Skip to main content

RuO2 clusters derived from bulk SrRuO3: Robust catalyst for oxygen evolution reaction in acid

Abstract

Developing highly efficient oxygen evolution reaction (OER) catalyst for the acidic corrosive operating conditions is a challenging task. Herein, we report the synthesis of uniform RuO2 clusters with ∼ 2 nm in size via electrochemical leaching of Sr from SrRuO3 ceramic in acid. The RuO2 clusters exhibit ultrahigh OER activity with overpotential of ∼ 160 mV at 10 mA·cmgeo−2 in 1.0 M HClO4 solution for 30-h testing. The extended X-ray absorption fine structure measurement reveals enlarged Jahn-Teller distortion of RuO octahedra in the RuO2 clusters compared to its bulk counterpart. Density function theory calculations show that the enhanced Jahn-Teller distortion can improve the intrinsic OER activity of RuO2.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Han, N. N.; Yang, K. R.; Lu, Z. Y.; Li, Y. J.; Xu, W. W.; Gao, T. F.; Cai, Z.; Zhang, Y.; Batista, V. S.; Liu, W. et al. Nitrogen-doped tungsten carbide nanoarray as an efficient bifunctional electrocatalyst for water splitting in acid. Nat. Commun. 2018, 9, 924.

    Article  CAS  Google Scholar 

  2. [2]

    Wu, G.; Chen, W. X.; Zheng, X. S.; He, D. P.; Luo, Y. Q.; Wang, X. Q.; Yang, J.; Wu, Y.; Yan, W. S.; Zhuang, Z. B. et al. Hierarchical Fe-doped NiOx nanotubes assembled from ultrathin nanosheets containing trivalent nickel for oxygen evolution reaction. Nano Energy 2017, 38, 167–174.

    CAS  Article  Google Scholar 

  3. [3]

    Gao, R.; Yan, D. P. Fast formation of single-unit-cell-thick and defect-rich layered double hydroxide nanosheets with highly enhanced oxygen evolution reaction for water splitting. Nano Res. 2018, 11, 1883–1894.

    CAS  Article  Google Scholar 

  4. [4]

    Qian, M. M.; Cui, S. S.; Jiang, D. C.; Zhang, L.; Du, P. W. Highly efficient and stable water-oxidation electrocatalysis with a very low overpotential using fenip substitutional-solid-solution nanoplate arrays. Adv. Mater. 2017, 29, 1704075.

    Article  CAS  Google Scholar 

  5. [5]

    Chen, G.; Zhou, W.; Guan, D. Q.; Sunarso, J.; Zhu, Y. P.; Hu, X. F.; Zhang, W.; Shao, Z. P. Two orders of magnitude enhancement in oxygen evolution reactivity on amorphous Ba0.5Sr0.5Co0.8Fe0.2O3−δ nanofilms with tunable oxidation state. Sci. Adv. 2017, 3, e1603206.

  6. [6]

    Chen, S.; Huang, H.; Jiang, P.; Yang, K.; Diao, J. F.; Gong, S. P.; Liu, S.; Huang, M. X.; Wang, H.; Chen, Q. W. Mn-doped RuO2 nanocrystals as highly active electrocatalysts for enhanced oxygen evolution in acidic media. ACS Catal. 2020, 10, 1152–1160.

    CAS  Article  Google Scholar 

  7. [7]

    Feng, Z. X.; Hong, W. T.; Fong, D. D.; Lee, Y. L.; Yacoby, Y.; Morgan, D.; Shao-Horn, Y. Catalytic activity and stability of oxides: The role of near-surface atomic structures and compositions. Acc. Chem. Res. 2016, 49, 966–973.

    CAS  Article  Google Scholar 

  8. [8]

    Nellist, M. R.; Laskowski, F. A. L.; Lin, F.; Mills, T. J.; Boettcher, S. W. Semiconductor-electrocatalyst interfaces: Theory, experiment, and applications in photoelectrochemical water splitting. Acc. Chem. Res. 2016, 49, 733–740.

    CAS  Article  Google Scholar 

  9. [9]

    Li, H. Y.; Chen, S. M.; Jia, X. F.; Xu, B.; Lin, H. F.; Yang, H. Z.; Song, L.; Wang, X. Amorphous nickel-cobalt complexes hybridized with 1T-phase molybdenum disulfide via hydrazine-induced phase transformation for water splitting. Nat. Commun. 2017, 8, 15377.

    CAS  Article  Google Scholar 

  10. [10]

    He, P.; Yu, X. Y.; Lou, X. W. Carbon-Incorporated Nickel-cobalt mixed metal phosphide nanoboxes with enhanced electrocatalytic activity for oxygen evolution. Angew. Chem., Int. Ed. 2017, 129, 3955–3958.

    Article  Google Scholar 

  11. [11]

    Wu, Y. Y.; Tariq, M.; Zaman, W. Q.; Sun, W.; Zhou, Z. H.; Yang, J. Ni-Co codoped RuO2 with outstanding oxygen evolution reaction performance. ACS Appl. Energy Mater. 2019, 2, 4105–4110.

