Skip to main content

Interface engineering of plasmonic induced Fe/N/C-F catalyst with enhanced oxygen catalysis performance for fuel cells application

Abstract

The low intrinsic activity of Fe/N/C oxygen catalysts restricts their commercial application in the fuel cells technique; herein, we demonstrated the interface engineering of plasmonic induced Fe/N/C-F catalyst with primarily enhanced oxygen reduction performance for fuel cells applications. The strong interaction between F and Fe-N4 active sites modifies the catalyst interfacial properties as revealed by X-ray absorption structure spectrum and density functional theory calculations, which changes the electronic structure of Fe-N active site resulting from more atoms around the active site participating in the reaction as well as super-hydrophobicity from C-F covalent bond. The hybrid contribution from active sites and carbon support is proposed to optimize the three-phase microenvironment efficiently in the catalysis electrode, thereby facilitating efficient oxygen reduction performance. High catalytic performance for oxygen reduction and fuel cells practical application catalyzed by Fe/N/C-F catalyst is thus verified, which offers a novel catalyst system for fuel cells technique.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Xiao, F.; Wang, Y. C.; Wu, Z. P.; Chen, G. Y.; Yang, F.; Zhu, S. Q.; Siddharth, K.; Kong, Z. J.; Lu, A. L.; Li, J. C. et al. Recent advances in electrocatalysts for proton exchange membrane fuel cells and alkaline membrane fuel cells. Adv. Mater., in press, https://doi.org/10.1002/adma.202006292.

  2. [2]

    Wang, X. Q.; Li, Z. J.; Qu, Y. T.; Yuan, T. W.; Wang, W. Y.; Wu, Y.; Li, Y. D. Review of metal catalysts for oxygen reduction reaction: From nanoscale engineering to atomic design. Chem 2019, 5, 1486–1511.

    CAS  Article  Google Scholar 

  3. [3]

    Wang, X. X.; Swihart, M. T.; Wu, G. Achievements, challenges and perspectives on cathode catalysts in proton exchange membrane fuel cells for transportation. Nat. Catal. 2019, 2, 578–589.

    CAS  Article  Google Scholar 

  4. [4]

    Chen, Y. J.; Ji, S. F.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysts: Synthetic strategies and electrochemical applications. Joule 2018, 2, 1242–1264.

    CAS  Article  Google Scholar 

  5. [5]

    Zhang, N. Q.; Ye, C. L.; Yan, H.; Li, L. C.; He, H.; Wang, D. S.; Li, Y. D. Single-atom site catalysts for environmental catalysis. Nano Res. 2020, 13, 3165–3182.

    Article  CAS  Google Scholar 

  6. [6]

    Ji, S. F.; Chen, Y. J.; Wang, X. L.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Chemical synthesis of single atomic site catalysts. Chem. Rev. 2020, 120, 11900–11955.

    CAS  Article  Google Scholar 

  7. [7]

    Yang, Z. K.; Wang, Y.; Zhu, M. Z.; Li, Z. J.; Chen, W. X.; Wei, W. C.; Yuan, T. W.; Qu, Y. T.; Xu, Q.; Zhao, C. M. et al. Boosting oxygen reduction catalysis with Fe-N4 sites decorated porous carbons toward fuel cells. ACS Catal. 2019, 9, 2158–2163.

    CAS  Article  Google Scholar 

  8. [8]

    He, Y. H.; Liu, S. W.; Priest, C.; Shi, Q. R.; Wu, G. Atomically dispersed metal-nitrogen-carbon catalysts for fuel cells: Advances in catalyst design, electrode performance, and durability improvement. Chem. Soc. Rev. 2020, 49, 3484–3524.

    CAS  Article  Google Scholar 

  9. [9]

    Li, Q. H.; Chen, W. X.; Xiao, H.; Gong, Y.; Li, Z.; Zheng, L. R.; Zheng, X. S.; Yan, W. S.; Cheong, W. C.; Shen, R. A. et al. Fe isolated single atoms on S, N codoped carbon by copolymer pyrolysis strategy for highly efficient oxygen reduction reaction. Adv. Mater. 2018, 30, 1800588.

