Skip to main content

Coherent-interface-induced strain in large lattice-mismatched materials: A new approach for modeling Raman shift

Abstract

Strain engineering as one of the most powerful techniques for tuning optical and electronic properties of Ill-nitrides requires reliable methods for strain investigation. In this work, we reveal, that the linear model based on the experimental data limited to within a small range of biaxial strains (< 0.2%), which is widely used for the non-destructive Raman study of strain with nanometer-scale spatial resolution is not valid for the binary wurtzite-structure group-III nitrides GaN and AlN. Importantly, we found that the discrepancy between the experimental values of strain and those calculated via Raman spectroscopy increases as the strain in both GaN and AlN increases. Herein, a new model has been developed to describe the strain-induced Raman frequency shift in GaN and AlN for a wide range of biaxial strains (up to 2.5%). Finally, we proposed a new approach to correlate the Raman frequency shift and strain, which is based on the lattice coherency in the epitaxial layers of superlattice structures and can be used for a wide range of materials.

References

  1. [1]

    Wu, W. Z.; Wang, Z. L. Piezotronics and piezo-phototronics for adaptive electronics and optoelectronics. Nat. Rev. Mater. 2016, 1, 16031.

    CAS  Article  Google Scholar 

  2. [2]

    Wang, D. H.; Liu, X.; Fang, S.; Huang, C.; Kang, Y.; Yu, H. B.; Liu, Z. L.; Zhang, H. C.; Long, R.; Xiong, Y. J. et al. Pt/AlGaN nanoarchitecture: Toward high responsivity, self-powered ultraviolet-sensitive photodetection. Nano Lett. 2021, 21, 120–129.

    CAS  Article  Google Scholar 

  3. [3]

    Bishop, S. G.; Hadden, J. P.; Alzahrani, F. D.; Hekmati, R.; Huffaker, D. L.; Langbein, W. W.; Bennett, A. J. Room-temperature quantum emitter in aluminum nitride. ACS Photonics 2020, 7, 1636–1641.

    CAS  Article  Google Scholar 

  4. [4]

    Tamariz, S.; Callsen, G.; Stachurski, J.; Shojiki, K.; Butté, R.; Grandjean, N. Toward bright and pure single photon emitters at 300 K based on GaN quantum dots on silicon. ACS Photonics 2020, 7, 1515–1522.

    CAS  Article  Google Scholar 

  5. [5]

    Arita, M.; Le Roux, F.; Holmes, M. J.; Kako, S.; Arakawa, Y. Ultraclean single photon emission from a GaN quantum dot. Nano Lett. 2017, 17, 2902–2907.

    CAS  Article  Google Scholar 

  6. [6]

    Zhou, Y.; Wang, Z. Y.; Rasmita, A.; Kim, S.; Berhane, A.; Bodrog, Z.; Adamo, G.; Gali, A.; Aharonovich, I.; Gao, W. B. Room temperature solid-state quantum emitters in the telecom range. Sci. Adv. 2018, 4, eaar3580.

    Article  CAS  Google Scholar 

  7. [7]

    Growden, T. A.; Storm, D. F.; Cornuelle, E. M.; Brown, E. R.; Zhang, W. D.; Downey, B. P.; Roussos, J. A.; Cronk, N.; Ruppalt, L. B.; Champlain, J. G. et al. Superior growth, yield, repeatability, and switching performance in GaN-based resonant tunneling diodes. Appl. Phys. Lett. 2020, 116, 113501.

    CAS  Article  Google Scholar 

  8. [8]

    Qi, M.; Li, G. W.; Ganguly, S.; Zhao, P.; Yan, X. D.; Verma, J.; Song, B.; Zhu, M. D.; Nomoto, K.; Xing, H. L. et al. Strained GaN quantum-well FETs on single crystal bulk AlN substrates. Appl. Phys. Lett. 2017, 110, 063501.

    Article  CAS  Google Scholar 

  9. [9]

    Diez, S.; Mohanty, S.; Kurdak, C.; Ahmadi, E. Record high electron mobility and low sheet resistance on scaled-channel N-polar GaN/AlN heterostructures grown on on-axis N-polar GaN substrates by plasma-assisted molecular beam epitaxy. Appl. Phys. Lett. 2020, 117, 042102.

