Skip to main content

Advertisement

Log in

Selective hydrogenation improves interface properties of high-k dielectrics on 2D semiconductors

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The integration of high-k dielectrics with two-dimensional (2D) semiconductors is a critical step towards high-performance nanoelectronics, which however remains challenging due to the high density of interface states and the damage to the monolayer 2D semiconductors. In this study, we propose a selective hydrogenation strategy to improve the interface properties while the 2D semiconductors are not affected. Using the interface of monolayer molybdenum disulfide (MoS2) and silicon nitride as an example, we show substantially improved interface properties for electronic applications after the interfacial hydrogenation, as evidenced by reduced inhomogeneous charge redistribution, increased band offset, and nearly intact electronic properties of MoS2. Importantly, this hydrogenation process selectively occurs only at the silicon nitride surface and is compatible with the current semiconductor fabrication process. We further show that this strategy is general and applicable to other interfaces between high-k dielectrics and 2D semiconductors such as hafnium dioxide (HfO2) on the monolayer MoS2. Our results demonstrate a simple yet viable way to improve the integration of high-k dielectrics on a broad range of 2D transition metal disulfide semiconductors, shedding light on practical electronic and optoelectronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fiori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S. K.; Colombo, L. Electronics based on two-dimensional materials. Nat. Nanotechnol. 2014, 9, 768–779.

    Article  CAS  Google Scholar 

  2. Li, M. Y.; Su, S. K.; Wong, H. S. P.; Li, L. J. How 2D semiconductors could extend Moore’s law. Nature 2019, 567, 169–170.

    Article  CAS  Google Scholar 

  3. Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

    Article  Google Scholar 

  4. Butler, S. Z.; Hollen, S. M.; Cao, L. Y.; Cui, Y.; Gupta, J. A.; Gutiérrez, H. R.; Heinz, T. F.; Hong, S. S.; Huang, J. X.; Ismach, A. F. et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 2013, 7, 2898–2926.

    Article  CAS  Google Scholar 

  5. Yoon, Y.; Ganapathi, K.; Salahuddin, S. How good can monolayer MoS2 transistors be? Nano Lett. 2011, 11, 3768–3773.

    Article  CAS  Google Scholar 

  6. Wang, G.; Chernikov, A.; Glazov, M. M.; Heinz, T. F.; Marie, X.; Amand, T.; Urbaszek, B. Colloquium: Excitons in atomically thin transition metal dichalcogenides. Rev. Mod. Phys. 2018, 90, 021001.

    Article  CAS  Google Scholar 

  7. Liu, G. B.; Xiao, D.; Yao, Y. G.; Xu, X. D.; Yao, W. Electronic structures and theoretical modelling of two-dimensional group-VIB transition metal dichalcogenides. Chem. Soc. Rev. 2015, 44, 2643–2663.

    Article  CAS  Google Scholar 

  8. Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2001, 7, 699–712.

    Article  Google Scholar 

  9. Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2001, 102, 10451–10453.

    Article  Google Scholar 

  10. Sangwan, V. K.; Lee, H. S.; Bergeron, H.; Balla, I.; Beck, M. E.; Chen, K. S.; Hersam, M. C. Multi-terminal memtransistors from polycrystalline monolayer molybdenum disulfide. Nature 2018, 554, 500–504.

    Article  CAS  Google Scholar 

  11. Hua, C. Q.; Bai, H.; Zheng, Y.; Xu, Z. A.; Yang, S. Y.; Lu, Y. H.; Wei, S. H. Strong coupled magnetic and electric ordering in monolayer of metal thio(seleno)phosphates. Chin. Phys. Lett. 2021, 38, 077501.

    Article  CAS  Google Scholar 

  12. Bai, H.; Wang, X. W.; Wu, W. K.; He, P. M.; Xu, Z. A.; Yang, S. A.; Lu, Y. H. Nonvolatile ferroelectric control of topological states in two-dimensional heterostructures. Phys. Rev. B 2220, 102, 235403.

    Article  Google Scholar 

  13. Wang, X. W.; Xiao, C. C.; Yang, C.; Chen, M. G.; Yang, S. A.; Hu, J.; Ren, Z. H.; Pan, H.; Zhu, W. G.; Xu, Z. A. Ferroelectric control of single-molecule magnetism in 2D limit. Sci. Bull. 2020, 55, 1252–1259.

    Article  Google Scholar 

  14. Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.