    Article  CAS  Google Scholar 

  10. [10]

    Fan, J. T.; Chen, M.; Zhao, Z. L.; Zhang, Z.; Ye, S. Y.; Xu, S. Y.; Wang, H. J.; Li, H. Bridging the gap between highly active oxygen reduction reaction catalysts and effective catalyst layers for proton exchange membrane fuel cells. Nat. Energy 2021, 6, 475–486.

    CAS  Article  Google Scholar 

  11. [11]

    Wang, Y. Q.; Zou, Y. Q.; Tao, L.; Wang, Y. Y.; Huang, G.; Du, S. Q.; Wang, S. Y. Rational design of three-phase interfaces for electrocatalysis. Nano Res. 2019, 12, 2055–2066.

    Article  CAS  Google Scholar 

  12. [12]

    Hou, C. C.; Zou, L. L.; Sun, L. M.; Zhang, K. X.; Liu, Z.; Li, Y. W.; Li, C. X.; Zou, R. Q.; Yu, J. H.; Xu, Q. Single-atom iron catalysts on overhang-eave carbon cages for high-performance oxygen reduction reaction. Angew. Chem., Int. Ed. 2020, 132, 7454–7459.

    Article  Google Scholar 

  13. [13]

    Zhang, J. Q.; Zhao, Y. F.; Chen, C.; Huang, Y. C.; Dong, C. L.; Chen, C. J.; Liu, R. S.; Wang, C. Y.; Yan, K.; Li, Y. D. et al. Tuning the coordination environment in single-atom catalysts to achieve highly efficient oxygen reduction reactions. J. Am. Chem. Soc. 2019, 141, 20118–20126.

    CAS  Article  Google Scholar 

  14. [14]

    Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842–1855.

    CAS  Article  Google Scholar 

  15. [15]

    Mun, Y.; Lee, S.; Kim, K.; Kim, S.; Lee, S.; Han, J. W.; Lee, J. Versatile strategy for tuning ORR activity of a single Fe-N4 site by controlling electron-withdrawing/donating properties of a carbon plane. J. Am. Chem. Soc. 2019, 141, 6254–6262.

    CAS  Article  Google Scholar 

  16. [16]

    Wang, R. G.; Yang, Y. Y.; Zhao, Y.; Yang, L. J.; Yin, P. F.; Mao, J.; Ling, T. Multiscale structural engineering of atomically dispersed FeN4 electrocatalyst for proton exchange membrane fuel cells. J. Energy Chem. 2021, 58, 629–635.

    Article  Google Scholar 

  17. [17]

    Yang, J. R.; Li, W. H.; Wang, D. S.; Li, Y. D. Electronic metal-support interaction of single-atom catalysts and applications in electrocatalysis. Adv. Mater. 2020, 32, 2003300.

    CAS  Article  Google Scholar 

  18. [18]

    Li, J. K.; Alsudairi, A.; Ma, Z. F.; Mukerjee, S.; Jia, Q. Y. Asymmetric volcano trend in oxygen reduction activity of Pt and non-Pt catalysts: In situ identification of the site-blocking effect. J. Am. Chem. Soc. 2017, 139, 1384–1387.

    CAS  Article  Google Scholar 

  19. [19]

    Xiao, M. L.; Chen, Y. T.; Zhu, J. B.; Zhang, H.; Zhao, X.; Gao, L. Q.; Wang, X.; Zhao, J.; Ge, J. J.; Jiang, Z. et al. Climbing the apex of the ORR volcano plot via binuclear site construction: Electronic and geometric engineering. J. Am. Chem. Soc. 2019, 141, 17763–17770.