    CAS  Article  Google Scholar 

  10. [10]

    Chen, H. D.; Wang, P.; Wang, X. Y.; Wang, X. F.; Rao, L. J.; Qian, Y. P.; Yin, H. J.; Hou, X. H.; Ye, H. P.; Zhou, G. F. et al. 3D InGaN nanowire arrays on oblique pyramid-textured Si (311) for light trapping and solar water splitting enhancement. Nano Energy 2021, 83, 105768.

    CAS  Article  Google Scholar 

  11. [11]

    Wang, P.; Chen, H. D.; Wang, H.; Wang, X. Y.; Yin, H. J.; Rao, L. J.; Zhou, G. F.; Nötzel, R. Multi-wavelength light emission from InGaN nanowires on pyramid-textured Si(100) substrate grown by stationary plasma-assisted molecular beam epitaxy. Nanoscale 2020, 12, 8836–8846.

    CAS  Article  Google Scholar 

  12. [12]

    Wang, P.; Chen, H. D.; Wang, H.; Wang, D.; Song, C. K.; Wang, X. Y.; Yin, H. J.; Rao, L. J.; Zhou, G. F.; Nötzel, R. Inter-facet composition modulation of III-nitride nanowires over pyramid textured Si substrates by stationary molecular beam epitaxy. Nano Res. 2021, 14, 1502–1511.

    CAS  Article  Google Scholar 

  13. [13]

    Siladie, A. M.; Jacopin, G.; Cros, A.; Garro, N.; Robin, E.; Caliste, D.; Pochet, P.; Donatini, F.; Pernot, J.; Daudin, B. Mg and In codoped p-type AlN nanowires for pn junction realization. Nano Lett. 2019, 19, 8357–8364.

    CAS  Article  Google Scholar 

  14. [14]

    Xu, H. Q.; Jiang, J. A.; Dai, Y. J.; Cui, M.; Li, K. H.; Ge, X. T.; Hoo, J.; Yan, L.; Guo, S. P.; Ning, J. Q. et al. Polarity control and nanoscale optical characterization of AlGaN-based multiple-quantum-wells for ultraviolet C emitters. ACS Appl. Nano Mater. 2020, 3, 5335–5342.

    CAS  Article  Google Scholar 

  15. [15]

    Lobo-Ploch, N.; Mehnke, F.; Sulmoni, L.; Cho, H. K.; Guttmann, M.; Glaab, J.; Hilbrich, K.; Wernicke, T.; Einfeldt, S.; Kneissl, M. Milliwatt power 233 nm AlGaN-based deep UV-LEDs on sapphire substrates. Appl. Phys. Lett. 2020, 117, 111102.

    CAS  Article  Google Scholar 

  16. [16]

    Grenier, V.; Finot, S.; Jacopin, G.; Bougerol, C.; Robin, E.; Mollard, N.; Gayral, B.; Monroy, E.; Eymery, J.; Durand, C. UV emission from GaN wires with m-plane core-shell GaN/AlGaN multiple quantum wells. ACS Appl. Mater. Interfaces 2020, 12, 44007–44016.

    CAS  Article  Google Scholar 

  17. [17]

    Knauer, A.; Kolbe, T.; Rass, J.; Cho, H. K.; Netzel, C.; Hagedorn, S.; Lobo-Ploch, N.; Ruschel, J.; Glaab, J.; Einfeldt, S. et al. High power UVB light emitting diodes with optimized n-AlGaN contact layers. Jpn. J. Appl. Phys. 2019, 58, SCCC02.

    CAS  Article  Google Scholar 

  18. [18]

    Pandey, A.; Shin, W. J.; Gim, J.; Hovden, R.; Mi, Z. High-efficiency AlGaN/GaN/AlGaN tunnel junction ultraviolet light-emitting diodes. Photon. Res. 2020, 8, 331–337.