    CAS  Article  Google Scholar 

  12. [12]

    Zhao, S. L.; Wang, Y.; Dong, J. C.; He, C. T.; Yin, H. J.; An, P. F.; Zhao, K.; Zhang, X. F.; Gao, C.; Zhang, L. J. et al. Ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution. Nat. Energy 2016, 1, 16184.

    CAS  Article  Google Scholar 

  13. [13]

    Zheng, Y.; Jiao, Y.; Zhu, Y. H.; Cai, Q. R.; Vasileff, A.; Li, L. H.; Han, Y.; Chen, Y.; Qiao, S. Z. Molecule-level g-C3N4 coordinated transition metals as a new class of electrocatalysts for oxygen electrode reactions. J. Am. Chem. Soc. 2017, 139, 3336–3339.

    CAS  Article  Google Scholar 

  14. [14]

    Zhu, Y. P.; Guo, C. X.; Zheng, Y.; Qiao, S. Z. Surface and interface engineering of noble-metal-free electrocatalysts for efficient energy conversion processes. Acc. Chem. Res. 2017, 50, 915–923.

    CAS  Article  Google Scholar 

  15. [15]

    Gao, R.; Yan, D. P. Recent development of Ni/Fe-based micro/nanostructures toward photo/electrochemical water oxidation. Adv. Energy Mater. 2020, 10, 1900954.

    CAS  Article  Google Scholar 

  16. [16]

    Arif, M.; Yasin, G.; Luo, L.; Ye, W.; Mushtaq, M. A.; Fang, X. Y.; Xiang, X.; Ji, S. F.; Yan, D. P. Hierarchical hollow nanotubes of NiFeV-layered double hydroxides@CoVP heterostructures towards efficient, pH-universal electrocatalytical nitrogen reduction reaction to ammonia. Appl. Catal. B:Environ. 2020, 265, 118559.

    CAS  Article  Google Scholar 

  17. [17]

    Arif, M.; Yasin, G.; Shakeel, M.; Fang, X. Y.; Gao, R.; Ji, S. F.; Yan, D. P. Coupling of bifunctional CoMn-layered double hydroxide@graphitic C3N4 nanohybrids towards efficient photoelectrochemical overall water splitting. Chem. Asian J. 2018, 13, 1045–1052.

    CAS  Article  Google Scholar 

  18. [18]

    Wu, J.; Xue, Y.; Yan, X.; Yan, W. S.; Cheng, Q. M.; Xie, Y. Co3O4 nanocrystals on single-walled carbon nanotubes as a highly efficient oxygen-evolving catalyst. Nano Res. 2012, 5, 521–530.

    CAS  Article  Google Scholar 

  19. [19]

    Dong, Q. C.; Zhang, Y. Z.; Dai, Z. Y.; Wang, P.; Zhao, M.; Shao, J. J.; Huang, W.; Dong, X. C. Graphene as an intermediary for enhancing the electron transfer rate: A free-standing Ni3S2@graphene@Co9S8 electrocatalytic electrode for oxygen evolution reaction. Nano Res. 2018, 11, 1389–1398.

    CAS  Article  Google Scholar 

  20. [20]

    Ye, W.; Yang, Y. S.; Fang, X. Y.; Arif, M.; Chen, X. B.; Yan, D. P. 2D cocrystallized metal-organic nanosheet array as an efficient and stable bifunctional electrocatalyst for overall water splitting. ACS Sustainable Chem. Eng. 2019, 7, 18085–18092.

    CAS  Article  Google Scholar 

  21. [21]

    Zhou, D. J.; Cai, Z.; Bi, Y. M.; Tian, W. L.; Luo, M.; Zhang, Q.; Zhang, Q.; Xie, Q. X.; Wang, J. D.; Li, Y. P. et al. Effects of redox-active interlayer anions on the oxygen evolution reactivity of NiFe-layered double hydroxide nanosheets. Nano Res. 2018, 11, 1358–1368.

    CAS  Article  Google Scholar 

  22. [22]

    Zhang, M.; Zhang, J. T.; Ran, S. Y.; Qiu, L. X.; Sun, W.; Yu, Y.; Chen, J. S.; Zhu, Z. H. A robust bifunctional catalyst for rechargeable Zn-air batteries: Ultrathin NiFe-LDH nanowalls vertically anchored on soybean-derived Fe-N-C matrix. Nano Res. 2021, 14, 1175–1186.

    CAS  Article  Google Scholar 

  23. [23]

    Yu, J. H.; Cheng, G. Z.; Luo, W. 3D mesoporous rose-like nickel-iron selenide microspheres as advanced electrocatalysts for the oxygen evolution reaction. Nano Res. 2018, 11, 2149–2158.

    CAS  Article  Google Scholar 

  24. [24]

    Wang, L. X.; Geng, J.; Wang, W. H.; Yuan, C.; Kuai, L.; Geng, B. Y. Facile synthesis of Fe/Ni bimetallic oxide solid-solution nanoparticles with superior electrocatalytic activity for oxygen evolution reaction. Nano Res. 2015, 8, 3815–3822.