    CAS  Article  Google Scholar 

  20. [20]

    Zhao, Z. P.; Hossain, M. D.; Xu, C. C.; Lu, Z. J.; Liu, Y. S.; Hsieh, S. H.; Lee, I.; Gao, W. P.; Yang, J.; Merinov, B. V. et al. Tailoring a three-phase microenvironment for high-performance oxygen reduction reaction in proton exchange membrane fuel cells. Matter 2020, 3, 1774–1790.

    Article  Google Scholar 

  21. [21]

    Inaba, M.; Jensen, A. W.; Sievers, G. W.; Escudero-Escribano, M.; Zana, A.; Arenz, M. Benchmarking high surface area electrocatalysts in a gas diffusion electrode: Measurement of oxygen reduction activities under realistic conditions. Energy Environ. Sci. 2018, 11, 988–994.

    CAS  Article  Google Scholar 

  22. [22]

    Yang, X. H.; Wang, Y. C.; Zhang, G. X.; Du, L.; Yang, L. J.; Markiewicz, M.; Choi, J. Y.; Chenitz, R.; Sun, S. H. SiO2-Fe/N/C catalyst with enhanced mass transport in PEM fuel cells. Appl. Catal. B:Environ. 2020, 264, 118523.

    Article  CAS  Google Scholar 

  23. [23]

    Banham, D.; Choi, J. Y.; Kishimoto, T.; Ye, S. Y. Integrating PGM-free catalysts into catalyst layers and proton exchange membrane fuel cell devices. Adv. Mater. 2019, 31, 1804846.

    Article  CAS  Google Scholar 

  24. [24]

    Banham, D.; Kishimoto, T.; Zhou, Y. J.; Sato, T.; Bai, K.; Ozaki, J. I.; Imashiro, Y.; Ye, S. Y. Critical advancements in achieving high power and stable nonprecious metal catalyst-based MEAs for real-world proton exchange membrane fuel cell applications. Sci. Adv. 2018, 4, eaar7180.

    Article  CAS  Google Scholar 

  25. [25]

    Sun, R. L.; Xia, Z. X.; Xu, X. L.; Deng, R. Y.; Wang, S. L.; Sun, G. Q. Periodic evolution of the ionomer/catalyst interfacial structures towards proton conductance and oxygen transport in polymer electrolyte membrane fuel cells. Nano Energy 2020, 75, 104919.

    CAS  Article  Google Scholar 

  26. [26]

    Sharma, R.; Andersen, S. M. Quantification on degradation mechanisms of polymer electrolyte membrane fuel cell catalyst layers during an accelerated stress test. ACS Catal. 2018, 5, 3424–3434.

    Article  CAS  Google Scholar 

  27. [27]

    Wan, X.; Liu, X. F.; Li, Y. C.; Yu, R. H.; Zheng, L. R.; Yan, W. S.; Wang, H.; Xu, M.; Shui, J. L. Fe-N-C electrocatalyst with dense active sites and efficient mass transport for high-performance proton exchange membrane fuel cells. Nat. Catal. 2019, 2, 259–268.

    CAS  Article  Google Scholar 

  28. [28]

    Yin, X.; Utetiwabo, W.; Sun, S. H.; Lian, Y. M.; Chen, R. J.; Yang, W. Incorporation of CeF3 on single-atom dispersed Fe/N/C with oxophilic interface as highly durable electrocatalyst for proton exchange membrane fuel cell. J. Catal. 2019, 374, 43–50.

    CAS  Article  Google Scholar 

  29. [29]

    Jiang, R.; Li, L.; Sheng, T.; Hu, G. F.; Chen, Y. G.; Wang, L. Y. Edge-site engineering of atomically dispersed Fe-N4 by selective C-N bond cleavage for enhanced oxygen reduction reaction activities. J. Am. Chem. Soc. 2018, 140, 11594–11598.