    CAS  Article  Google Scholar 

  19. [19]

    Inagaki, H.; Saito, A.; Sugiyama, H.; Okabayashi, T.; Fujimoto, S. Rapid inactivation of SARS-CoV-2 with deep-UV LED irradiation. Emerging Microbes Infect. 2020, 9, 1744–1747.

    CAS  Article  Google Scholar 

  20. [20]

    Raeiszadeh, M.; Adeli, B. A Critical review on ultraviolet disinfection systems against COVID-19 outbreak: Applicability, validation, and safety considerations. ACS Photonics 2020, 7, 2941–2951.

    CAS  Article  Google Scholar 

  21. [21]

    Schlichting, S.; Hönig, G. M. O.; Müßener, J.; Hille, P.; Grieb, T.; Westerkamp, S.; Teubert, J.; Schörmann, J.; Wagner, M. R.; Rosenauer, A. et al. Suppression of the quantum-confined Stark effect in polar nitride heterostructures. Commun. Phys. 2018, 1, 48.

    Article  CAS  Google Scholar 

  22. [22]

    Guo, W.; Sun, H. D.; Torre, B.; Li, J. M.; Sheikhi, M.; Jiang, J. A.; Li, H. W.; Guo, S. P.; Li, K. H.; Lin, R. H. et al. Lateral-polarity structure of AlGaN quantum wells: A promising approach to enhancing the ultraviolet luminescence. Adv. Funct. Mater. 2018, 28, 1802395.

    Article  CAS  Google Scholar 

  23. [23]

    Simon, J.; Protasenko, V.; Lian, C. X.; Xing, H. L.; Jena, D. Polarization-induced hole doping in wide-band-gap uniaxial semiconductor heterostructures. Science 2010, 327, 60–64.

    CAS  Article  Google Scholar 

  24. [24]

    May, B. J.; Belz, M. R.; Ahamed, A.; Sarwar, A. T. M. G.; Selcu, C. M.; Myers, R. C. Nanoscale electronic conditioning for improvement of nanowire light-emitting-diode efficiency. ACS Nano 2018, 12, 3551–3556.

    CAS  Article  Google Scholar 

  25. [25]

    Kuchuk, A. V.; Lytvyn, P. M.; Li, C.; Stanchu, H. V.; Mazur, Y. I.; Ware, M. E.; Benamara, M.; Ratajczak, R.; Dorogan, V.; Kladko, V. P. et al. Nanoscale electrostructural characterization of compositionally graded AlXGa1−XN heterostructures on GaN/Sapphire (0001) substrate. ACS Appl. Mater. Interfaces 2015, 7, 23320–23327.

    CAS  Article  Google Scholar 

  26. [26]

    Li, S. B.; Ware, M.; Wu, J.; Minor, P.; Wang, Z. M.; Wu, Z. M.; Jiang, Y. D.; Salamo, G. J. Polarization induced pn-junction without dopant in graded AlGaN coherently strained on GaN. Appl. Phys. Lett. 2012, 101, 122103.

    Article  CAS  Google Scholar 

  27. [27]

    Lytvyn, P. M.; Kuchuk, A. V.; Mazur, Y. I.; Li, C.; Ware, M. E.; Wang, Z. M.; Kladko, V. P.; Belyaev, A. E.; Salamo, G. J. Polarization effects in graded AlGaN nanolayers revealed by current-sensing and kelvin probe microscopy. ACS Appl. Mater. Interfaces 2018, 10, 6755–6763.

    CAS  Article  Google Scholar 

  28. [28]

    Stanchu, H.; Der Maur, M. A.; Kuchuk, A. V.; Mazur, Y. I.; Sobanska, M.; Zytkiewicz, Z. R.; Wu, S.; Wang, Z.; Salamo, G. Compositionally graded AlGaN nanostructures: Strain distribution and X-ray diffraction reciprocal space mapping. Cryst. Growth Des. 2020, 20, 1543–1551.

