Skip to main content

Self-pumping ultra-thin film evaporation on CNT-embedded silicon nitride nanopore membrane

Abstract

The development of nanoporous membrane structure provides a potential opportunity for the advanced ultra-thin liquid film evaporation process, for which the ability of effectively and continuously maintaining the nano-thin liquid film is crucial to realize its superior performance. In this work, we elucidated the nanopore-based ultra-thin water film evaporation characteristics with non-equilibrium molecular dynamics simulation. A self-pumping water transport through the nanopore was observed, which is attributed to the driving force induced by the evaporation meniscus of thin liquid film. The dry-out crisis will occur with the increasing membrane thickness. We demonstrated that the hydrophobic carbon nanotube (CNT) can be utilized as the coating inside the hydrophilic silicon nitride (Si3N4) nanopore, which reduces the flow resistance and presents an excellent capability to replenish the evaporated water. Based on the above findings, the internal coating of CNT is an advisable strategy for nanopore-based ultra-thin liquid film evaporation, possessing a stable high evaporation flux as well as a good mechanical strength.

This is a preview of subscription content, access via your institution.

References

  1. Vaartstra, G.; Zhang, L. N.; Lu, Z. M.; Díaz-Marín, C. D.; Grossman, J. C.; Wang, E. N. Capillary-fed, thin film evaporation devices. J. Appl. Phys. 2020, 128, 130901.

    CAS  Article  Google Scholar 

  2. Li, Y. X.; Alibakhshi, M. A.; Zhao, Y. H.; Duan, C. H. Exploring ultimate water capillary evaporation in nanoscale conduits. Nano Lett. 2017, 17, 4813–4819.

    CAS  Article  Google Scholar 

  3. Li, Y. X.; Chen, H. W.; Xiao, S. Y.; Alibakhshi, M. A.; Lo, C. W.; Lu, M. C.; Duan, C. H. Ultrafast diameter-dependent water evaporation from nanopores. ACS Nano 2019, 13, 3363–3372.

    CAS  Article  Google Scholar 

  4. He, S. M.; Chen, C. J.; Kuang, Y. D.; Mi, R. Y.; Liu, Y.; Pei, Y.; Kong, W. Q.; Gan, W. T.; Xie, H.; Hitz, E. et al. Nature-inspired salt resistant bimodal porous solar evaporator for efficient and stable water desalination. Energy Environ. Sci. 2019, 12, 1558–1567.

    CAS  Article  Google Scholar 

  5. Xue, G. B.; Xu, Y.; Ding, T. P.; Li, J.; Yin, J.; Fei, W. W.; Cao, Y. Z.; Yu, J.; Yuan, L. Y.; Gong, L. et al. Water-evaporation-induced electricity with nanostructured carbon materials. Nat. Nanotechnol. 2017, 12, 317–321.

    CAS  Article  Google Scholar 

  6. Lao, J. C.; Wu, S.; Gao, J.; Dong, A. P.; Li, G. J.; Luo, J. Y. Electricity generation based on a photothermally driven Ti3C2Tx MXene nanofluidic water pump. Nano Energy 2020, 70, 104481.

    CAS  Article  Google Scholar 

  7. Hanks, D. F.; Lu, Z. M.; Sircar, J.; Kinefuchi, I.; Bagnall, K. R.; Salamon, T. R.; Antao, D. S.; Barabadi, B.; Wang, E. N. High heat flux evaporation of low surface tension liquids from nanoporous membranes. ACS Appl. Mater. Interfaces 2020, 12, 7232–7238.

    CAS  Article  Google Scholar 

  8. Wang, Q. Y.; Chen, R. K. Widely tunable thin film boiling heat transfer through nanoporous membranes. Nano Energy 2018, 54, 297–303.

    Article  Google Scholar 

  9. Wang, Q. Y.; Chen, R. K. Ultrahigh flux thin film boiling heat transfer through nanoporous membranes. Nano Lett. 2018, 18, 3096–3103.

    CAS  Article  Google Scholar 

  10. Ghasemi, H.; Ni, G.; Marconnet, A. M.; Loomis, J.; Yerci, S.; Miljkovic, N.; Chen, G. Solar steam generation by heat localization. Nat. Commun. 2014, 5, 4449.

    CAS  Article  Google Scholar 

  11. Zhou, Y.; Ding, T. P.; Gao, M. M.; Chan, K. H.; Cheng, Y.; He, J. Q.; Ho, G. W. Controlled heterogeneous water distribution and evaporation towards enhanced photothermal water-electricity-hydrogen production. Nano Energy 2020, 77, 105102.

    CAS  Article  Google Scholar 

  12. Lei, W. W.; Khan, S.; Chen, L.; Suzuki, N.; Terashima, C.; Liu, K. S.; Fujishima, A.; Liu, M. J. Hierarchical structures hydrogel evaporator and superhydrophilic water collect device for efficient solar steam evaporation. Nano Res. 2021, 14, 1135–1140.

    CAS  Article  Google Scholar 

  13. Wen, R. F.; Xu, S. S.; Lee, Y. C.; Yang, R. G. Capillary-driven liquid film boiling heat transfer on hybrid mesh wicking structures. Nano Energy 2018, 51, 373–382.

    CAS  Article  Google Scholar 

  14. Ridwan, S.; McCarthy, M. Nanostructure-supported evaporation underneath a growing bubble. ACS Appl. Mater. Interfaces 2019, 11, 12441–12451.

