Skip to main content

Precursor compound enabled formation of aqueous-phase CdSe magic-size clusters at room temperature

Abstract

The formation pathway of aqueous-phase colloidal semiconductor magic-size clusters (MSCs) remains unrevealed. In the present work, we demonstrate, for the first time, a precursor compound (PC)-enabled formation pathway of aqueous-phase CdSe MSCs exhibiting a sharp absorption peaking at about 420 nm (MSC-420). The CdSe MSC-420 is synthesized with CdCl2 and selenourea as the respective Cd and Se sources, and with 3-mercaptopropionic acid or L-cysteine as a ligand. Absorption featureless CdSe PCs form first in the aqueous reaction batches, which transform to MSC-420 in the presence of primary amines. The coordination between primary amine and Cd2+ on PCs may be responsible to the PC-to-MSC transformation. Upon increasing the reactant concentrations or decreasing the CdCl2-ligand feed molar ratios, the Cd precursor self-assembles into large aggregates, which may encapsulate the resulting CdSe PCs and inhibit their transformation to MSC-420. The present study sheds essential light on the syntheses and formation mechanisms of nanocrystals.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Wan, W. S.; Zhang, M.; Zhao, M.; Rowell, N.; Zhang, C. C.; Wang, S. L.; Kreouzis, T.; Fan, H. S.; Huang, W.; Yu, K. Room-temperature formation of CdS magic-size clusters in aqueous solutions assisted by primary amines. Nat. Commun.2020, 11, 4199.

    Article  Google Scholar 

  2. [2]

    He, L.; Luan, C. R.; Rowell, N.; Zhang, M.; Chen, X. Q.; Yu, K. Transformations among colloidal semiconductor magic-size clusters. Acc. Chem. Res.2021, 54, 776–786.

    CAS  Article  Google Scholar 

  3. [3]

    Zhu, J. M.; Cao, Z. P.; Zhu, Y. C.; Rowell, N.; Li, Y.; Wang, S. L.; Zhang, C. C.; Jiang, G.; Zhang, M.; Zeng, J. R. et al. Transformation pathway from CdSe magic-size clusters with absorption doublets at 373/393 nm to clusters at 434/460 nm. Angew. Chem., Int. Ed.2021, 60, 20358–20365.

    CAS  Article  Google Scholar 

  4. [4]

    Yang, X. X.; Zhang, M.; Shen, Q.; Li, Y.; Luan, C. R.; Yu, K. The precursor compound of two types of ZnSe magic-sized clusters. Nano Res., in press, https://doi.org/10.1007/s12274-021-3503-z.

  5. [5]

    Shen, Q.; Luan, C. R.; Rowell, N.; Zhang, M.; Wang, K.; Willis, M.; Chen, X. Q.; Yu, K. Reversible transformations at room temperature among three types of CdTe magic-size clusters. Inorg. Chem.2021, 60, 4243–4251.

    CAS  Article  Google Scholar 

  6. [6]

    Palencia, C.; Yu, K.; Boldt, K. The future of colloidal semiconductor magic-size clusters. ACS Nano2020, 14, 1227–1235.

    CAS  Article  Google Scholar 

  7. [7]

    Zhang, H.; Luan, C. R.; Gao, D.; Zhang, M.; Rowell, N.; Willis, M.; Chen, M.; Zeng, J. R.; Fan, H. S.; Huang, W. et al. Room-temperature formation pathway for CdTeSe alloy magic-size clusters. Angew. Chem., Int. Ed.2020, 59, 16943–16952.

    CAS  Article  Google Scholar 

  8. [8]

    Chen, M.; Luan, C. R.; Zhang, M.; Rowell, N.; Willis, M.; Zhang, C. C.; Wang, S. L.; Zhu, X. H.; Fan, H. S.; Huang, W. et al. Evolution of CdTe magic-size clusters with single absorption doublet assisted by adding small molecules during prenucleation. J. Phys. Chem. Lett.2020, 11, 2230–2240.

    CAS  Article  Google Scholar 

  9. [9]

    Li, L. J.; Zhang, J.; Zhang, M.; Rowell, N.; Zhang, C. C.; Wang, S. L.; Lu, J.; Fan, H. S.; Huang, W.; Chen, X. Q. et al. Fragmentation of magic-size cluster precursor compounds into ultrasmall CdS quantum dots with enhanced particle yield at low temperatures. Angew. Chem., Int. Ed.2020, 59, 12013–12021.

    CAS  Article  Google Scholar 

  10. [10]

    Liu, S. P.; Yu, Q. Y.; Zhang, C. C.; Zhang, M.; Rowell, N.; Fan, H. S.; Huang, W.; Yu, K.; Liang, B. Transformation of ZnS precursor compounds to magic-size clusters exhibiting optical absorption peaking at 269 nm. J. Phys. Chem. Lett.2020, 11, 75–82.