    CAS  Article  Google Scholar 

  29. [29]

    Stanchu, H. V.; Kuchuk, A. V.; Barchuk, M.; Mazur, Y. I.; Kladko, V. P.; Wang, Z. M.; Rafaja, D.; Salamo, G. J. Asymmetrical reciprocal space mapping using X-ray diffraction: A technique for structural characterization of GaN/AlN superlattices. CrystEngComm 2017, 19, 2977–2982.

    CAS  Article  Google Scholar 

  30. [30]

    Kuchuk, A. V.; Stanchu, H. V.; Li, C.; Ware, M. E.; Mazur, Y. I.; Kladko, V. P.; Belyaev, A. E.; Salamo, G. J. Measuring the depth profiles of strain/composition in AlGaN-graded layer by high-resolution X-ray diffraction. J. Appl. Phys. 2014, 116, 224302.

    Article  CAS  Google Scholar 

  31. [31]

    Hetzl, M.; Kraut, M.; Winnerl, J.; Francaviglia, L.; Doblinger, M.; Matich, S.; Morral, A. F. I.; Stutzmann, M. Strain-induced band gap engineering in selectively grown GaN-(Al, Ga)N core-shell nanowire heterostructures. Nano Lett. 2016, 16, 7098–7106.

    CAS  Article  Google Scholar 

  32. [32]

    Okamoto, S.; Saito, N.; Ito, K.; Ma, B.; Morita, K.; Iida, D.; Ohkawa, K.; Ishitani, Y. Energy transport analysis in a Ga0.84In0.16N/GaN heterostructure using microscopic Raman images employing simultaneous coaxial irradiation of two lasers. Appl. Phys. Lett. 2020, 116, 142107.

    CAS  Article  Google Scholar 

  33. [33]

    Qi, M.; Li, G. W.; Protasenko, V.; Zhao, P.; Verma, J.; Song, B.; Ganguly, S.; Zhu, M. D.; Hu, Z. Y.; Yan, X. D. et al. Dual optical marker Raman characterization of strained GaN-channels on AlN using AlN/GaN/AlN quantum wells and 15N isotopes. Appl. Phys. Lett. 2015, 106, 041906.

    Article  CAS  Google Scholar 

  34. [34]

    Liu, E.; Conti, F.; Bhogaraju, S. K.; Signorini, R.; Pedron, D.; Wunderle, B.; Elger, G. Thermomechanical stress in GaN-LEDs soldered onto Cu substrates studied using finite element method and Raman spectroscopy. J. Raman Spectrosc. 2020, 51, 2083–2094.

    CAS  Article  Google Scholar 

  35. [35]

    Ma, B.; Tang, M. C.; Ueno, K.; Kobayashi, A.; Morita, K.; Fujioka, H.; Ishitani, Y. Combined infrared reflectance and Raman spectroscopy analysis of Si-doping limit of GaN. Appl. Phys. Lett. 2020, 117, 192103.

    CAS  Article  Google Scholar 

  36. [36]

    Hammarberg, S.; Dagytė, V.; Chayanun, L.; Hill, M. O.; Wyke, A.; Björling, A.; Johansson, U.; Kalbfleisch, S.; Heurlin, M.; Lauhon, L. J. et al. High resolution strain mapping of a single axially heterostructured nanowire using scanning X-ray diffraction. Nano Res. 2020, 13, 2460–2468.

    CAS  Article  Google Scholar 

  37. [37]

    Sarkar, K.; Datta, D.; Gosztola, D. J.; Shi, F. Y.; Nicholls, A.; Stroscio, M. A.; Dutta, M. Raman analysis of phonon modes in a short period AlN/GaN superlattice. Superlattices Microstruct. 2018, 115, 116–122.

    CAS  Article  Google Scholar 

  38. [38]

    Wallentin, J.; Jacobsson, D.; Osterhoff, M.; Borgström, M. T.; Salditt, T. Bending and twisting lattice tilt in strained core-shell nanowires revealed by nanofocused X-ray diffraction. Nano Lett. 2017, 17, 4143–4150.