    CAS  Article  Google Scholar 

  30. [30]

    Jia, Q. Y.; Ramaswamy, N.; Hafiz, H.; Tylus, U.; Strickland, K.; Wu, G.; Barbiellin, B.; Bansil, A.; Holby, E. F.; Zelenay, P. et al. Experimental observation of redox-induced Fe-N switching behavior as a determinant role for oxygen reduction activity. ACS Nano 2015, 9, 12496–12505.

    CAS  Article  Google Scholar 

  31. [31]

    Zhang, W.; Duchesne, P. N.; Gong, Z. L.; Wu, S. Q.; Ma, L.; Jiang, Z.; Zhang, S.; Zhang, P.; Mi, J. X.; Yang, Y. In situ electrochemical XAFS studies on an iron fluoride high-capacity cathode material for rechargeable lithium batteries. J. Phys. Chem. C 2013, 117, 11498–11505.

    CAS  Article  Google Scholar 

  32. [32]

    Zhao, Y.; Wei, K. Y.; Wu, H. L.; Ma, S. P.; Li, J.; Cui, Y. X.; Dong, Z. H.; Cui, Y. H.; Li, C. L. LiF splitting catalyzed by dual metal nanodomains for an efficient fluoride conversion cathode. ACS Nano 2019, 13, 2490–2500.

    CAS  Google Scholar 

  33. [33]

    Fedoseeva, Y. V.; Bulusheva, L. G.; Koroteev, V. O.; Mevellec, J. Y.; Senkovskiy, B. V.; Flahaut, E.; Okotrub, A. V. Preferred attachment of fluorine near oxygen-containing groups on the surface of double-walled carbon nanotubes. Appl. Surf. Sci. 2020, 504, 144357.

    CAS  Article  Google Scholar 

  34. [34]

    Bulusheva, L. G.; Fedoseeva, Y. V.; Flahaut, E.; Rio, J.; Ewels, C. P.; Koroteev, V. O.; Van Lier, G.; Vyalikh, D. V.; Okotrub, A. V. Effect of the fluorination technique on the surface-fluorination patterning of double-walled carbon nanotubes. Beilstein J. Nanotechnol. 2017, 8, 1688–1698.

    CAS  Article  Google Scholar 

  35. [35]

    Struzzi, C.; Scardamaglia, M.; Colomer, J. F.; Verdini, A.; Floreano, L.; Snyders, R.; Bittencourt, C. Fluorination of vertically aligned carbon nanotubes: From CF4 plasma chemistry to surface functionalization. Beilstein J. Nanotechnol. 2017, 8, 1723–1733.

    CAS  Article  Google Scholar 

  36. [36]

    Guo, L.; Hwang, S.; Li, B. Y.; Yang, F.; Wang, M. Y.; Chen, M. J.; Yang, X. X.; Karakalos, S. G.; Cullen, D. A.; Feng, Z. X. et al. Promoting atomically dispersed MnN4 sites via sulfur doping for oxygen reduction: Unveiling intrinsic activity and degradation in fuel cells. ACS Nano 2021, 15, 6886–6899.

    CAS  Article  Google Scholar 

  37. [37]

    Han, J. X.; Bao, H. L.; Wang, J. Q.; Zheng, L. R.; Sun, S. R.; Wang, Z. L.; Sun, C. W. 3D N-doped ordered mesoporous carbon supported single-atom Fe-N-C catalysts with superior performance for oxygen reduction reaction and zinc-air battery. Appl. Catal. B:Environ. 2021, 280, 119411.

    CAS  Article  Google Scholar 

  38. [38]

    Xia, D. S.; Yang, X.; Xie, L.; Wei, Y. P.; Jiang, W. L.; Dou, M.; Li, X. N.; Li, J.; Gan, L.; Kang, F. Y. Direct growth of carbon nanotubes doped with single atomic Fe-N4 active sites and neighboring graphitic nitrogen for efficient and stable oxygen reduction electrocatalysis. Adv. Func. Mater. 2019, 29, 1906174.

