Abstract
The integration of high-k dielectrics with two-dimensional (2D) semiconductors is a critical step towards high-performance nanoelectronics, which however remains challenging due to the high density of interface states and the damage to the monolayer 2D semiconductors. In this study, we propose a selective hydrogenation strategy to improve the interface properties while the 2D semiconductors are not affected. Using the interface of monolayer molybdenum disulfide (MoS2) and silicon nitride as an example, we show substantially improved interface properties for electronic applications after the interfacial hydrogenation, as evidenced by reduced inhomogeneous charge redistribution, increased band offset, and nearly intact electronic properties of MoS2. Importantly, this hydrogenation process selectively occurs only at the silicon nitride surface and is compatible with the current semiconductor fabrication process. We further show that this strategy is general and applicable to other interfaces between high-k dielectrics and 2D semiconductors such as hafnium dioxide (HfO2) on the monolayer MoS2. Our results demonstrate a simple yet viable way to improve the integration of high-k dielectrics on a broad range of 2D transition metal disulfide semiconductors, shedding light on practical electronic and optoelectronic applications.
Similar content being viewed by others
References
Fiori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S. K.; Colombo, L. Electronics based on two-dimensional materials. Nat. Nanotechnol. 2014, 9, 768–779.
Li, M. Y.; Su, S. K.; Wong, H. S. P.; Li, L. J. How 2D semiconductors could extend Moore’s law. Nature 2019, 567, 169–170.
Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.
Butler, S. Z.; Hollen, S. M.; Cao, L. Y.; Cui, Y.; Gupta, J. A.; Gutiérrez, H. R.; Heinz, T. F.; Hong, S. S.; Huang, J. X.; Ismach, A. F. et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 2013, 7, 2898–2926.
Yoon, Y.; Ganapathi, K.; Salahuddin, S. How good can monolayer MoS2 transistors be? Nano Lett. 2011, 11, 3768–3773.
Wang, G.; Chernikov, A.; Glazov, M. M.; Heinz, T. F.; Marie, X.; Amand, T.; Urbaszek, B. Colloquium: Excitons in atomically thin transition metal dichalcogenides. Rev. Mod. Phys. 2018, 90, 021001.
Liu, G. B.; Xiao, D.; Yao, Y. G.; Xu, X. D.; Yao, W. Electronic structures and theoretical modelling of two-dimensional group-VIB transition metal dichalcogenides. Chem. Soc. Rev. 2015, 44, 2643–2663.
Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2001, 7, 699–712.
Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2001, 102, 10451–10453.
Sangwan, V. K.; Lee, H. S.; Bergeron, H.; Balla, I.; Beck, M. E.; Chen, K. S.; Hersam, M. C. Multi-terminal memtransistors from polycrystalline monolayer molybdenum disulfide. Nature 2018, 554, 500–504.
Hua, C. Q.; Bai, H.; Zheng, Y.; Xu, Z. A.; Yang, S. Y.; Lu, Y. H.; Wei, S. H. Strong coupled magnetic and electric ordering in monolayer of metal thio(seleno)phosphates. Chin. Phys. Lett. 2021, 38, 077501.
Bai, H.; Wang, X. W.; Wu, W. K.; He, P. M.; Xu, Z. A.; Yang, S. A.; Lu, Y. H. Nonvolatile ferroelectric control of topological states in two-dimensional heterostructures. Phys. Rev. B 2220, 102, 235403.
Wang, X. W.; Xiao, C. C.; Yang, C.; Chen, M. G.; Yang, S. A.; Hu, J.; Ren, Z. H.; Pan, H.; Zhu, W. G.; Xu, Z. A. Ferroelectric control of single-molecule magnetism in 2D limit. Sci. Bull. 2020, 55, 1252–1259.
Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.
Kim, S.; Konar, A.; Hwang, W. S.; Lee, J. H.; Lee, J.; Yang, J.; Jung, C.; Kim, H.; Yoo, J. B.; Choi, J. Y. et al. High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals. Nat. Commun. 2012, 3, 1011.