    CAS  Article  Google Scholar 

  15. Jaikumar, A.; Kandlikar, S. G. Pool boiling enhancement through bubble induced convective liquid flow in feeder microchannels. Appl. Phys. Lett. 2016, 108, 041604.

    Article  Google Scholar 

  16. Wang, Q. Y.; Shi, Y.; Chen, R. K. Transition between thin film boiling and evaporation on nanoporous membranes near the kinetic limit. Int. J. Heat Mass Transf. 2020, 154, 119673.

    CAS  Article  Google Scholar 

  17. Chinappi, M.; De Angelis, E.; Melchionna, S.; Casciola, C. M.; Succi, S.; Piva, R. Molecular dynamics simulation of ratchet motion in an asymmetric nanochannel. Phys. Rev. Lett. 2006, 97, 144509.

    CAS  Article  Google Scholar 

  18. Wang, X.; Liu, M. C.; Jing, D. W.; Mohamad, A.; Prezhdo, O. Net unidirectional fluid transport in locally heated nanochannel by thermo-osmosis. Nano Lett. 2020, 20, 8965–8971.

    CAS  Article  Google Scholar 

  19. Lu, Z. M.; Wilke, K. L.; Preston, D. J.; Kinefuchi, I.; Chang-Davidson, E.; Wang, E. N. An ultrathin nanoporous membrane evaporator. Nano Lett. 2017, 17, 6217–6220.

    CAS  Article  Google Scholar 

  20. Lu, Z. M.; Kinefuchi, I.; Wilke, K. L.; Vaartstra, G.; Wang, E. N. A unified relationship for evaporation kinetics at low mach numbers. Nat. Commun. 2019, 10, 2368.

    Article  Google Scholar 

  21. Wilke, K. L.; Barabadi, B.; Lu, Z. M.; Zhang, T. J.; Wang, E. N. Parametric study of thin film evaporation from nanoporous membranes. Appl. Phys. Lett. 2017, 111, 171603.

    Article  Google Scholar 

  22. Hu, H.; Weinberger, C. R.; Sun, Y. Model of meniscus shape and disjoining pressure of thin liquid films on nanostructured surfaces with electrostatic interactions. J. Phys. Chem. C 2015, 119, 11777–11785.

    CAS  Article  Google Scholar 

  23. Hou, Y. Q.; Wang, M.; Chen, X. Y.; Hou, X. Continuous water-water hydrogen bonding network across the rim of carbon nanotubes facilitating water transport for desalination. Nano Res. 2021, 14, 2171–2178.

    CAS  Article  Google Scholar 

  24. Yenigun, O.; Barisik, M. Effect of nano-film thickness on thermal resistance at water/silicon interface. Int. J. Heat Mass Transf. 2019, 134, 634–640.

    CAS  Article  Google Scholar 

  25. Montazeri, K.; Qomi, M. J. A.; Won, Y. Solid-like behaviors govern evaporative transport in adsorbed water nanofilms. ACS Appl. Mater. Interfaces 2020, 12, 53416–53424.

    CAS  Article  Google Scholar 

  26. Fornasiero, F.; Park, H. G.; Holt, J. K.; Stadermann, M.; Grigoropoulos, C. P.; Noy, A.; Bakajin, O. Ion exclusion by sub-2-nm carbon nanotube pores. Proc. Natl. Acad. Sci. USA 2008, 105, 17250–17255.

    CAS  Article  Google Scholar 

  27. Holt, J. K.; Noy, A.; Huser, T.; Eaglesham, D.; Bakajin, O. Fabrication of a carbon nanotube-embedded silicon nitride membrane for studies of nanometer-scale mass transport. Nano Lett. 2004, 4, 2245–2250.

    CAS  Article  Google Scholar 

  28. Holt, J. K.; Park, H. G.; Wang, Y. M.; Stadermann, M.; Artyukhin, A. B.; Grigoropoulos, C. P.; Noy, A.; Bakajin, O. Fast mass transport through sub-2-nanometer carbon nanotubes. Science 2006, 312, 1034–1037.

    CAS  Article  Google Scholar 

  29. Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1–19.

    CAS  Article  Google Scholar 

  30. Hummer, G.; Rasaiah, J. C.; Noworyta, J. P. Water conduction through the hydrophobic channel of a carbon nanotube. Nature 2001, 414, 188–190.

    CAS  Article  Google Scholar 

  31. Wanunu, M.; Bhattacharya, S.; Xie, Y.; Tor, Y.; Aksimentiev, A.; Drndic, M. Nanopore analysis of individual rna/antibiotic complexes. ACS Nano 2011, 5, 9345–9353.

    CAS  Article  Google Scholar 

  32. Price, D. J.; Brooks III, C. L. A modified TIP3P water potential for simulation with Ewald summation. J. Chem. Phys. 2004, 121, 10096–10103.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51676124). The computations in this paper were run on the π 2.0 cluster supported by the Center for High Performance Computing at Shanghai Jiao Tong University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenyu Liu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, R., Liu, Z. Self-pumping ultra-thin film evaporation on CNT-embedded silicon nitride nanopore membrane. Nano Res. 15, 1725–1729 (2022). https://doi.org/10.1007/s12274-021-3851-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3851-8

Keywords

  • thin film evaporation
  • water
  • nanopore
  • coating
  • carbon nanotube (CNT)
  • molecular dynamics