    CAS  Article  Google Scholar 

  39. [39]

    Kolomys, O.; Tsykaniuk, B.; Strelchuk, V.; Naumov, A.; Kladko, V.; Mazur, Y. I.; Ware, M. E.; Li, S. B.; Kuchuk, A.; Maidaniuk, Y. et al. Optical and structural study of deformation states in the GaN/AlN superlattices. J. Appl. Phys. 2017, 122, 155302.

    Article  CAS  Google Scholar 

  40. [40]

    Davydov, V. Y.; Averkiev, N. S.; Goncharuk, I. N.; Nelson, D. K.; Nikitina, I. P.; Polkovnikov, A. S.; Smirnov, A. N.; Jacobson, M. A.; Semchinova, O. K. Raman and photoluminescence studies of biaxial strain in GaN epitaxial layers grown on 6H-SiC. J. Appl. Phys. 1997, 82, 5097–5102.

    CAS  Article  Google Scholar 

  41. [41]

    Davydov, V. Y.; Kitaev, Y. E.; Goncharuk, I. N.; Smirnov, A. N.; Graul, J.; Semchinova, O.; Uffmann, D.; Smirnov, M. B.; Mirgorodsky, A. P.; Evarestov, R. A. Phonon dispersion and Raman scattering in hexagonal GaN and AlN. Phys. Rev. B 1998, 58, 12899–12907.

    CAS  Article  Google Scholar 

  42. [42]

    Zhang, L. Full optical phonon states and their dispersive spectra of a wurtzite GaN/AlGaN superlattice: Quantum size effect. Phys. Status Solidi B 2011, 248, 2120–2127.

    CAS  Article  Google Scholar 

  43. [43]

    Park, K.; Mohamed, A.; Dutta, M.; Stroscio, M. A.; Bayram, C. Electron scattering via interface optical phonons with high group velocity in wurtzite GaN-based quantum well heterostructure. Sci. Rep. 2018, 8, 15947.

    Article  CAS  Google Scholar 

  44. [44]

    Darakchieva, V.; Valcheva, E.; Paskov, P. P.; Schubert, M.; Paskova, T.; Monemar, B.; Amano, H.; Akasaki, I. Phonon mode behavior in strained wurtzite AlN/GaN superlattices. Phys. Rev. B 2005, 71, 115329.

    Article  CAS  Google Scholar 

  45. [45]

    Manjón, F. J.; Errandonea, D.; Romero, A. H.; Garro, N.; Serrano, J.; Kuball, M. Lattice dynamics of wurtzite and rocksalt AlN under high pressure: Effect of compression on the crystal anisotropy of wurtzite-type semiconductors. Phys. Rev. B 2008, 77, 205204.

    Article  CAS  Google Scholar 

  46. [46]

    Sanjurjo, J. A.; López-Cruz, E.; Vogl, P.; Cardona, M. Dependence on volume of the phonon frequencies and the ir effective charges of several III-V semiconductors. Phys. Rev. B 1983, 28, 4579–4584.

    CAS  Article  Google Scholar 

  47. [47]

    Kuball, M.; Hayes, J. M.; Prins, A. D.; Van Uden, N. W. A.; Dunstan, D. J.; Shi, Y.; Edgar, J. H. Raman scattering studies on single-crystalline bulk AlN under high pressures. Appl. Phys. Lett. 2001, 78, 724–726.

    CAS  Article  Google Scholar 

  48. [48]

    Goñi, A. R.; Siegle, H.; Syassen, K.; Thomsen, C.; Wagner, J. M. Effect of pressure on optical phonon modes and transverse effective charges in GaN and AlN. Phys. Rev. B 2001, 64, 035205.

    Article  CAS  Google Scholar 

  49. [49]

    Yakovenko, E. V.; Gauthier, M.; Polian, A. High-pressure behavior of the bond-bending mode of AIN. J. Exp. Theor. Phys. 2004, 98, 981–985.

    CAS  Article  Google Scholar 

  50. [50]

    Perlin, P.; Polian, A.; Suski, T. Raman-scattering studies of aluminum nitride at high pressure. Phys. Rev. B 1993, 47, 2874–2877.