Desai, S. B.; Madhvapathy, S. R.; Sachid, A. B.; Llinas, J. P.; Wang, Q. X.; Ahn, G. H.; Pitner, G.; Kim, M. J.; Bokor, J.; Hu, C. M. et al. MoS2 transistors with 1-nanometer gate lengths. Science 2016, 354, 99–102.
Briggs, N.; Subramanian, S.; Lin, Z.; Li, X. F.; Zhang, X. T.; Zhang, K. H.; Xiao, K.; Geohegan, D.; Wallace, R.; Chen, L. Q. et al. A roadmap for electronic grade 2D materials. 2D Mater. 2019, 6, 022001.
Lee, Y. H.; Zhang, X. Q.; Zhang, W. J.; Chang, M. T.; Lin, C. T.; Chang, K. D.; Yu, Y. C.; Wang, J. T. W.; Chang, C. S.; Li, L. J. et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 2012, 24, 2320–2325.
Kang, K.; Xie, S.; Huang, L. J.; Han, Y. M.; Huang, P. Y.; Mak, K. F.; Kim, C. J.; Muller, D.; Park, J. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 2015, 520, 656–660.
Chai, J. W.; Tong, S.; Li, C. J.; Manzano, C.; Li, B.; Liu, Y. P.; Lin, M.; Wong, L.; Cheng, J. W.; Wu, J. et al. MoS2/polymer heterostructures enabling stable resistive switching and multistate randomness. Adv. Mater. 2020, 32, 2002704.
Cai, Z. Y.; Liu, B. L.; Zou, X. L.; Cheng, H. M. Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures. Chem. Rev. 2018, 118, 6091–6133.
Lim, Y. F.; Priyadarshi, K.; Bussolotti, F.; Gogoi, P. K.; Cui, X. Y.; Yang, M.; Pan, J. S.; Tong, S. W.; Wang, S. J.; Pennycook, S. J. et al. Modification of vapor phase concentrations in MoS2 growth using a NiO foam barrier. ACS Nano 2018, 12, 1339–1349.
Liu, Y.; Guo, J.; Zhu, E. B.; Liao, L.; Lee, S. J.; Ding, M. N.; Shakir, I.; Gambin, V.; Huang, Y.; Duan, X. F. Approaching the Schottky-Mott limit in van der Waals metal-semiconductor junctions. Nature 2018, 557, 696–700.
Wang, Y.; Kim, J. C.; Wu, R. J.; Martinez, J.; Song, X. J.; Yang, J.; Zhao, F.; Mkhoyan, A.; Jeong, H. Y.; Chhowalla, M. Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors. Nature 2019, 568, 70–74.
Liu, Y. Y.; Stradins, P.; Wei, S. H. Van der Waals metal-semiconductor junction: Weak Fermi level pinning enables effective tuning of Schottky barrier. Sci. Adv. 2016, 2, e1600069.
Allain, A.; Kang, J. H.; Banerjee, K.; Kis, A. Electrical contacts to two-dimensional semiconductors. Nat. Mater. 2011, 14, 1195–1205.
Shen, P. C.; Su, C.; Lin, Y. X.; Chou, A. S.; Cheng, C. C.; Park, J. H.; Chiu, M. H.; Lu, A. Y.; Tang, H. L.; Tavakoli, M. M. et al. Ultralow contact resistance between semimetal and monolayer semiconductors. Nature 2021, 593, 211–217.
Chai, J. W.; Yang, M.; Callsen, M.; Zhou, J.; Yang, T.; Zhang, Z.; Pan, J. S.; Chi, D. Z.; Feng, Y. P.; Wang, S. J. Tuning contact barrier height between metals and MoS2 monolayer through interface engineering. Adv. Mater. Interfaces 2017, 4, 1700035.
Wang, B. H.; Huang, W.; Chi, L. F.; Al-Hashimi, M.; Marks, T. J.; Facchetti, A. High-k gate dielectrics for emerging flexible and stretchable electronics. Chem. Rev. 2018, 118, 5690–5754.
Li, W. S.; Zhou, J.; Cai, S. H.; Yu, Z. H.; Zhang, J. L.; Fang, N.; Li, T. T.; Wu, Y.; Chen, T. S.; Xie, X. Y. et al. Uniform and ultrathin high-κ gate dielectrics for two-dimensional electronic devices. Nat. Electron. 2019, 2, 563–571.
Illarionov, Y. Y.; Knobloch, T.; Jech, M.; Lanza, M.; Akinwande, D.; Vexler, M. I.; Mueller, T.; Lemme, M. C.; Fiori, G.; Schwierz, F. et al. Insulators for 2D nanoelectronics: The gap to bridge. Nat. Commun. 2020, 11, 3385.
Zou, X. M.; Wang, J. L.; Chiu, C. H.; Wu, Y.; Xiao, X. H.; Jiang, C. Z.; Wu, W. W.; Mai, L. Q.; Chen, T. S.; Li, J. C. et al. Interface engineering for high-performance top-gated MoS2 field-effect transistors. Adv. Mater. 2014, 26, 6255–6261.
Robertson, J. High dielectric constant gate oxides for metal oxide Si transistors. Rep. Prog. Phys. 2001, 69, 327.
Jena, D.; Konar, A. Enhancement of carrier mobility in semiconductor nanostructures by dielectric engineering. Phys. Rev. Lett. 2007, 98, 136805.
Lee, G. H.; Yu, Y. J.; Cui, X.; Petrone, N.; Lee, C. H.; Choi, M. S.; Lee, D. Y.; Lee, C.; Yoo, W. J.; Watanabe, K. et al. Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures. ACS Nano 2013, 7, 7931–7936.
Cui, X.; Lee, G. H.; Kim, Y. D.; Arefe, G.; Huang, P. Y.; Lee, C. H.; Chenet, D. A.; Zhang, X.; Wang, L.; Ye, F. et al. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nat. Nanotechnol. 2011, 70, 534–540.
Illarionov, Y. Y.; Banshchikov, A. G.; Polyushkin, D. K.; Wachter, S.; Knobloch, T.; Thesberg, M.; Mennel, L.; Paur, M.; Stöger-Pollach, M.; Steiger-Thirsfeld, A. et al. Ultrathin calcium fluoride insulators for two-dimensional field-effect transistors. Nat. Electron. 2019, 2, 230–235.
Knobloch, T.; Illarionov, Y. Y.; Ducry, F.; Schleich, C.; Wachter, S.; Watanabe, K.; Taniguchi, T.; Mueller, T.; Waltl, M.; Lanza, M. et al. The performance limits of hexagonal boron nitride as an insulator for scaled CMOS devices based on two-dimensional materials. Nat. Electron. 2021, 4, 98–108.
McDonnell, S.; Brennan, B.; Azcatl, A.; Lu, N.; Dong, H.; Buie, C.; Kim, J.; Hinkle, C. L.; Kim, M. J.; Wallace, R. M. HfO2 on MoS2 by atomic layer deposition: Adsorption mechanisms and thickness scalability. ACS Nano 2013, 7, 10354–10361.
Liu, H.; Ye, P. D. MoS2 dual-gate MOSFET with atomic-layer-deposited Al2O3 as top-gate dielectric. IEEE Electron Device Lett. 2012, 33, 546–548.
Kim, H. G.; Lee, H. B. R. Atomic layer deposition on 2D materials. Chem. Mater. 2017, 29, 3809–3826.
Tao, J. G.; Chai, J. W.; Zhang, Z.; Pan, J. S.; Wang, S. J. The energy-band alignment at molybdenum disulphide and high-k dielectrics interfaces. Appl. Phys. Lett. 2014, 104, 232110.
Xia, P. K.; Feng, X. W.; Ng, R. J.; Wang, S. J.; Chi, D. Z.; Li, C. Q.; He, Z. B.; Liu, X. K.; Ang, K. W. Impact and origin of interface states in MOS capacitor with monolayer MoS2 and HfO2 high-k dielectric. Sci. Rep. 2017, 7, 40669.
Pan, Y.; Jia, K. P.; Huang, K. L.; Wu, Z. H.; Bai, G. B.; Yu, J. H.; Zhang, Z. H.; Zhang, Q. Z.; Yin, H. X. Near-ideal subthreshold swing MoS2 back-gate transistors with an optimized ultrathin HfO2 dielectric layer. Nanotechnology 2019, 30, 095202.
Hu, Y. Q.; Yip, P. S.; Tang, C. W.; Lau, K. M.; Li, Q. Interface passivation and trap reduction via hydrogen fluoride for molybdenum disulfide on silicon oxide back-gate transistors. Semicond. Sci. Technol. 2018, 33, 045005.
Park, J. H.; Fathipour, S.; Kwak, I.; Sardashti, K.; Ahles, C. F.; Wolf, S. F.; Edmonds, M.; Vishwanath, S.; Xing, H. G.; Fullerton-Shirey, S. K. et al. Atomic layer deposition of Al2O3 on WSe2 functionalized by titanyl phthalocyanine. ACS Nano 2016, 10, 6888–6896.
Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1991, 77, 3865–3868.
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.
Wu, X.; Vargas, M. C.; Nayak, S.; Lotrich, V.; Scoles, G. Towards extending the applicability of density functional theory to weakly bound systems. J. Chem. Phys. 2001, 115, 8748–8757.
Yang, M.; Chai, J. W.; Callsen, M.; Zhou, J.; Yang, T.; Song, T. T.; Pan, J. S.; Chi, D. Z.; Feng, Y. P.; Wang, S. J. Interfacial interaction between HfO2 and MoS2: From thin films to monolayer. J. Phys. Chem. C 2011, 120, 9804–9810.
Yang, M.; Zhang, C.; Wang, S. J.; Feng, Y. P.; Ariando. Graphene on β-Si3N4: An ideal system for graphene-based electronics. AIP Adv. 2011, 1, 032111.
Wang, X. S.; Zhai, G. J.; Yang, J. S.; Cue, N. Crystalline Si3N4 thin films on Si(111) and the 4 × 4 reconstruction on Si3N4(0001). Phys. Rev. B 1999, 60, R2146.
Yang, M.; Wu, R. Q.; Deng, W. S.; Shen, L.; Sha, Z. D.; Cai, Y. Q.; Feng, Y. P.; Wang, S. J. Electronic structures of β-Si3N4(0001)/Si(111) interfaces: Perfect bonding and dangling bond effects. J. Appl. Phys. 2009, 105, 024108.
Bermudez, V. M. Theoretical study of the electronic structure of the Si3N4(0001) surface. Surf. Sci. 2005, 579, 11–20.
Bengtsson, L. Dipole correction for surface supercell calculations. Phys. Rev. B 1999, 59, 12301–12304.
Ma, T. P. Making silicon nitride film a viable gate dielectric. IEEE Trans. Electron Devices 1998, 45, 680–690.
Zhu, W. J.; Neumayer, D.; Perebeinos, V.; Avouris, P. Silicon nitride gate dielectrics and band gap engineering in graphene layers. Nano Lett. 2010, 10, 3572–3576.
Yang, M.; Chai, J. W.; Wang, Y. Z.; Wang, S. J.; Feng, Y. P. Interfacial properties of silicon nitride grown on epitaxial graphene on 6H-SiC substrate. J. Phys. Chem. C 2012, 116, 22315–22318.
