Skip to main content

Multiscale structural engineering of carbon nitride for enhanced photocatalytic H2O2 production


Carbon nitride (C3N4) holds great promise for photocatalytic H2O2 production from oxygen reduction. In spite of great research efforts, they still suffer from low catalytic efficiency primarily limited by the fast recombination of photogenerated charge carriers. In this work, we report the multiscale structural engineering of C3N4 to significantly improve its optoelectronic properties and consequently photocatalytic performance. The product consists of porous spheres with high surface areas, abundant nitrogen defects, and alkali metal doping. Under visible light irradiation, our catalyst shows a remarkable H2O2 production rate of 3,080 µmol·g−1·h−1, which is more than 10 times higher than that of bulk C3N4 and exceeds those of most other C3N4-based photocatalysts. Moreover, the catalyst exhibits great stability, and can continuously work for 15 h without obvious activity decay under visible light irradiation, eventually giving rise to a high H2O2 concentration of ca. 45 mM.

This is a preview of subscription content, access via your institution.


  1. [1]

    Bryliakov, K. P. Catalytic asymmetric oxygenations with the environmentally benign oxidants H2O2 and O2. Chem. Rev. 2017, 117, 11406–11459.

    CAS  Article  Google Scholar 

  2. [2]

    Shaegh, S. A. M.; Nguyen, N. T.; Mousavi Ehteshami, S. M.; Chan, S. H. A membraneless hydrogen peroxidefuel cell using Prussian Blue as cathode material. Energy Environ. Sci. 2012, 5, 8225–8228.

    Article  CAS  Google Scholar 

  3. [3]

    Zhao, X.; Wang, Y.; Da, Y. L.; Wang, X. X.; Wang, T. T.; Xu, M. Q.; He, X. Y.; Zhou, W.; Li, Y. F.; Coleman, J. N. et al. Selective electrochemical production of hydrogen peroxide at zigzag edges of exfoliated molybdenum telluride nanoflakes. Natl. Sci. Rev. 2020, 7, 1360–1366.

    CAS  Article  Google Scholar 

  4. [4]

    Zhao, X.; Yang, H.; Xu, J.; Cheng, T.; Li, Y. G. Bimetallic PdAu nanoframes for electrochemical H2O2 production in acids. ACS Mater. Lett. 2021, 3, 996–1002.

    CAS  Article  Google Scholar 

  5. [5]

    Campos-Martin, J. M.; Blanco-Brieva, G.; Fierro, J. L. G. Hydrogen peroxide synthesis: An outlook beyond the anthraquinone process. Angew. Chem., Int. Ed. 2006, 45, 6962–6984.

    CAS  Article  Google Scholar 

  6. [6]

    Hou, H. L.; Zeng, X. K.; Zhang, X. W. Production of hydrogen peroxide by photocatalytic processes. Angew. Chem., Int. Ed. 2020, 59, 17356–17376.

    CAS  Article  Google Scholar 

  7. [7]

    Wu, J. H.; Huang, Y.; Ye, W.; Li, Y. G. CO2 reduction: From the electrochemical to photochemical approach. Adv. Sci. 2017, 4, 1700194.

    Article  CAS  Google Scholar 

  8. [8]

    Teranishi, M.; Naya, S. I.; Tada, H. In situ liquid phase synthesis of hydrogen peroxide from molecular oxygen using gold nanoparticle-loaded titanium(IV) dioxide photocatalyst. J. Am. Chem. Soc. 2010, 132, 7850–7851.

    CAS  Article  Google Scholar 

  9. [9]

    Moon, G. H.; Kim, W.; Bokare, A. D.; Sung, N. E.; Choi, W. Solar production of H2O2 on reduced graphene oxide-TiO2 hybrid photocatalysts consisting of earth-abundant elements only. Energy Environ. Sci. 2014, 7, 4023–4028.