    Article  CAS  Google Scholar 

  15. Kim, S.; Konar, A.; Hwang, W. S.; Lee, J. H.; Lee, J.; Yang, J.; Jung, C.; Kim, H.; Yoo, J. B.; Choi, J. Y. et al. High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals. Nat. Commun. 2012, 3, 1011.

    Article  Google Scholar 

  16. Desai, S. B.; Madhvapathy, S. R.; Sachid, A. B.; Llinas, J. P.; Wang, Q. X.; Ahn, G. H.; Pitner, G.; Kim, M. J.; Bokor, J.; Hu, C. M. et al. MoS2 transistors with 1-nanometer gate lengths. Science 2016, 354, 99–102.

    Article  CAS  Google Scholar 

  17. Briggs, N.; Subramanian, S.; Lin, Z.; Li, X. F.; Zhang, X. T.; Zhang, K. H.; Xiao, K.; Geohegan, D.; Wallace, R.; Chen, L. Q. et al. A roadmap for electronic grade 2D materials. 2D Mater. 2019, 6, 022001.

    Article  CAS  Google Scholar 

  18. Lee, Y. H.; Zhang, X. Q.; Zhang, W. J.; Chang, M. T.; Lin, C. T.; Chang, K. D.; Yu, Y. C.; Wang, J. T. W.; Chang, C. S.; Li, L. J. et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 2012, 24, 2320–2325.

    Article  CAS  Google Scholar 

  19. Kang, K.; Xie, S.; Huang, L. J.; Han, Y. M.; Huang, P. Y.; Mak, K. F.; Kim, C. J.; Muller, D.; Park, J. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 2015, 520, 656–660.

    Article  CAS  Google Scholar 

  20. Chai, J. W.; Tong, S.; Li, C. J.; Manzano, C.; Li, B.; Liu, Y. P.; Lin, M.; Wong, L.; Cheng, J. W.; Wu, J. et al. MoS2/polymer heterostructures enabling stable resistive switching and multistate randomness. Adv. Mater. 2020, 32, 2002704.

    Article  CAS  Google Scholar 

  21. Cai, Z. Y.; Liu, B. L.; Zou, X. L.; Cheng, H. M. Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures. Chem. Rev. 2018, 118, 6091–6133.

    Article  CAS  Google Scholar 

  22. Lim, Y. F.; Priyadarshi, K.; Bussolotti, F.; Gogoi, P. K.; Cui, X. Y.; Yang, M.; Pan, J. S.; Tong, S. W.; Wang, S. J.; Pennycook, S. J. et al. Modification of vapor phase concentrations in MoS2 growth using a NiO foam barrier. ACS Nano 2018, 12, 1339–1349.

    Article  CAS  Google Scholar 

  23. Liu, Y.; Guo, J.; Zhu, E. B.; Liao, L.; Lee, S. J.; Ding, M. N.; Shakir, I.; Gambin, V.; Huang, Y.; Duan, X. F. Approaching the Schottky-Mott limit in van der Waals metal-semiconductor junctions. Nature 2018, 557, 696–700.

    Article  CAS  Google Scholar 

  24. Wang, Y.; Kim, J. C.; Wu, R. J.; Martinez, J.; Song, X. J.; Yang, J.; Zhao, F.; Mkhoyan, A.; Jeong, H. Y.; Chhowalla, M. Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors. Nature 2019, 568, 70–74.

    Article  CAS  Google Scholar 

  25. Liu, Y. Y.; Stradins, P.; Wei, S. H. Van der Waals metal-semiconductor junction: Weak Fermi level pinning enables effective tuning of Schottky barrier. Sci. Adv. 2016, 2, e1600069.

    Article  Google Scholar 

  26. Allain, A.; Kang, J. H.; Banerjee, K.; Kis, A. Electrical contacts to two-dimensional semiconductors. Nat. Mater. 2011, 14, 1195–1205.

    Article  Google Scholar 

  27. Shen, P. C.; Su, C.; Lin, Y. X.; Chou, A. S.; Cheng, C. C.; Park, J. H.; Chiu, M. H.; Lu, A. Y.; Tang, H. L.; Tavakoli, M. M. et al. Ultralow contact resistance between semimetal and monolayer semiconductors. Nature 2021, 593, 211–217.

    Article  CAS  Google Scholar 

  28. Chai, J. W.; Yang, M.; Callsen, M.; Zhou, J.; Yang, T.; Zhang, Z.; Pan, J. S.; Chi, D. Z.; Feng, Y. P.; Wang, S. J. Tuning contact barrier height between metals and MoS2 monolayer through interface engineering. Adv. Mater. Interfaces 2017, 4, 1700035.