Huang, B.; Xu, Q.; Wei, S. H. Theoretical study of corundum as an ideal gate dielectric material for graphene transistors. Phys. Rev. B 2011, 84, 155406.
Scopel, W. L.; Miwa, R. H.; Schmidt, T. M.; Venezuela, P. MoS2 on an amorphous HfO2 surface: An ab initio investigation. J. Appl. Phys. 2015, 117, 194303.
Kang, Y. J.; Kang, J.; Chang, K. J. Electronic structure of graphene and doping effect on SiO2. Phys. Rev. B 2008, 78, 115404.
Kamiya, K.; Umezawa, N.; Okada, S. Energetics and electronic structure of graphene adsorbed on HfO2(111): Density functional theory calculations. Phys. Rev. B 2011, 83, 153413.
Dolui, K.; Rungger, I.; Sanvito, S. Origin of the n-type and p-type conductivity of MoS2 monolayers on a SiO2 substrate. Phys. Rev. B 2013, 87, 165402.
Martin, J.; Akerman, N.; Ulbricht, G.; Lohmann, T.; Smet, J. H.; von Klitzing, K.; Yacoby, A. Observation of electron-hole puddles in graphene using a scanning single-electron transistor. Nat. Phys. 2008, 4, 144–148.
Ashok, S. Research in Hydrogen Passivation of Defects and Impurities in Silicon: Final Report, 2 May 2000–2 July 2003. National Renewable Energy Lab., Golden, CO(US), 2004.
Yang, T.; Bao, Y.; Xiao, W.; Zhou, J.; Ding, J.; Feng, Y. P.; Loh, K. P.; Yang, M.; Wang, S. J. Hydrogen evolution catalyzed by a molybdenum sulfide two-dimensional structure with active basal planes. ACS Appl. Mater. Interfaces 2018, 10, 22042–22049.
Sze, S. M. Semiconductor Devices: Physics and Technology; 2nd ed. John Wiley & Sons: New York, 1985.
Liu, H.; Xu, K.; Zhang, X. J.; Ye, P. D. The integration of high-dielectric on two-dimensional crystals by atomic layer deposition. Appl. Phys. Lett. 2012, 100, 152115.
Hausmann, D. M.; Kim, E.; Becker, J.; Gordon, R. G. Atomic layer deposition of hafnium and zirconium oxides using metal amide precursors. Chem. Mater. 2002, 14, 4350–4358.
Liu, X. Y.; Ramanathan, S.; Longdergan, A.; Srivastava, A.; Lee, E.; Seidel, T. E.; Barton, J. T.; Pang, D. W.; Gordon, R. G. ALD of hafnium oxide thin films from tetrakis(ethylmethylamino)hafnium and ozone. J. Electrochem. Soc. 2005, 152, G213.
Yang, M.; Nurbawono, A.; Zhang, C.; Feng, Y. P.; Ariando. Two-dimensional graphene superlattice made with partial hydrogenation. Appl. Phys. Lett. 2010, 96, 193115.
Rahman, M. Z.; Kwong, C. W.; Davey, K.; Qiao, S. Z. 2D phosphorene as a water splitting photocatalyst: Fundamentals to applications. Energy Environ. Sci. 2011, 9, 709–728.
Acknowledgements
M. Y. acknowledges the funding support (Nos: 1-BE47 and ZE2F) from The Hong Kong Polytechnic University. We acknowledge Centre for Advanced 2D Materials and Graphene Research at National University of Singapore, and the National Supercomputing Centre of Singapore for providing computing resources.
Author information
Authors and Affiliations
Corresponding authors
Electronic supplementary material
Rights and permissions
About this article
Cite this article
Yang, Y., Yang, T., Song, T. et al. Selective hydrogenation improves interface properties of high-k dielectrics on 2D semiconductors. Nano Res. 15, 4646–4652 (2022). https://doi.org/10.1007/s12274-021-4025-4
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12274-021-4025-4