    CAS  Article  Google Scholar 

  10. [10]

    Baran, T.; Wojtyła, S.; Minguzzi, A.; Rondinini, S.; Vertova, A. Achieving efficient H2O2 production by a visible-light absorbing, highly stable photosensitized TiO2. Appl. Catal. B Environ. 2019, 244, 303–312.

    CAS  Article  Google Scholar 

  11. [11]

    Li, X. Z.; Chen, C. C.; Zhao, J. C. Mechanism of photodecomposition of H2O2 on TiO2 surfaces under visible light irradiation. Langmuir 2001, 17, 4118–4122.

    CAS  Article  Google Scholar 

  12. [12]

    Ong, W. J.; Tan, L. L.; Ng, Y. H.; Yong, S. T.; Chai, S. P. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability? Chem. Rev. 2016, 116, 7159–7329.

    CAS  Article  Google Scholar 

  13. [13]

    Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76–80.

    CAS  Article  Google Scholar 

  14. [14]

    Zhu, B. C.; Cheng, B.; Zhang, L. Y.; Yu, J. G. Review on DFT calculation of s-triazine-based carbon nitride. Carbon Energy 2019, 1, 32–56.

    CAS  Article  Google Scholar 

  15. [15]

    Shiraishi, Y.; Kanazawa, S.; Sugano, Y.; Tsukamoto, D.; Sakamoto, H.; Ichikawa, S.; Hirai, T. Highly selective production of hydrogen peroxide on graphitic carbon nitride (g-C3N4) photocatalyst activated by visible light. ACS Catal. 2014, 4, 774–780.

    CAS  Article  Google Scholar 

  16. [16]

    Ou, H. H.; Yang, P. J.; Lin, L. H.; Anpo, M.; Wang, X. C. Carbon nitride aerogels for the photoredox conversion of water. Angew. Chem., Int. Ed. 2011, 56, 10905–10910.

    Article  CAS  Google Scholar 

  17. [17]

    Wu, S.; Yu, H. T.; Chen, S.; Quan, X. Enhanced photocatalytic H2O2 production over carbon nitride by doping and defect engineering. ACS Catal. 2020, 10, 14380–14389.

    CAS  Article  Google Scholar 

  18. [18]

    Yang, Y.; Zeng, Z. T.; Zeng, G. M.; Huang, D. L.; Xiao, R.; Zhang, C.; Zhou, C. Y.; Xiong, W. P.; Wang, W. J.; Cheng, M. et al. Ti3C2 Mxene/porous g-C3N4 interfacial Schottky junction for boosting spatial charge separation in photocatalytic H2O2 production. Appl. Catal. B Environ. 2019, 258, 117956.

    CAS  Article  Google Scholar 

  19. [19]

    Shiraishi, Y.; Kofuji, Y.; Sakamoto, H.; Tanaka, S.; Ichikawa, S.; Hirai, T. Effects of surface defects on photocatalytic H2O2 production by mesoporous graphitic carbon nitride under visible light irradiation. ACS Catal. 2015, 5, 3058–3066.

    CAS  Article  Google Scholar 

  20. [20]

    Yu, H. J.; Shi, R.; Zhao, Y. X.; Bian, T.; Zhao, Y. F.; Zhou, C.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Alkaliassisted synthesis of nitrogen deficient graphitic carbon nitride with tunable band structures for efficient visible-light-driven hydrogen evolution. Adv. Mater. 2011, 29, 1605148.

    Article  CAS  Google Scholar 

  21. [21]

    Tian, J.; Wang, D.; Li, S. T.; Pei, Y.; Qiao, M. H.; Li, Z. H.; Zhang, J. L.; Zong, B. N. KOH-assisted band engineering of polymeric carbon nitride for visible light photocatalytic oxygen reduction to hydrogen peroxide. ACS Sustain. Chem. Eng. 2019, 8, 594–603.

    CAS  Article  Google Scholar 

  22. [22]

    Jun, Y. S.; Lee, E. Z.; Wang, X. C.; Hong, W. H.; Stucky, G. D.; Thomas, A. From melamine-cyanuric acid supramolecular aggregates to carbon nitride hollow spheres. Adv. Funct. Mater. 2013, 23, 3661–3667.

    CAS  Article  Google Scholar 

  23. [23]

    Zhao, Y. X.; Zhang, S.; Shi, R.; Waterhouse, G. I. N.; Tang, J. W.; Zhang, T. R. Two-dimensional photocatalyst design: A critical review of recent experimental and computational advances. Mater. Today 2020, 34, 78–91.

    CAS  Article  Google Scholar 

  24. [24]

    Wang, X. S.; Zhou, C.; Shi, R.; Liu, Q. Q.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Supramolecular precursor strategy for the synthesis of holey graphitic carbon nitride nanotubes with enhanced photocatalytic hydrogen evolution performance. Nano Res. 2019, 12, 2385–2389.

    CAS  Article  Google Scholar 

  25. [25]

    Zhang, P.; Tong, Y. W.; Liu, Y.; Vequizo, J. J. M.; Sun, H. W.; Yang, C.; Yamakata, A.; Fan, F. T.; Lin, W.; Wang, X. C. et al. Heteroatom dopants promote two-electron O2 reduction for photocatalytic production of H2O2 on polymeric carbon nitride. Angew. Chem., Int. Ed. 2020, 59, 16209–16217.

    CAS  Article  Google Scholar 

  26. [26]

    Jürgens, B.; Irran, E.; Senker, J.; Kroll, P.; Müller, H.; Schnick, W. Melem (2,5,8-triamino-tri-s-triazine), an important intermediate during condensation of melamine rings to graphitic carbon nitride: Synthesis, structure determination by X-ray powder diffractometry, solid-state NMR, and theoretical studies. J. Am. Chem. Soc. 2003, 125, 10288–10300.

    Article  CAS  Google Scholar 

  27. [27]

    Chang, C.; Fu, Y.; Hu, M.; Wang, C. Y.; Shan, G. Q.; Zhu, L. Y. Photodegradation of bisphenol A by highly stable palladium-doped mesoporous graphite carbon nitride (Pd/mpg-C3N4) under simulated solar light irradiation. Appl. Catal. B Environ. 2013, 142–143, 553–560.

    Article  CAS  Google Scholar 

  28. [28]

    Zhang, D.; Han, X. H.; Dong, T.; Guo, X. W.; Song, C. S.; Zhao, Z. K. Promoting effect of cyano groups attached on g-C3N4 nanosheets towards molecular oxygen activation for visible light-driven aerobic coupling of amines to imines. J. Catal. 2018, 366, 237–244.

    CAS  Article  Google Scholar 

  29. [29]

    Shi, L.; Yang, L. Q.; Zhou, W.; Liu, Y. Y.; Yin, L. S.; Hai, X.; Song, H.; Ye, J. H. Photoassisted construction of holey defective g-C3N4 photocatalysts for efficient visible-light-driven H2O2 production. Small 2018, 14, 1703142.

    Article  CAS  Google Scholar 

  30. [30]

    Teng, Z. Y.; Zhang, Q. T.; Yang, H. B.; Kato, K.; Yang, W. J.; Lu, Y. R.; Liu, S. X.; Wang, C. Y.; Yamakata, A.; Su, C. L. et al. Atomically dispersed antimony on carbon nitride for the artificial photosynthesis of hydrogen peroxide. Nat. Catal. 2021, 4, 374–384.

    CAS  Article  Google Scholar 

  31. [31]

    Liu, G. G.; Zhao, G. X.; Zhou, W.; Liu, Y. Y.; Pang, H.; Zhang, H. B.; Hao, D.; Meng, X. G.; Li, P.; Kako, T. et al. In situ bond modulation of graphitic carbon nitride to construct p-n homojunctions for enhanced photocatalytic hydrogen production. Adv. Funct. Mater. 2016, 26, 6822–6829.