    Article  Google Scholar 

  29. Wang, B. H.; Huang, W.; Chi, L. F.; Al-Hashimi, M.; Marks, T. J.; Facchetti, A. High-k gate dielectrics for emerging flexible and stretchable electronics. Chem. Rev. 2018, 118, 5690–5754.

    Article  CAS  Google Scholar 

  30. Li, W. S.; Zhou, J.; Cai, S. H.; Yu, Z. H.; Zhang, J. L.; Fang, N.; Li, T. T.; Wu, Y.; Chen, T. S.; Xie, X. Y. et al. Uniform and ultrathin high-κ gate dielectrics for two-dimensional electronic devices. Nat. Electron. 2019, 2, 563–571.

    Article  CAS  Google Scholar 

  31. Illarionov, Y. Y.; Knobloch, T.; Jech, M.; Lanza, M.; Akinwande, D.; Vexler, M. I.; Mueller, T.; Lemme, M. C.; Fiori, G.; Schwierz, F. et al. Insulators for 2D nanoelectronics: The gap to bridge. Nat. Commun. 2020, 11, 3385.

    Article  CAS  Google Scholar 

  32. Zou, X. M.; Wang, J. L.; Chiu, C. H.; Wu, Y.; Xiao, X. H.; Jiang, C. Z.; Wu, W. W.; Mai, L. Q.; Chen, T. S.; Li, J. C. et al. Interface engineering for high-performance top-gated MoS2 field-effect transistors. Adv. Mater. 2014, 26, 6255–6261.

    Article  CAS  Google Scholar 

  33. Robertson, J. High dielectric constant gate oxides for metal oxide Si transistors. Rep. Prog. Phys. 2001, 69, 327.

    Article  Google Scholar 

  34. Jena, D.; Konar, A. Enhancement of carrier mobility in semiconductor nanostructures by dielectric engineering. Phys. Rev. Lett. 2007, 98, 136805.

    Article  Google Scholar 

  35. Lee, G. H.; Yu, Y. J.; Cui, X.; Petrone, N.; Lee, C. H.; Choi, M. S.; Lee, D. Y.; Lee, C.; Yoo, W. J.; Watanabe, K. et al. Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures. ACS Nano 2013, 7, 7931–7936.

    Article  CAS  Google Scholar 

  36. Cui, X.; Lee, G. H.; Kim, Y. D.; Arefe, G.; Huang, P. Y.; Lee, C. H.; Chenet, D. A.; Zhang, X.; Wang, L.; Ye, F. et al. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nat. Nanotechnol. 2011, 70, 534–540.

    Google Scholar 

  37. Illarionov, Y. Y.; Banshchikov, A. G.; Polyushkin, D. K.; Wachter, S.; Knobloch, T.; Thesberg, M.; Mennel, L.; Paur, M.; Stöger-Pollach, M.; Steiger-Thirsfeld, A. et al. Ultrathin calcium fluoride insulators for two-dimensional field-effect transistors. Nat. Electron. 2019, 2, 230–235.

    Article  CAS  Google Scholar 

  38. Knobloch, T.; Illarionov, Y. Y.; Ducry, F.; Schleich, C.; Wachter, S.; Watanabe, K.; Taniguchi, T.; Mueller, T.; Waltl, M.; Lanza, M. et al. The performance limits of hexagonal boron nitride as an insulator for scaled CMOS devices based on two-dimensional materials. Nat. Electron. 2021, 4, 98–108.

    Article  CAS  Google Scholar 

  39. McDonnell, S.; Brennan, B.; Azcatl, A.; Lu, N.; Dong, H.; Buie, C.; Kim, J.; Hinkle, C. L.; Kim, M. J.; Wallace, R. M. HfO2 on MoS2 by atomic layer deposition: Adsorption mechanisms and thickness scalability. ACS Nano 2013, 7, 10354–10361.

    Article  CAS  Google Scholar 

  40. Liu, H.; Ye, P. D. MoS2 dual-gate MOSFET with atomic-layer-deposited Al2O3 as top-gate dielectric. IEEE Electron Device Lett. 2012, 33, 546–548.

    Article  CAS  Google Scholar 

  41. Kim, H. G.; Lee, H. B. R. Atomic layer deposition on 2D materials. Chem. Mater. 2017, 29, 3809–3826.

    Article  CAS  Google Scholar 

  42. Tao, J. G.; Chai, J. W.; Zhang, Z.; Pan, J. S.; Wang, S. J. The energy-band alignment at molybdenum disulphide and high-k dielectrics interfaces. Appl. Phys. Lett. 2014, 104, 232110.

    Article  Google Scholar 

  43. Xia, P. K.; Feng, X. W.; Ng, R. J.; Wang, S. J.; Chi, D. Z.; Li, C. Q.; He, Z. B.; Liu, X. K.; Ang, K. W. Impact and origin of interface states in MOS capacitor with monolayer MoS2 and HfO2 high-k dielectric. Sci. Rep. 2017, 7, 40669.

    Article  CAS  Google Scholar 

  44. Pan, Y.; Jia, K. P.; Huang, K. L.; Wu, Z. H.; Bai, G. B.; Yu, J. H.; Zhang, Z. H.; Zhang, Q. Z.; Yin, H. X. Near-ideal subthreshold swing MoS2 back-gate transistors with an optimized ultrathin HfO2 dielectric layer. Nanotechnology 2019, 30, 095202.

    Article  CAS  Google Scholar 

  45. Hu, Y. Q.; Yip, P. S.; Tang, C. W.; Lau, K. M.; Li, Q. Interface passivation and trap reduction via hydrogen fluoride for molybdenum disulfide on silicon oxide back-gate transistors. Semicond. Sci. Technol. 2018, 33, 045005.

    Article  Google Scholar 

  46. Park, J. H.; Fathipour, S.; Kwak, I.; Sardashti, K.; Ahles, C. F.; Wolf, S. F.; Edmonds, M.; Vishwanath, S.; Xing, H. G.; Fullerton-Shirey, S. K. et al. Atomic layer deposition of Al2O3 on WSe2 functionalized by titanyl phthalocyanine. ACS Nano 2016, 10, 6888–6896.

    Article  CAS  Google Scholar 

  47. Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.

    Article  CAS  Google Scholar 

  48. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1991, 77, 3865–3868.

    Article  Google Scholar 

  49. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

    Article  Google Scholar 

  50. Wu, X.; Vargas, M. C.; Nayak, S.; Lotrich, V.; Scoles, G. Towards extending the applicability of density functional theory to weakly bound systems. J. Chem. Phys. 2001, 115, 8748–8757.

    Article  CAS  Google Scholar 

  51. Yang, M.; Chai, J. W.; Callsen, M.; Zhou, J.; Yang, T.; Song, T. T.; Pan, J. S.; Chi, D. Z.; Feng, Y. P.; Wang, S. J. Interfacial interaction between HfO2 and MoS2: From thin films to monolayer. J. Phys. Chem. C 2011, 120, 9804–9810.

    Article  Google Scholar 

  52. Yang, M.; Zhang, C.; Wang, S. J.; Feng, Y. P.; Ariando. Graphene on β-Si3N4: An ideal system for graphene-based electronics. AIP Adv. 2011, 1, 032111.

    Article  Google Scholar 

  53. Wang, X. S.; Zhai, G. J.; Yang, J. S.; Cue, N. Crystalline Si3N4 thin films on Si(111) and the 4 × 4 reconstruction on Si3N4(0001). Phys. Rev. B 1999, 60, R2146.

    Article  CAS  Google Scholar 

  54. Yang, M.; Wu, R. Q.; Deng, W. S.; Shen, L.; Sha, Z. D.; Cai, Y. Q.; Feng, Y. P.; Wang, S. J. Electronic structures of β-Si3N4(0001)/Si(111) interfaces: Perfect bonding and dangling bond effects. J. Appl. Phys. 2009, 105, 024108.

    Article  Google Scholar 

  55. Bermudez, V. M. Theoretical study of the electronic structure of the Si3N4(0001) surface. Surf. Sci. 2005, 579, 11–20.

    Article  CAS  Google Scholar 

  56. Bengtsson, L. Dipole correction for surface supercell calculations. Phys. Rev. B 1999, 59, 12301–12304.

    Article  CAS  Google Scholar 

  57. Ma, T. P. Making silicon nitride film a viable gate dielectric. IEEE Trans. Electron Devices 1998, 45, 680–690.

    Article  CAS  Google Scholar 

  58. Zhu, W. J.; Neumayer, D.; Perebeinos, V.; Avouris, P. Silicon nitride gate dielectrics and band gap engineering in graphene layers. Nano Lett. 2010, 10, 3572–3576.

    Article  CAS  Google Scholar 

  59. Yang, M.; Chai, J. W.; Wang, Y. Z.; Wang, S. J.; Feng, Y. P. Interfacial properties of silicon nitride grown on epitaxial graphene on 6H-SiC substrate. J. Phys. Chem. C 2012, 116, 22315–22318.

    Article  CAS  Google Scholar 

  60. Huang, B.; Xu, Q.; Wei, S. H. Theoretical study of corundum as an ideal gate dielectric material for graphene transistors. Phys. Rev. B 2011, 84, 155406.

    Article  Google Scholar 

  61. Scopel, W. L.; Miwa, R. H.; Schmidt, T. M.; Venezuela, P. MoS2 on an amorphous HfO2 surface: An ab initio investigation. J. Appl. Phys. 2015, 117, 194303.

    Article  Google Scholar 

  62. Kang, Y. J.; Kang, J.; Chang, K. J. Electronic structure of graphene and doping effect on SiO2. Phys. Rev. B 2008, 78, 115404.

    Article  Google Scholar 

  63. Kamiya, K.; Umezawa, N.; Okada, S. Energetics and electronic structure of graphene adsorbed on HfO2(111): Density functional theory calculations. Phys. Rev. B 2011, 83, 153413.

    Article  Google Scholar 

  64. Dolui, K.; Rungger, I.; Sanvito, S. Origin of the n-type and p-type conductivity of MoS2 monolayers on a SiO2 substrate. Phys. Rev. B 2013, 87, 165402.

    Article  Google Scholar 

  65. Martin, J.; Akerman, N.; Ulbricht, G.; Lohmann, T.; Smet, J. H.; von Klitzing, K.; Yacoby, A. Observation of electron-hole puddles in graphene using a scanning single-electron transistor. Nat. Phys. 2008, 4, 144–148.

    Article  CAS  Google Scholar 

  66. Ashok, S. Research in Hydrogen Passivation of Defects and Impurities in Silicon: Final Report, 2 May 2000–2 July 2003. National Renewable Energy Lab., Golden, CO(US), 2004.

    Google Scholar 

  67. Yang, T.; Bao, Y.; Xiao, W.; Zhou, J.; Ding, J.; Feng, Y. P.; Loh, K. P.; Yang, M.; Wang, S. J. Hydrogen evolution catalyzed by a molybdenum sulfide two-dimensional structure with active basal planes. ACS Appl. Mater. Interfaces 2018, 10, 22042–22049.

    Article  CAS  Google Scholar 

  68. Sze, S. M. Semiconductor Devices: Physics and Technology; 2nd ed. John Wiley & Sons: New York, 1985.

    Google Scholar 

  69. Liu, H.; Xu, K.; Zhang, X. J.; Ye, P. D. The integration of high-dielectric on two-dimensional crystals by atomic layer deposition. Appl. Phys. Lett. 2012, 100, 152115.

    Article  Google Scholar 

  70. Hausmann, D. M.; Kim, E.; Becker, J.; Gordon, R. G. Atomic layer deposition of hafnium and zirconium oxides using metal amide precursors. Chem. Mater. 2002, 14, 4350–4358.

    Article  CAS  Google Scholar 

  71. Liu, X. Y.; Ramanathan, S.; Longdergan, A.; Srivastava, A.; Lee, E.; Seidel, T. E.; Barton, J. T.; Pang, D. W.; Gordon, R. G. ALD of hafnium oxide thin films from tetrakis(ethylmethylamino)hafnium and ozone. J. Electrochem. Soc. 2005, 152, G213.

    Article  CAS  Google Scholar 

  72. Yang, M.; Nurbawono, A.; Zhang, C.; Feng, Y. P.; Ariando. Two-dimensional graphene superlattice made with partial hydrogenation. Appl. Phys. Lett. 2010, 96, 193115.

    Article  Google Scholar 

  73. Rahman, M. Z.; Kwong, C. W.; Davey, K.; Qiao, S. Z. 2D phosphorene as a water splitting photocatalyst: Fundamentals to applications. Energy Environ. Sci. 2011, 9, 709–728.

    Article  Google Scholar 

Download references

Acknowledgements

M. Y. acknowledges the funding support (Nos: 1-BE47 and ZE2F) from The Hong Kong Polytechnic University. We acknowledge Centre for Advanced 2D Materials and Graphene Research at National University of Singapore, and the National Supercomputing Centre of Singapore for providing computing resources.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shijie Wang or Ming Yang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Yang, T., Song, T. et al. Selective hydrogenation improves interface properties of high-k dielectrics on 2D semiconductors. Nano Res. 15, 4646–4652 (2022). https://doi.org/10.1007/s12274-021-4025-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-4025-4

Keywords

Navigation