    CAS  Article  Google Scholar 

  11. [11]

    Gao, D.; Hao, X. Y.; Rowell, N.; Kreouzis, T.; Lockwood, D. J.; Han, S.; Fan, H. S.; Zhang, H.; Zhang, C. C.; Jiang, Y. N. et al. Formation of colloidal alloy semiconductor CdTeSe magic-size clusters at room temperature. Nat. Commun.2019, 10, 1674.

    Article  CAS  Google Scholar 

  12. [12]

    Zhang, J.; Hao, X. Y.; Rowell, N.; Kreouzis, T.; Han, S.; Fan, H. S.; Zhang, C. C.; Hu, C. W.; Zhang, M.; Yu, K. Individual pathways in the formation of magic-size clusters and conventional quantum dots. J. Phys. Chem. Lett.2018, 9, 3660–3666.

    CAS  Article  Google Scholar 

  13. [13]

    Luan, C. R.; Tang, J. B.; Rowell, N.; Zhang, M.; Huang, W.; Fan, H. S.; Yu, K. Four types of CdTe magic-size clusters from one prenucleation stage sample at room temperature. J. Phys. Chem. Lett.2019, 10, 4345–4353.

    CAS  Article  Google Scholar 

  14. [14]

    Luan, C.; Gökçinar, Ö. Ö.; Rowell, N.; Kreouzis, T.; Han, S.; Zhang, M.; Fan, H. S.; Yu, K. Evolution of two types of CdTe magic-size clusters from a single induction period sample. J. Phys. Chem. Lett.2018, 9, 5288–5295.

    CAS  Article  Google Scholar 

  15. [15]

    Wang, L. X.; Hui, J.; Tang, J. B.; Rowell, N.; Zhang, B. W.; Zhu, T. T.; Zhang, M.; Hao, X. Y.; Fan, H. S.; Zeng, J. R. et al. Precursor self-assembly identified as a general pathway for colloidal semiconductor magic-size clusters. Adv. Sci.2018, 5, 1800632.

    Article  CAS  Google Scholar 

  16. [16]

    Zhu, D. K.; Hui, J.; Rowell, N.; Liu, Y. Y.; Chen, Q. Y.; Steegemans, T.; Fan, H. S.; Zhang, M.; Yu, K. Interpreting the ultraviolet absorption in the spectrum of 415 nm-bandgap CdSe magic-size clusters. J. Phys. Chem. Lett.2018, 9, 2818–2824.

    CAS  Article  Google Scholar 

  17. [17]

    Zhu, T. T.; Zhang, B. W.; Zhang, J.; Lu, J.; Fan, H. S.; Rowell, N.; Ripmeester, J. A.; Han, S.; Yu, K. Two-step nucleation of CdS magic-size nanocluster MSC-311. Chem. Mater.2017, 29, 5727–5735.

    CAS  Article  Google Scholar 

  18. [18]

    Liu, M. Y.; Wang, K.; Wang, L. X.; Han, S.; Fan, H. S.; Rowell, N.; Ripmeester, J. A.; Renoud, R.; Bian, F. G.; Zeng, J. R. et al. Probing intermediates of the induction period prior to nucleation and growth of semiconductor quantum dots. Nat. Commun.2017, 8, 15467.

    CAS  Article  Google Scholar 

  19. [19]

    Zhang, J.; Li, L. J.; Rowell, N.; Kreouzis, T.; Willis, M.; Fan, H. S.; Zhang, C. C.; Huang, W.; Zhang, M.; Yu, K. One-step approach to single-ensemble CdS magic-size clusters with enhanced production yields. J. Phys. Chem. Lett.2019, 10, 2725–2732.

    CAS  Article  Google Scholar 

  20. [20]

    Zhang, B. W.; Zhu, T. T.; Ou, M. Y.; Rowell, N.; Fan, H. S.; Han, J. T.; Tan, L.; Dove, M. T.; Ren, Y.; Zuo, X. B. et al. Thermally-induced reversible structural isomerization in colloidal semiconductor CdS magic-size clusters. Nat. Commun.2018, 9, 2499.

    Article  CAS  Google Scholar 

  21. [21]

    Liu, Z. M.; Shao, C. Y.; Jin, B.; Zhang, Z. S.; Zhao, Y. Q.; Xu, X. R.; Tang, R. K. Crosslinking ionic oligomers as conformable precursors to calcium carbonate. Nature2019, 574, 394–398.

    CAS  Article  Google Scholar 

  22. [22]

    Dey, A.; Bomans, P. H. H.; Müller, F. A.; Will, J.; Frederik, P. M.; de With, G.; Sommerdijk, N. A. J. M. The role of prenucleation clusters in surface-induced calcium phosphate crystallization. Nat. Mater.2012, 9, 1010–1014.

    Article  CAS  Google Scholar 

  23. [23]

    Han, J. S.; Luo, X. T.; Zhou, D.; Sun, H. Z.; Zhang, H.; Yang, B. Growth kinetics of aqueous CdTe nanocrystals in the presence of simple amines. J. Phys. Chem. C2012, 114, 6418–6425.

    Article  CAS  Google Scholar 

  24. [24]

    Zhou, D.; Lin, M.; Chen, Z. L.; Sun, H. Z.; Zhang, H.; Sun, H. C.; Yang, B. Simple synthesis of highly luminescent water-soluble CdTe quantum dots with controllable surface functionality. Chem. Mater.2011, 23, 4857–4862.

    CAS  Article  Google Scholar 

  25. [25]

    Lesnyak, V.; Gaponik, N.; Eychmuller, A. Colloidal semiconductor nanocrystals: The aqueous approach. Chem. Soc. Rev.2013, 42, 2905–2929.

    CAS  Article  Google Scholar 

  26. [26]

    Zhou, D.; Liu, M.; Lin, M.; Bu, X. Y.; Luo, X. T.; Zhang, H.; Yang, B. Hydrazine-mediated construction of nanocrystal self-assembly materials. ACS Nano2014, 8, 10569–10581.

    CAS  Article  Google Scholar 

  27. [27]

    Jing, L. H.; Kershaw, S. V.; Li, Y. L.; Huang, X. D.; Li, Y. Y.; Rogach, A. L.; Gao, M. Y. Aqueous based semiconductor nanocrystals. Chem. Rev.2016, 116, 10623–10730.

    CAS  Article  Google Scholar 

  28. [28]

    Yao, D.; Liu, Y.; Li, J.; Zhang, H. Advances in green colloidal synthesis of metal selenide and telluride quantum dots. Chin. Chem. Lett.2019, 30, 277–284.

    CAS  Article  Google Scholar 

  29. [29]

    Aires, A.; Möller, M.; Cortajarena, A. L. Protein design for the synthesis and stabilization of highly fluorescent quantum dots. Chem. Mater.2020, 32, 5729–5738.

    CAS  Article  Google Scholar 

  30. [30]

    Mrad, M.; Ben Chaabane, T.; Rinnert, H.; Lavinia, B.; Jasniewski, J.; Medjahdi, G.; Schneider, R. Aqueous synthesis for highly emissive 3-mercaptopropionic acid-capped AIZS quantum dots. Inorg. Chem.2020, 59, 6220–6231.

    CAS  Article  Google Scholar 

  31. [31]

    Park, Y. S.; Dmytruk, A.; Dmitruk, I.; Kasuya, A.; Okamoto, Y.; Kaji, N.; Tokeshi, M.; Baba, Y. Aqueous phase synthesized CdSe nanoparticles with well-defined numbers of constituent atoms. J. Phys. Chem. C2010, 114, 18834–18840.

    CAS  Article  Google Scholar 

  32. [32]

    Park, Y. S.; Dmytruk, A.; Dmitruk, I.; Kasuya, A.; Takeda, M.; Ohuchi, N.; Okamoto, Y.; Kaji, N.; Tokeshi, M.; Baba, Y. Size-selective growth and stabilization of small CdSe nanoparticles in aqueous solution. ACS Nano2012, 4, 121–128.

    Article  CAS  Google Scholar 

  33. [33]

    Kurihara, T.; Matano, A.; Noda, Y.; Takegoshi, K. Rotational motion of ligand-cysteine on CdSe magic-sized clusters. J. Phys. Chem. C2019, 123, 14993–14998.

    CAS  Article  Google Scholar 

  34. [34]

    Baker, J. S.; Nevins, J. S.; Coughlin, K. M.; Colón, L. A.; Watson, D. F. Influence of complex-formation equilibria on the temporal persistence of cysteinate-functionalized CdSe nanocrystals in water. Chem. Mater.2011, 23, 3546–3555.

    CAS  Article  Google Scholar 

  35. [35]

    Kurihara, T.; Noda, Y.; Takegoshi, K. Quantitative solid-state NMR study on ligand-surface interaction in cysteine-capped CdSe magic-sized clusters. J. Phys. Chem. Lett.2017, 8, 2555–2559.

    CAS  Article  Google Scholar 

  36. [36]

    Kurihara, T.; Noda, Y.; Takegoshi, K. Capping structure of ligand-cysteine on CdSe magic-sized clusters. ACS Omega2019, 4, 3476–3483.

    CAS  Article  Google Scholar 

  37. [37]

    Zhao, Y.; Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc.2008, 120, 215–241.

    CAS  Article  Google Scholar 

  38. [38]

    Cammi, R.; Mennucci, B.; Tomasi, J. Fast evaluation of geometries and properties of excited molecules in solution: A Tamm-Dancoff model with application to 4-dimethylaminobenzonitrile. J. Phys. Chem. A2000, 104, 5631–5637.

    CAS  Article  Google Scholar 

  39. [39]

    Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Uniform treatment of solute-solvent dispersion in the ground and excited electronic states of the solute based on a solvation model with state-specific polarizability. J. Chem. Theory Comput.2013, 9, 3649–3659.

    CAS  Article  Google Scholar 

  40. [40]

    Wang, C. L.; Zhang, H.; Zhang, J. H.; Lv, N.; Li, M. J.; Sun, H. Z.; Yang, B. Ligand dynamics of aqueous CdTe nanocrystals at room temperature. J. Phys. Chem. C2008, 112, 6330–6336.

    CAS  Article  Google Scholar 

  41. [41]

    Wurmbrand, D.; Fischer, J. W. A.; Rosenberg, R.; Boldt, K. Morphogenesis of anisotropic nanoparticles: Self-templating via non-classical, fibrillar Cd2Se intermediates. Chem. Commun.2018, 54, 7358–7361.

    CAS  Article  Google Scholar 

  42. [42]

    Kirkwood, N.; Boldt, K. Protic additives determine the pathway of CdSe nanocrystal growth. Nanoscale2018, 10, 18238–18248.

    CAS  Article  Google Scholar 

  43. [43]

    Zhang, M.; Fives, C.; Waldron, K. C.; Zhu, X. X. Self-assembly of a bile acid dimer in aqueous solutions: From nanofibers to nematic hydrogels. Langmuir2017, 33, 1084–1089.

    CAS  Article  Google Scholar 

  44. [44]

    Zhang, M.; Ma, Z. Y.; Wang, K. J.; Zhu, X. X. CO2 sequestration by bile salt aqueous solutions and formation of supramolecular hydrogels. ACS Sustainable Chem. Eng.2019, 7, 3949–3955.

    CAS  Article  Google Scholar 

  45. [45]

    Chen, Y. L.; Luo, J. T.; Zhu, X. X. Fluorescence study of inclusion complexes between star-shaped cholic acid derivatives and polycyclic aromatic fluorescent probes and the size effects of host and guest molecules. J. Phys. Chem. B2008, 112, 3402–3409.

    CAS  Article  Google Scholar 

  46. [46]

    Luo, J. T.; Chen, Y. L.; Zhu, X. X. Invertible amphiphilic molecular pockets made of cholic acid. Langmuir2009, 25, 10913–10917.

    CAS  Article  Google Scholar 

  47. [47]

    Shavel, A.; Gaponik, N.; Eychmüller, A. Factors governing the quality of aqueous CdTe nanocrystals: Calculations and experiment. J. Phys. Chem. B2006, 110, 19280–19284.

    CAS  Article  Google Scholar 

  48. [48]

    Jalilehvand, F.; Leung, B. O.; Mah, V. Cadmium(II) complex formation with cysteine and penicillamine. Inorg. Chem.2009, 48, 5758–5771.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

K. Y. thanks the National Natural Science Foundation of China (No. 21773162), the Fundamental Research Funds for the Central Universities, the Applied Basic Research Programs of Science and Technology Department of Sichuan Province (No. 2020YJ0326), the State Key Laboratory of Polymer Materials Engineering of Sichuan University (No. sklpme2020-2-09), the Open Project of Key State Laboratory for Supramolecular Structures and Materials of Jilin University (No. SKLSSM 2021030), and the National Major Scientific and Technological Special Project for “Significant New Drugs Development” (No. 2019ZX09201005-005-002). M. Z. is grateful to the National Natural Science Foundation of China (No. 22002099), China Postdoctoral Science Foundation (No. 2020T130441), Sichuan University postdoctoral interdisciplinary Innovation Fund, and the Open Project of Key State Laboratory for Supramolecular Structures and Materials of Jilin University (No. SKLSSM 2021032). We would like to thank the Analytical & Testing Center of Sichuan University for both ESI-MS and NMR measurements.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Meng Zhang or Kui Yu.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhao, M., Chen, Q., Zhu, Y. et al. Precursor compound enabled formation of aqueous-phase CdSe magic-size clusters at room temperature. Nano Res. (2021). https://doi.org/10.1007/s12274-021-3858-1

Download citation

Keywords

  • aqueous magic-size cluster
  • precursor compound
  • formation pathway
  • self-assembly
  • precursor configuration