    CAS  Article  Google Scholar 

  39. [39]

    Wang, Y. C.; Zhu, P. F.; Yang, H.; Huang, L.; Wu, Q. H.; Rauf, M.; Zhang, J. Y.; Dong, J.; Wang, K.; Zhou, Z. Y. et al. Surface fluorination to boost the stability of the Fe/N/C cathode in proton exchange membrane fuel cells. ChemElectroChem. 2018, 5, 1914–1921.

    CAS  Article  Google Scholar 

  40. [40]

    Zaman, S.; Huang, L.; Douka, A. I.; Yang, H.; You, B.; Xia, B. Y. Oxygen reduction electrocatalysts toward practical fuel cells: Progress and perspectives. Angew. Chem., Int. Ed. 2021, 60, 17832–17852.

    CAS  Article  Google Scholar 

  41. [41]

    Tian, X. L.; Lu, X. F.; Xia, B. Y.; Lou, X. W. Advanced electrocatalysts for the oxygen reduction reaction in energy conversion technologies. Joule 2020, 4, 45–68.

    CAS  Article  Google Scholar 

  42. [42]

    Banham, D.; Ye, S. Y. Current status and future development of catalyst materials and catalyst layers for proton exchange membrane fuel cells: An industrial perspective. ACS Energy Lett. 2017, 2, 629–638.

    CAS  Article  Google Scholar 

  43. [43]

    Chi, B.; Ye, Y. K.; Lu, X. Y.; Jiang, S. J.; Du, L.; Zeng, J. H.; Ren, J. W.; Liao, S. J. Enhancing membrane electrode assembly performance by improving the porous structure and hydrophobicity of the cathode catalyst layer. J. Power Sources 2019, 443, 227284.

    CAS  Article  Google Scholar 

  44. [44]

    Xia, D. S.; Tang, F.; Yao, X. Z.; Wei, Y. P.; Cui, Y. F.; Dou, M.; Gan, L.; Kang, F. Y. Seeded growth of branched iron-nitrogen-doped carbon nanotubes as a high performance and durable non-precious fuel cell cathode. Carbon 2020, 162, 300–307.

    CAS  Article  Google Scholar 

  45. [45]

    Li, J. C.; Cheng, M.; Li, T.; Ma, L.; Ruan, X. F.; Liu, D.; Cheng, H. M.; Liu, C.; Du, D.; Wei, Z. D. et al. Carbon nanotube-linked hollow carbon nanospheres doped with iron and nitrogen as single-atom catalysts for the oxygen reduction reaction in acidic solutions. J. Mater. Chem. A 2019, 7, 14478–14482.

    CAS  Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China (Nos. 21203008 and 21975025), Beijing Nature Science Foundation (No. 2172051), State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, and Shenzhen Science and Technology Innovation Committee (No. JCYJ20170817161445322). Thanks for Dr. Lirong Zheng (1W1B@Beijing Synchrotron Radiation Facility) for providing measurement time. We appreciate help from Dr. Jiaou Wang (4B9B@Beijing Synchrotron Radiation Facility) for XANES measurement. XPS measurements were performed in the Analysis & Testing Center, Beijing Institute of Technology.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Ligang Feng, Wen Yang, Lin Gan or Shaorui Sun.

Electronic supplementary material

12274_2021_3850_MOESM1_ESM.pdf

Interface engineering of plasmonic induced Fe/N/C-F catalyst with enhanced oxygen catalysis performance for fuel cells application

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yin, X., Feng, L., Yang, W. et al. Interface engineering of plasmonic induced Fe/N/C-F catalyst with enhanced oxygen catalysis performance for fuel cells application. Nano Res. (2021). https://doi.org/10.1007/s12274-021-3850-9

Download citation

Keywords

  • interface engineering
  • Fe/N/C catalyst
  • CF4 plasma treatment
  • three-phase microenvironment
  • proton exchange membrane fuel cells