    CAS  Article  Google Scholar 

  25. [25]

    Sun, K. A.; Zhao, L.; Zeng, L. Y.; Liu, S. J.; Zhu, H. Y.; Li, Y. P.; Chen, Z.; Zhuang, Z. W.; Li, Z. L.; Liu, Z. et al. Reaction environment self-modification on low-coordination Ni2+ octahedra atomic interface for superior electrocatalytic overall water splitting. J. Nano Res. 2020, 13, 3068–3074.

    Article  CAS  Google Scholar 

  26. [26]

    Liu, G.; Gao, X. S.; Wang, K. F.; He, D. Y.; Li, J. P. Mesoporous nickel-iron binary oxide nanorods for efficient electrocatalytic water oxidation. Nano Res. 2017, 10, 2096–2105.

    CAS  Article  Google Scholar 

  27. [27]

    Xue, H. Y.; Meng, A.; Zhang, H. Q.; Lin, Y. S.; Li, Z. J.; Wang, C S. 3D urchin like V-doped CoP in situ grown on nickel foam as bifunctional electrocatalyst for efficient overall water-splitting. Nano Res. 2021, doi: https://doi.org/10.1007/s12274-021-3359-2.

  28. [28]

    Kong, F. T.; Qiao, Y.; Zhang, C. Q.; Fan, X. H.; Kong, A. G.; Shan, Y. K. Unadulterated carbon as robust multifunctional electrocatalyst for overall water splitting and oxygen transformation. Nano Res. 2020, 13, 401–411.

    CAS  Article  Google Scholar 

  29. [29]

    Guo, Z. G.; Ye, W.; Fang, X. Y.; Wan, J.; Ye, Y. Y.; Dong, Y. Y.; Cao, D.; Yan, D. P. Amorphous cobalt-iron hydroxides as high-efficiency oxygen-evolution catalysts based on a facile electrospinning process. Inorg. Chem. Front. 2019, 6, 687–693.

    CAS  Article  Google Scholar 

  30. [30]

    Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Norskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

    Article  Google Scholar 

  31. [31]

    Grimaud, A.; Diaz-Morales, O.; Han, B. H.; Hong, W. T.; Lee, Y. L.; Giordano, L.; Stoerzinger, K. A.; Koper, M. T. M.; Shao-Horn, Y. Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution. Nat. Chem. 2017, 9, 457–465.

    CAS  Article  Google Scholar 

  32. [32]

    Gao, R.; Zhang, H.; Yan, D. P. Iron diselenide nanoplatelets: Stable and efficient water-electrolysis catalysts. Nano Energy 2017, 31, 90–95.

    CAS  Article  Google Scholar 

  33. [33]

    Arif, M.; Yasin, G.; Shakeel, M.; Mushtaq, M. A.; Ye, W.; Fang, X. Y.; Ji, S. F.; Yan, D. P. Highly active sites of NiVB nanoparticles dispersed onto graphene nanosheets towards efficient and pH-universal overall water splitting. J. Energy Chem. 2021, 58, 237–246.

    Article  Google Scholar 

  34. [34]

    Yao, L. H.; Zhang, N.; Wang, Y.; Ni, Y. M.; Yan, D. P.; Hu, C. W. Facile formation of 2D Co2P@Co3O4 microsheets through in-sttu toptactic conversion and surface corrosion: Bifunctional electrocatalysts towards overall water splitting. J. Power Sources 2018, 374, 142–148.

    CAS  Article  Google Scholar 

  35. [35]

    Diaz-Morales, O.; Raaijman, S.; Kortlever, R.; Kooyman, P. J.; Wezendonk, T.; Gascon, J.; Fu, W. T.; Koper, M. T. M. Iridium-based double perovskites for efficient water oxidation in acid media. Nat. Commun. 2016, 7, 12363.

    CAS  Article  Google Scholar 

  36. [36]

    Over, H.; Kim, Y. D.; Seitsonen, A. P.; Wendt, S.; Lundgren, E.; Schmid, M.; Varga, P.; Morgante, A.; Ertl, G. Atomic-scale structure and catalytic reactivity of the RuO2(110) surface. Science 2000, 287, 1474–1476.

    CAS  Article  Google Scholar 

  37. [37]

    Willinger, E.; Massue, C.; Schlogl, R.; Willinger, M. G. Identifying key structural features of IrOx water splitting catalysts. J. Am. Chem. Soc. 2017, 139, 12093–12101.

    CAS  Article  Google Scholar 

  38. [38]

    Wilde, P. M.; Guther, T. J.; Oesten, R.; Garche, J. Strontium ruthenate perovskite as the active material for supercapacitors. J. Electroanal. Chem. 1999, 461, 154–160.

    CAS  Article  Google Scholar 

  39. [39]

    Zagalskaya, A.; Alexandrov, V. Role of defects in the interplay between adsorbate evolving and lattice oxygen mechanisms of the oxygen evolution reaction in RuO2 and IrO2. ACS Catal. 2020, 10, 3650–3657.

    CAS  Article  Google Scholar 

  40. [40]

    Seitz, L. C.; Dickens, C. F.; Nishio, K.; Hikita, Y.; