Skip to main content

Intelligent bio-assembly imaging-guided platform for real-time bacteria sterilizing and infectious therapy

Abstract

Bacterial infection is rising as a threatening health issue. Because of the present delay in early diagnosis of bacterial diseases as well as the abuse of antibiotics, it has become a vital issue in the development of in-time detection and therapy of bacterial infections. Herein, we designed a multifunctional nanotheranostics platform based on the unique micro-environment of bacterial infections to achieve specific bioimaging and simultaneous inactivation of the target bacteria. We showed that in bacterial infections, the metal precursors (i.e., HAuCl4, FeCl2, and herring sperm DNA) could be readily bio-self-assembled to multifunctional nanoclusters (NCs) that exhibit luminescence, in which AuCl4 was biosynthesized via reductive biomolecules such as NADPH to the fluorescent AuNCs. The DNA may assist as an encapsulation and delivery vector, and Fe2+ served as a fluorescence intensifier and reduced reactive oxygen species (ROS) to produce the iron oxides. While the bacteria were being visualized, the microenvironment-responsive NCs were enabled to sterilize bacteria efficiently due to electrostatic effect, cell membrane destruction, inhibition of biofilm formation, and ROS accumulation. Besides, the bio-responsive self-assembled NCs complexes contributed to accelerating bacteria-infected wound healing and showed negligible side effects in long-term toxicity tests in vivo. Also, intracellular molecules involved in microenvironmental response were investigated. The work may become an effective strategy for the detection and real-time sterilization of intractable bacterial infections.

This is a preview of subscription content, access via your institution.

References

  1. Bing, W.; Chen, Z. W.; Sun, H. J.; Shi, P.; Gao, N.; Ren, J. S.; Qu, X. G. Visible-light-driven enhanced antibacterial and biofilm elimination activity of graphitic carbon nitride by embedded Ag nanoparticles. Nano Res. 2015, 8, 1648–1658.

    CAS  Article  Google Scholar 

  2. Zhao, Y.; Chen, L.; Wang, Y. A.; Song, X. Y.; Li, K. Y.; Yan, X. F.; Yu, L. M.; He, Z. Y. Nanomaterial-based strategies in antimicrobial applications: Progress and perspectives. Nano Res. 2021, 14, 4417–4441.

    CAS  Article  Google Scholar 

  3. Chatzopoulou, M.; Kyriakaki, A.; Reynolds, L. Review of antimicrobial resistance control strategies: Low impact of prospective audit with feedback on bacterial antibiotic resistance within hospital settings. Infect. Dis. 2021, 53, 159–168.

    Article  Google Scholar 

  4. Mills, B.; Bradley, M.; Dhaliwal, K. Optical imaging of bacterial infections. Clin. Transl. Imag. 2016, 4, 163–174.

    Article  Google Scholar 

  5. Mao, D.; Hu, F.; Kenry; Ji, S. L.; Wu, W. B.; Ding, D.; Kong, D. L.; Liu, B. Metal-organic-framework-assisted in vivo bacterial metabolic labeling and precise antibacterial therapy. Adv. Mater. 2018, 30, 1706831.

    Article  CAS  Google Scholar 

  6. van Oosten, M.; Hahn, M.; Crane, L. M. A.; Pleijhuis, R. G.; Francis, K. P.; van Dijl, J. M.; van Dam, G. M. Targeted imaging of bacterial infections: Advances, hurdles and hopes. FEMS Microbiol. Rev. 2015, 39, 892–916.

    CAS  Article  Google Scholar 

  7. Robby, A. I.; Kim, S. G.; Lee, U. H.; In, I.; Lee, G.; Park, S. Y. Wireless electrochemical and luminescent detection of bacteria based on surface-coated CsWO3-immobilized fluorescent carbon dots with photothermal ablation of bacteria. Chem. Eng. J. 2021, 403, 126351.

    CAS  Article  Google Scholar 

  8. Zhou, C. C.; Xu, W. H.; Zhang, P. B.; Jiang, M. J.; Chen, Y. C.; Kwok, R. T. K.; Lee, M. M. S.; Shan, G. G.; Qi, R. L.; Zhou, X. et al. Engineering sensor arrays using aggregation-induced emission luminogens for pathogen identification. Adv. Funct. Mater. 2019, 29, 1805986.

    Article  CAS  Google Scholar 

  9. Lazcka, O.; Del Campo, F. J.; Muñoz, F. X. Pathogen detection: A perspective of traditional methods and biosensors. Biosens. Bioelectron. 2007, 22, 1205–1217.

