai, Y. L.; Shen, Y. G.; Liao, X. Z.; Gao, H. J. Influence of microstructures on mechanical behaviours of SiC nanowires: A molecular dynamics study. Nanotechnology 2012, 23, 025703.

    Google Scholar 

  42. Dai, S.; Zhao, J.; He, M. R.; Wang, X. G.; Wan, J. C.; Shan, Z. W.; Zhu, J. Elastic properties of GaN nanowires: Revealing the influence of planar defects on Young’s modulus at nanoscale. Nano Lett. 2015, 15, 8–15.

    CAS  Google Scholar 

  43. Loudet, J. C.; Alsayed, A. M.; Zhang, J.; Yodh, A. G. Capillary interactions between anisotropic colloidal particles. Phys. Rev. Lett. 2005, 94, 018301.

    CAS  Google Scholar 

  44. Wang, H. B.; Chen, W.; Chen, B.; Jiao, Y.; Wang, Y.; Wang, X. P.; Du, X. C.; Hu, Y.; Lv, X. X.; Zeng, Y. S. et al. Interfacial capillary-force-driven self-assembly of monolayer colloidal crystals for supersensitive plasmonic sensors. Small 2020, 16, 1905480.

    CAS  Google Scholar 

  45. Israelachvili, J. N. Intermolecular and Surface Forces, 3rd ed.; Elsevier: Oxford, 2011.

    Google Scholar 

  46. Min, Y. N. J.; Akbulut, M.; Kristiansen, K.; Golan, Y.; Israelachvili, J. The role of interparticle and external forces in nanoparticle assembly. Nat. Mater. 2008, 7, 527–538.

    CAS  Google Scholar 

  47. Blinov, L. M.; Sonin, A. A. Anisotropy and effective range of the van der Waals forces of the solid crystalline substrates investigated by means of liquid crystals. Langmuir 1987, 3, 660–661.

    CAS  Google Scholar 

  48. Mundoor, H.; Senyuk, B.; Smalyukh, I. I. Triclinic nematic colloidal crystals from competing elastic and electrostatic interactions. Science 2016, 352, 69–73.

    CAS  Google Scholar 

  49. Brandino, G. P.; Cicero, G.; Bonferroni, B.; Ferretti, A.; Calzolari, A.; Bertoni, C. M.; Catellani, A. Polarization properties of (\(1\bar 100\)) and (\(11\bar 20\)) SiC surfaces from first principles. Phys. Rev. B 2007, 76, 085322.

    Google Scholar 

  50. Zhang, Z. Y.; Cui, J. F.; Wang, B.; Jiang, H. Y.; Chen, G. X.; Yu, J. H.; Lin, C. T.; Tang, C.; Hartmaier, A.; Zhang, J. J. et al. In situ TEM observation of rebonding on fractured silicon carbide. Nanoscale 2018, 76, 6261–6269.

    Google Scholar 

  51. Wang, S. L.; Wu, Y. Q.; Lin, L. W.; He, Y. H.; Huang, H. Fracture strain of SiC nanowires and direct evidence of electron-beam induced amorphisation in the strained nanowires. Small 2015, 11, 1672–1676.

    CAS  Google Scholar 

  52. Sedighi, M.; Svetovoy, V. B.; Broer, W. H.; Palasantzas, G. Casimir forces from conductive silicon carbide surfaces. Phys. Rev. B 2014, 89, 195440.

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial supports from the Youth Innovation Promotion Association CAS (No. 2019295), the Science and Technology Major Project of Ningbo (No. 2018B10046), the National Key R&D Program of China (No. 2018YFA0703400), the National Natural Science Foundation of China (Nos. 51573201 and 52142501), Changjiang Scholars Program of Chinese Ministry of Education, the Xinghai Science Funds for Distinguished Young Scholars at Dalian University of Technology, and the Collaborative Innovation Center of Major Machine Manufacturing in Liaoning.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhenyu Zhang, Guoxin Chen or Nan Jiang.

Electronic Supplementary Material

Supplementary material, approximately 2.26 MB.

Supplementary material, approximately 9.50 MB.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cui, J., Zhang, Z., Lv, L. et al. Quantitatively investigating the self-attraction of nanowires. Nano Res. 15, 3729–3736 (2022). https://doi.org/10.1007/s12274-021-4051-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-4051-2

Keywords

  • self-attraction
  • nanowires
  • in situ
  • electrostatic force
  • van der Waals force