    CAS  Article  Google Scholar 

  51. [51]

    Hibberd, M. T.; Frey, V.; Spencer, B. F.; Mitchell, P. W.; Dawson, P.; Kappers, M. J.; Oliver, R. A.; Humphreys, C. J.; Graham, D. M. Dielectric response of wurtzite gallium nitride in the terahertz frequency range. Solid State Commun. 2016, 247, 68–71.

    CAS  Article  Google Scholar 

  52. [52]

    Levinshtein, M. E.; Rumyantsev, S. L.; Shur, M. S. Properties of Advanced Semiconductor Materials: GaN, AIN, InN, BN, SiC, SiGe; Wiley: New York, 2001.

    Google Scholar 

  53. [53]

    Yang, S. B.; Miyagawa, R.; Miyake, H.; Hiramatsu, K.; Harima, H. Raman scattering spectroscopy of residual stresses in epitaxial AlN films. Appl. Phys. Express 2011, 4, 031001.

    Article  CAS  Google Scholar 

  54. [54]

    Demangeot, F.; Frandon, J.; Baules, P.; Natali, F.; Semond, F.; Massies, J. Phonon deformation potentials in hexagonal GaN. Phys. Rev. B 2004, 69, 155215.

    Article  CAS  Google Scholar 

  55. [55]

    Davydov, S. Y. Evaluation of physical parameters for the group III nitrates: BN, AlN, GaN, and InN. Semiconductors 2002, 36, 41–44.

    CAS  Article  Google Scholar 

  56. [56]

    Ambacher, O.; Majewski, J.; Miskys, C.; Link, A.; Hermann, M.; Eickhoff, M.; Stutzmann, M.; Bernardini, F.; Fiorentini, V.; Tilak, V. et al. Pyroelectric properties of Al(In)GaN/GaN hetero- and quantum well structures. J. Phys.:Condens. Matter 2002, 14, 3399–3434.

    CAS  Google Scholar 

  57. [57]

    Wagner, J. M.; Bechstedt, F. Properties of strained wurtzite GaN and AlN: Ab initio studies. Phys. Rev. B 2002, 66, 115202.

    Article  CAS  Google Scholar 

  58. [58]

    Sarua, A.; Kuball, M.; Van Nostrand, J. E. Deformation potentials of the E2(high) phonon mode of AlN. Appl. Phys. Lett. 2002, 81, 1426–1428.

    CAS  Article  Google Scholar 

  59. [59]

    Reeber, R. R.; Wang, K. High temperature elastic constant prediction of some group III-nitrides. MRS Internet J. Nitride Semicond. Res. 2001, 6, 3.

    Article  Google Scholar 

  60. [60]

    Wagner, J. M.; Bechstedt, F. Phonon deformation potentials of α-GaN and -AlN: An ab initio calculation. Appl. Phys. Lett. 2000, 77, 346–348.

    CAS  Article  Google Scholar 

  61. [61]

    Nowak, R.; Pessa, M.; Suganuma, M.; Leszczynski, M.; Grzegory, I.; Porowski, S.; Yoshida, F. Elastic and plastic properties of GaN determined by nano-indentation of bulk crystal. Appl. Phys. Lett. 1999, 75, 2070–2072.

    CAS  Article  Google Scholar 

  62. [62]

    Deguchi, T.; Ichiryu, D.; Toshikawa, K.; Sekiguchi, K.; Sota, T.; Matsuo, R.; Azuhata, T.; Yamaguchi, M.; Yagi, T.; Chichibu, S. et al. Structural and vibrational properties of GaN. J. Appl. Phys. 1999, 86, 1860–1866.

    CAS  Article  Google Scholar 

  63. [63]

    Gleize, J.; Demangeot, F.; Frandon, J.; Renucci, M. A.; Widmann, F.; Daudin, B. Phonons in a strained hexagonal GaN-AlN superlattice. Appl. Phys. Lett. 1999, 74, 703–705.

    CAS  Article  Google Scholar 

  64. [64]

    Shimada, K.; Sota, T.; Suzuki, K. First-principles study on electronic and elastic properties of BN, AlN, and GaN. J. Appl. Phys. 1998, 84, 4951–4958.