    CAS  Article  Google Scholar 

  10. He, X. W.; Xiong, L. H.; Zhao, Z.; Wang, Z. Y.; Luo, L.; Lam, J. W. Y.; Kwok, R. T. K.; Tang, B. Z. AIE-based theranostic systems for detection and killing of pathogens. Tharanostics 2019, 9, 3223–3248.

    CAS  Article  Google Scholar 

  11. Ren, C. H.; Wang, Z. Y.; Wang, Q.; Yang, C. H.; Liu, J. F. Self-assembled peptide-based nanoprobes for disease theranostics and disease-related molecular imaging. Small Methods 2020, 4, 1900403.

    CAS  Article  Google Scholar 

  12. Sun, X.; Zhang, M. Z.; Du, R. H.; Zheng, X. J.; Tang, C. G.; Wu, Y. Q.; He, J. C.; Huang, W.; Wang, Y. Y.; Zhang, Z. Y. et al. A polyethyleneimine-driven self-assembled nanoplatform for fluorescence and MR dual-mode imaging guided cancer chemotherapy. Chem. Eng. J. 2018, 350, 69–78.

    Article  CAS  Google Scholar 

  13. Zhao, S. J.; Wu, S. L.; Jia, Q. Y.; Huang, L.; Lan, M. H.; Wang, P. F.; Zhang, W. J. Lysosome-targetable carbon dots for highly efficient photothermal/photodynamic synergistic cancer therapy and photoacoustic/two-photon excited fluorescence imaging. Chem. Eng. J. 2020, 388, 124212.

    CAS  Article  Google Scholar 

  14. Liu, L.; Wang, X. Y.; Zhu, S. X.; Yao, C.; Ban, D. D.; Liu, R. H.; Li, L. D.; Wang, S. Controllable targeted accumulation of fluorescent conjugated polymers on bacteria mediated by a saccharide bridge. Chem. Mater. 2020, 32, 438–447.

    CAS  Article  Google Scholar 

  15. Váradi, L.; Luo, J. L.; Hibbs, D. E.; Perry, J. D.; Anderson, R. J.; Orenga, S.; Groundwater, P. W. Methods for the detection and identification of pathogenic bacteria: Past, present, and future. Chem. Soc. Rev. 2017, 46, 4818–4832.

    Article  Google Scholar 

  16. Guo, H. B.; Yi, S.; Feng, K.; Xia, Y. Q.; Qu, X. W.; Wan, F.; Chen, L.; Zhang, C. L. In situ formation of metal organic framework onto gold nanorods/mesoporous silica with functional integration for targeted theranostics. Chem. Eng. J. 2021, 403, 126432.

    CAS  Article  Google Scholar 

  17. Huang, Y.; Huang, P.; Lin, J. Plasmonic gold nanovesicles for biomedical applications. Small Methods 2019, 3, 1800394.

    Article  CAS  Google Scholar 

  18. Cui, H.; Shao, Z. S.; Song, Z.; Wang, Y. B.; Wang, H. S. Development of gold nanoclusters: From preparation to applications in the field of biomedicine. J. Mater. Chem. C 2020, 8, 14312–14333.

    CAS  Article  Google Scholar 

  19. El-Sayed, N.; Schneider, M. Advances in biomedical and pharmaceutical applications of protein-stabilized gold nanoclusters. J. Mater. Chem. B 2020, 8, 8952–8971.

    CAS  Article  Google Scholar 

  20. Zheng, J.; Nicovich, P. R.; Dickson, R. M. Highly fluorescent noble-metal quantum dots. Annu. Rev. Phys. Chem. 2007, 58, 409–431.

    CAS  Article  Google Scholar 

  21. Yarramala, D. S.; Baksi, A.; Pradeep, T.; Rao, C. P. Green synthesis of protein-protected fluorescent gold nanoclusters (AuNCs): Reducing the size of AuNCs by partially occupying the Ca2+ Site by La3+ in Apo-α-lactalbumin. ACS Sustainable Chem. Eng. 2017, 5, 6064–6069.

    CAS  Article  Google Scholar 

  22. Guo, Y. H.; Amunyela, H. T. N. N.; Cheng, Y. L.; Xie, Y. F.; Yu, H.; Yao, W. R.; Li, H. W.; Qian, H. Natural protein-templated fluorescent gold nanoclusters: Syntheses and applications. Food Chem. 2021, 335, 127657.

    CAS  Article  Google Scholar 

  23. Zheng, Y. K.; Wang, X. M.; Jiang, H. Label-free detection of Acinetobacter baumannii through the induced fluorescence quenching of thiolated AuAg nanoclusters. Sens. Actuators B: Chem. 2018, 277, 388–393.

    CAS  Article  Google Scholar 

  24. Ahmed, H. B. Recruitment of various biological macromolecules in fabrication of gold nanoparticles: Overview for preparation and applications. Int. J. Biol. Macromol. 2019, 140, 265–277.