    CAS  Article  Google Scholar 

  32. [32]

    Chen, X. J.; Wang, J.; Chai, Y. Q.; Zhang, Z. J.; Zhu, Y. F. Efficient photocatalytic overall water splitting induced by the giant internal electric field of a g-C3N4/rGO/PDIP Z-scheme heterojunction. Adv. Mater. 2021, 33, 2007479.

    CAS  Article  Google Scholar 

  33. [33]

    Yu, F.; Wang, L. C.; Xing, Q. J.; Wang, D. K.; Jiang, X. H.; Li, G. C.; Zheng, A. M.; Ai, F. R.; Zou, J. P. Functional groups to modify g-C3N4 for improved photocatalytic activity of hydrogen evolution from water splitting. Chin. Chem. Lett. 2020, 31, 1648–1653.

    CAS  Article  Google Scholar 

  34. [34]

    Kumar, P.; Vahidzadeh, E.; Thakur, U. K.; Kar, P.; Alam, K. M.; Goswami, A.; Mahdi, N.; Cui, K.; Bernard, G. M.; Michaelis, V. K. et al. C3N5: A low bandgap semiconductor containing an azo-linked carbon nitride framework for photocatalytic, photovoltaic and adsorbent applications. J. Am. Chem. Soc. 2019, 141, 5415–5436.

    CAS  Article  Google Scholar 

  35. [35]

    Mikhnenko, O. V.; Blom, P. W. M.; Nguyen, T. Q. Exciton diffusion in organic semiconductors. Energy Environ. Sci. 2015, 8, 1867–1888.

    Article  Google Scholar 

  36. [36]

    Sun, H. L.; Wei, K.; Wu, D.; Jiang, Z. F.; Zhao, H.; Wang, T. Q.; Zhang, Q.; Wong, P. K. Structure defects promoted exciton dissociation and carrier separation for enhancing photocatalytic hydrogen evolution. Appl. Catal. B Environ. 2020, 264, 118480.

    Article  CAS  Google Scholar 

  37. [37]

    Wei, Z.; Liu, M. L.; Zhang, Z. J.; Yao, W. Q.; Tan, H. W.; Zhu, Y. F. Efficient visible-light-driven selective oxygen reduction to hydrogen peroxide by oxygen-enriched graphitic carbon nitride polymers. Energy Environ. Sci. 2018, 11, 2581–2589.

    CAS  Article  Google Scholar 

  38. [38]

    Feng, C. Y.; Tang, L.; Deng, Y. C.; Wang, J. J.; Luo, J.; Liu, Y. N.; Ouyang, X. L.; Yang, H. R.; Yu, J. F.; Wang, J. J. Synthesis of leaf-vein-like g-C3N4 with tunable band structures and charge transfer properties for selective photocatalytic H2O2 evolution. Adv. Funct. Mater. 2020, 30, 2001922.

    CAS  Article  Google Scholar 

  39. [39]

    Zheng, Y.; Yu, Z. H.; Ou, H. H.; Asiri, A. M.; Chen, Y. L.; Wang, X. C. Black phosphorus and polymeric carbon nitride heterostructure for photoinduced molecular oxygen activation. Adv. Funct. Mater. 2018, 28, 1705407.

    Article  CAS  Google Scholar 

  40. [40]

    Moon, G. H.; Fujitsuka, M.; Kim, S.; Majima, T.; Wang, X. C.; Choi, W. Eco-friendly photochemical production of H2O2 through O2 reduction over carbon nitride frameworks incorporated with multiple heteroelements. ACS Catal. 2017, 7, 2886–2895.

    CAS  Article  Google Scholar 

  41. [41]

    Krishnaraj, C.; Jena, H. S.; Bourda, L.; Laemont, A.; Pachfule, P.; Roeser, J.; Chandran, C. V.; Borgmans, S.; Rogge, S. M. J.; Leus, K. et al. Strongly reducing (diarylamino)benzene-based covalent organic framework for metal-free visible light photocatalytic H2O2 generation. J. Am. Chem. Soc. 2020, 142, 20107–20116.

    CAS  Article  Google Scholar 

  42. [42]

    Li, S. N.; Dong, G. H.; Hailili, R.; Yang, L. P.; Li, Y. X.; Wang, F.; Zeng, Y. B.; Wang, C. Y. Effective photocatalytic H2O2 production under visible light irradiation at g-C3N4 modulated by carbon vacancies. Appl. Catal. B Environ. 2016, 190, 26–35.

    CAS  Article  Google Scholar 

  43. [43]

    Yu, X. H.; Viengkeo, B.; He, Q.; Zhao, X.; Huang, Q. L.; Li, P. P.; Huang, W.; Li, Y. G. Electronic tuning of covalent triazine framework nanoshells for highly efficient photocatalytic H2O2 production. Adv. Sustain. Syst. 2021, 2100184.

    Google Scholar 

  44. [44]

    Zhao, S.; Guo, T.; Li, X.; Xu, T. G.; Yang, B.; Zhao, X. Carbon nanotubes covalent combined with graphitic carbon nitride for photocatalytic hydrogen peroxide production under visible light. Appl. Catal. B 2018, 224, 725–732.

    CAS  Article  Google Scholar 

  45. [45]

    Zhao, Y. B.; Zhang, P.; Yang, Z. C.; Li, L. N.; Gao, J. Y.; Chen, S.; Xie, T. F.; Diao, C. Z.; Xi, S. B.; Xiao, B. B. et al. Mechanistic analysis of multiple processes controlling solar-driven H2O2 synthesis using engineered polymeric carbon nitride. Nat. Commun. 2021, 12, 3701.

    CAS  Article  Google Scholar 

  46. [46]

    Chen, L.; Chen, C.; Yang, Z.; Li, S.; Chu, C. H.; Chen, B. L. Simultaneously tuning band structure and oxygen reduction pathway toward high-efficient photocatalytic hydrogen peroxide production using cyano-rich graphitic carbon nitride. Adv. Funct. Mater. 2021, 2105731.

    Google Scholar 

  47. [47]

    Shiraishi, Y.; Takii, T.; Hagi, T.; Mori, S.; Kofuji, Y.; Kitagawa, Y.; Tanaka, S.; Ichikawa, S.; Hirai, T. Resorcinol-formaldehyde resins as metal-free semiconductor photocatalysts for solar-to-hydrogen peroxide energy conversion. Nat. Mater. 2019, 18, 985–993.

    CAS  Article  Google Scholar 

  48. [48]

    Wei, Z.; Wang, W. C; Li, W. L.; Bai, X. Q.; Zhao, J. F.; Tse, E. C. M.; Phillips, D. L.; Zhu, Y. F. Steering electron-hole migration pathways using oxygen vacancies in tungsten oxides to enhance their photocatalytic oxygen evolution performance. Angew. Chem., Int. Ed. 2021, 60, 8236–8242.

    CAS  Article  Google Scholar 

  49. [49]

    Mase, K.; Yoneda, M.; Yamada, Y.; Fukuzumi, S. Seawater usable for production and consumption of hydrogen peroxide as a solar fuel. Nat. Commun. 2016, 7, 11470.

    CAS  Article  Google Scholar 

Download references


We acknowledge the financial support from the National Key R&D Program of China (No. 2017YFA0204800), the National Natural Science Foundation of China (No. 22002100), the Collaborative Innovation Center of Suzhou Nano Science and Technology, and the 111 Project and Joint International Research Laboratory of Carbon-Based Functional Materials and Devices.

Author information



Corresponding authors

Correspondence to Wei Huang or Yanguang Li.

Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

He, Q., Viengkeo, B., Zhao, X. et al. Multiscale structural engineering of carbon nitride for enhanced photocatalytic H2O2 production. Nano Res. (2021).

Download citation


  • photocatalytic H2O2 production
  • oxygen reduction
  • carbon nitride
  • multiscale structural engineering