    CAS  Article  Google Scholar 

  65. [65]

    Deger, C.; Born, E.; Angerer, H.; Ambacher, O.; Stutzmann, M.; Hornsteiner, J.; Riha, E.; Fischerauer, G. Sound velocity of AlxGa1−xN thin films obtained by surface acoustic-wave measurements. Appl. Phys. Lett. 1998, 72, 2400–2402.

    CAS  Article  Google Scholar 

  66. [66]

    Kim, K.; Lambrecht, W. R. L.; Segall, B. Elastic constants and related properties of tetrahedrally bonded BN, AlN, GaN, and InN. Phys. Rev. B 1996, 53, 16310–16326.

    CAS  Article  Google Scholar 

  67. [67]

    Wright, A. F. Elastic properties of zinc-blende and wurtzite AlN, GaN, and InN. J. Appl. Phys. 1997, 82, 2833–2839.

    CAS  Article  Google Scholar 

  68. [68]

    Yamaguchi, M.; Yagi, T.; Azuhata, T.; Sota, T.; Suzuki, K.; Chichibu, S.; Nakamura, S. Brillouin scattering study of gallium nitride: Elastic stiffness constants. J. Phys.:Condens. Matter 1997, 9, 241–248.

    CAS  Google Scholar 

  69. [69]

    Schwarz, R. B.; Khachaturyan, K.; Weber, E. R. Elastic moduli of gallium nitride. Appl. Phys. Lett. 1997, 70, 1122–1124.

    CAS  Article  Google Scholar 

  70. [70]

    Polian, A.; Grimsditch, M.; Grzegory, I. Elastic constants of gallium nitride. J. Appl. Phys. 1996, 79, 3343–3344.

    CAS  Article  Google Scholar 

  71. [71]

    Kim, K.; Lambrecht, W. R. L.; Segall, B. Electronic structure of GaN with strain and phonon distortions. Phys. Rev. B 1994, 50, 1502–1505.

    CAS  Article  Google Scholar 

  72. [72]

    Kato, R.; Hama, J. First-principles calculation of the elastic stiffness tensor of aluminium nitride under high pressure. J. Phys.:Condens. Matter 1994, 6, 7617–7632.

    Google Scholar 

  73. [73]

    Ruiz, E.; Alvarez, S.; Alemany, P. Electronic structure and properties of AlN. Phys. Rev. B 1994, 49, 7115–7123.

    CAS  Article  Google Scholar 

  74. [74]

    McNeil, L. E.; Grimsditch, M.; French, R. H. Vibrational spectroscopy of aluminum nitride. J. Am. Ceram. Soc. 1993, 76, 1132–1136.

    CAS  Article  Google Scholar 

  75. [75]

    Tsubouchi, K.; Mikoshiba, N. Zero-temperature-coefficient SAW devices on AlN epitaxial films. IEEE Trans. Sonics Ultrason. 1985, 32, 634–644.

    Article  Google Scholar 

  76. [76]

    Savastenko, V. A.; Sheleg, A. U. Study of the elastic properties of gallium nitride. Phys. Status Solidi A 1978, 48, K135–K139.

    CAS  Article  Google Scholar 

  77. [77]

    Shen, X. Q.; Takahashi, T.; Ide, T.; Shimizu, M. Mechanisms of the micro-crack generation in an ultra-thin AlN/GaN superlattice structure grown on Si(110) substrates by metalorganic chemical vapor deposition. J. Appl. Phys. 2015, 118, 125307.

    Article  CAS  Google Scholar 

  78. [78]

    Einfeldt, S.; Heinke, H.; Kirchner, V.; Hommel, D. Strain relaxation in AlGaN/GaN superlattices grown on GaN. J. Appl. Phys. 2001, 89, 2160–2167.

    CAS  Article  Google Scholar 

  79. [79]

    Tripathy, S.; Chua, S. J.; Chen, P.; Miao, Z. L. Micro-Raman investigation of strain in GaN and AlxGa1−xN/GaN heterostructures grown on Si(111). J. Appl. Phys. 2002, 92, 3503–3510.