    CAS  Article  Google Scholar 

  25. Erythropel, H. C.; Zimmerman, J. B.; de Winter, T. M.; Petitjean, L.; Melnikov, F.; Lam, C. H.; Lounsbury, A. W.; Mellor, K. E.; Janković, N. Z.; Tu, Q. S. et al. The Green ChemisTREE: 20 years after taking root with the 12 principles. Green Chem. 2018, 20, 1929–1961.

    CAS  Article  Google Scholar 

  26. Basu, T.; Rana, K.; Das, N.; Pal, B. Selective detection of Mg2+ ions via enhanced fluorescence emission using Au-DNA nanocomposites. Beilstein J. Nanotechnol. 2017, 8, 762–771.

    CAS  Article  Google Scholar 

  27. Li, X. M.; Fu, P. Y.; Liu, J. M.; Zhang, S. S. Biosensor for multiplex detection of two DNA target sequences using enzyme-functionalized Au nanoparticles as signal amplification. Anal. Chim. Acta 2010, 673, 133–138.

    CAS  Article  Google Scholar 

  28. Xiu, W. J.; Gan, S. Y.; Wen, Q. R.; Qiu, Q.; Dai, S. L.; Dong, H.; Li, Q.; Yuwen, L. H.; Weng, L. X.; Teng, Z. G. et al. Biofilm microenvironment-responsive nanotheranostics for dual-mode imaging and hypoxia-relief-enhanced photodynamic therapy of bacterial infections. Research 2020, 2020, 9426453.

    CAS  Article  Google Scholar 

  29. Xu, S. Y.; Yin, W.; Zhang, Y. L.; Lv, Q. M.; Yang, Y. J.; He, J. Foes or friends? Bacteria enriched in the tumor microenvironment of colorectal cancer. Cancers 2020, 12, 372.

    CAS  Article  Google Scholar 

  30. Nothling, M. D.; Cao, H. W.; McKenzie, T. G.; Hocking, D. M.; Strugnell, R. A.; Qiao G. G. Bacterial redox potential powers controlled radical polymerization. J. Am. Chem. Soc. 2021, 143, 286–293.

    CAS  Article  Google Scholar 

  31. Jena, S.; Das, B.; Bosu, R.; Suar, M.; Mandal, D. Bacteria generated antibacterial gold nanoparticles and potential mechanistic insight. J. Cluster Sci. 2015, 26, 1707–1721.

    CAS  Article  Google Scholar 

  32. Song, C. X.; Xu, J. Y.; Chen, Y.; Zhang, L. L.; Lu, Y.; Qing, Z. H. DNA-templated fluorescent nanoclusters for metal ions detection. Molecules 2019, 24, 4189.

    CAS  Article  Google Scholar 

  33. Zhao, C. Q.; Du, T. Y.; ur Rehman, F.; Lai, L. M.; Liu, X. L.; Jiang, X. R.; Li, X. Q.; Chen, Y.; Zhang, H.; Sun, Y. et al. Biosynthesized gold nanoclusters and iron complexes as scaffolds for multimodal cancer bioimaging. Small 2016, 12, 6255–6265.

    CAS  Article  Google Scholar 

  34. Schwartz-Duval, A. S.; Konopka, C. J.; Moitra, P.; Daza, E. A.; Srivastava, I.; Johnson, E. V.; Kampert, T. L.; Fayn, S.; Haran, A.; Dobrucki, L. W. et al. Intratumoral generation of photothermal gold nanoparticles through a vectorized biomineralization of ionic gold. Nat. Commun. 2020, 11, 4530.

    CAS  Article  Google Scholar 

  35. Wang, M. N.; Chen, Y.; Cai, W. J.; Feng, H.; Du, T. Y.; Liu, W. W.; Jiang, H.; Pasquarelli, A.; Weizmann, Y.; Wang, X. M. In situ self-assembling Au-DNA complexes for targeted cancer bioimaging and inhibition. Proc. Natl. Acad. Sci. USA 2020, 117, 308–316.

    CAS  Article  Google Scholar 

  36. Liu, J. W. DNA-stabilized, fluorescent, metal nanoclusters for biosensor development. TrAC Trends Anal. Chem. 2014, 58, 99–111.

    CAS  Article  Google Scholar 

  37. Zhao, W. H.; Xiong, M.; Liu, M. B.; Wang, S. Q.; Xian, X.; Lin, B. P.; Li, H. B. Evaluation of the effect of Tb(IV)-NR complex on herring sperm DNA genetic information by mean of spectroscopic. Nucleosides Nucleotides Nucleic Acids 2020, 39, 964–978.

    CAS  Article  Google Scholar 

  38. Szymborska-Małek, K.; Komorowska, M.; Gąsior-Glogowska, M. Effects of near infrared radiation on DNA. DLS and ATR-FTIR study. Spectrochim. Acta A:Mol. Biomol. Spectrosc. 2018, 188, 258–267.

    Article  CAS  Google Scholar 

  39. Kallistova, A. Y.; Nikolaev, Y. A.; Mardanov, A. V.; Berestovskaya, Y. Y.; Grachev, V. A.; Kostrikina, N. A.; Pelevina, A. V.; Ravin, N. V.; Pimenov, N. V. Investigation of formation and development of anammox biofilms by light, epifluorescence, and electron microscopy. Microbiology 2020, 89, 708–719.

    CAS  Article  Google Scholar 

  40. Zheng, Y. K.; Liu, W. W.; Chen, Y.; Li, C. M.; Jiang, H.; Wang, X. M. Conjugating gold nanoclusters and antimicrobial peptides: From aggregation-induced emission to antibacterial synergy. J. Colloid Interface Sci. 2019, 546, 1–10.

    CAS  Article  Google Scholar 

  41. Zheng, K. Y.; Setyawati, M. I.; Leong, D. T.; Xie, J. P. Overcoming bacterial physical defenses with molecule-like ultrasmall antimicrobial gold nanoclusters. Bioact. Mater. 2021, 6, 941–950.

    CAS  Article  Google Scholar 

  42. Zheng, Y. K.; Liu, W. W.; Qin, Z. J.; Chen, Y.; Jiang, H.; Wang, X. M. Mercaptopyrimidine-conjugated gold nanoclusters as nanoantibiotics for combating multidrug-resistant superbugs. Bioconjugate Chem. 2018, 29, 3094–3103.

    CAS  Article  Google Scholar 

  43. Chevallier, E.; Jolibois, R. D.; Meunier, N.; Carlier, P.; Monod, A. “Fenton-like” reactions of methylhydroperoxide and ethylhydroperoxide with Fe2+ in liquid aerosols under tropospheric conditions. Atmos. Environ. 2004, 38, 921–933.

    CAS  Article  Google Scholar 

  44. Zayats, M.; Baron, R.; Popov, I.; Willner, I. Biocatalytic growth of Au nanoparticles: From mechanistic aspects to biosensors design. Nano Lett. 2005, 5, 21–25.

    CAS  Article  Google Scholar 

  45. Iakimov, N. P.; Abdullina, V. R.; Sharanov, P. A.; Alov, N. V.; Orlov, V. N.; Grozdova, I. D.; Melik-Nubarov, N. S. Interaction of glutathione-stabilized gold nanoclusters with doxorubicin and polycation. Russ. J. Gen. Chem. 2019, 89, 2097–2102.

    CAS  Article  Google Scholar 

  46. Gang, G. T.; Kim, Y. H.; Noh, J. R.; Kim, K. S.; Jung, J. Y.; Shong, M.; Hwang, J. H.; Lee, C. H. Protective role of NAD(P)H: Quinone oxidoreductase 1 (NQO1) in cisplatin-induced nephrotoxicity. Toxicol. Lett. 2013, 221, 165–175.

    CAS  Article  Google Scholar 

  47. Hoshino, Y.; Mizuno, S.; Kato, K.; Mizuno-Iijima, S.; Tanimoto, Y.; Ishida, M.; Kajiwara, N.; Sakasai, T.; Miwa, Y.; Takahashi, S. et al. Simple generation of hairless mice for in vivo imaging. Exp. Anim. 2017, 66, 437–445.

    CAS  Article  Google Scholar 

  48. Tran, M. T. N.; Tanaka, J.; Hamada, M.; Sugiyama, Y.; Sakaguchi, S.; Nakamura, M.; Takahashi, S.; Miwa, Y. In vivo image analysis using iRFP transgenic mice. Exp. Anim. 2014, 63, 311–319.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key Research and Development Program of China (No. 2017YFA0205300), the National Natural Science Foundation of China (Nos. 82027806, 82061148012, and 91753106), Primary Research & Development Plan of Jiangsu Province (No. BE2019716), and the ISF-NSFC Joint Research Program (No. 3258/20) to Y. W.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yossi Weizmann or Xuemei Wang.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zeng, J., Guo, Z., Wang, Y. et al. Intelligent bio-assembly imaging-guided platform for real-time bacteria sterilizing and infectious therapy. Nano Res. 15, 4164–4174 (2022). https://doi.org/10.1007/s12274-021-3998-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3998-3

Keywords

  • bacterial microenvironment response
  • self-assembled Fe@Au-DNA complexes
  • bacterial fluorescence bioimaging
  • bacteria inactivation
  • wound healing