    CAS  Article  Google Scholar 

  80. [80]

    Ramkumar, C.; Prokofyeva, T.; Seon, M.; Holtz, M.; Choi, K.; Yun, J.; Nikishin, S. A.; Temkin, H. Micro-Raman scattering from hexagonal GaN, AlN, and AlxGa1−xN grown on (111) oriented silicon: Stress mapping of cracks. MRS Online Proc. Libr. 2001, 693, 39–43.

    Article  Google Scholar 

  81. [81]

    Agrawal, M.; Dharmarasu, N.; Radhakrishnan, K.; Ravikiran, L. Structural properties of GaN grown on AlGaN/AlN stress mitigating layers on 100-mm Si (111) by ammonia molecular beam epitaxy. Thin Solid Films 2012, 520, 7109–7114.

    CAS  Article  Google Scholar 

  82. [82]

    Lee, H. P.; Perozek, J.; Rosario, L. D.; Bayram, C. Investigation of AlGaN/GaN high electron mobility transistor structures on 200-mm silicon (111) substrates employing different buffer layer configurations. Sci. Rep. 2016, 6, 37588.

    CAS  Article  Google Scholar 

  83. [83]

    Christy, D.; Watanabe, A.; Egawa, T. Influence of strain induced by AlN nucleation layer on the electrical properties of AlGaN/GaN heterostructures on Si(111) substrate. AIP Adv. 2014, 4, 107104.

    Article  CAS  Google Scholar 

  84. [84]

    Bansal, A.; Wang, K.; Lundh, J. S.; Choi, S.; Redwing, J. M. Effect of Ge doping on growth stress and conductivity in AlxGa1−xN. Appl. Phys. Lett. 2019, 114, 142101.

    Article  CAS  Google Scholar 

  85. [85]

    Amano, H.; Baines, Y.; Beam, E.; Borga, M.; Bouchet, T.; Chalker, P. R.; Charles, M.; Chen, K. J.; Chowdhury, N.; Chu, R. M. et al. The 2018 GaN power electronics roadmap. J. Phys. D: Appl. Phys. 2018, 51, 163001.

    Article  CAS  Google Scholar 

  86. [86]

    Sun, H. D.; Mitra, S.; Subedi, R. C.; Zhang, Y.; Guo, W.; Ye, J. C.; Shakfa, M. K.; Ng, T. K.; Ooi, B. S.; Roqan, I. S. et al. Unambiguously enhanced ultraviolet luminescence of AlGaN wavy quantum well structures grown on large misoriented sapphire substrate. Adv. Funct. Mater. 2019, 29, 1905445.

    CAS  Article  Google Scholar 

  87. [87]

    Huang, C.; Zhang, H. C.; Sun, H. D. Ultraviolet optoelectronic devices based on AlGaN-SiC platform: Towards monolithic photonics integration system. Nano Energy 2020, 77, 105149.

    CAS  Article  Google Scholar 

  88. [88]

    Zhang, H. C.; Huang, C.; Song, K.; Yu, H. B.; Xing, C.; Wang, D. H.; Liu, Z. L.; Sun, H. D. Compositionally graded III-nitride alloys: Building blocks for efficient ultraviolet optoelectronics and power electronics. Rep. Prog. Phys. 2021, 84, 044401.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the U.S. National Science Foundation Engineering Research Center for Power Optimization of Electro Thermal Systems (POETS) with cooperative agreement EEC-1449548. F. M. O. and M. D. T. acknowledge the financial support of Coordenação de Aperfeiçoamento de Pessoal de Nível Superior — Brasil (CAPES) — Finance Code 001.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Andrian V. Kuchuk.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kuchuk, A.V., de Oliveira, F.M., Ghosh, P.K. et al. Coherent-interface-induced strain in large lattice-mismatched materials: A new approach for modeling Raman shift. Nano Res. (2021). https://doi.org/10.1007/s12274-021-3855-4

Download citation

Keywords

  • Raman spectroscopy
  • strain
  • lattice coherency
  • III-nitrides
  • high-resolution X-ray diffraction (HRXRD)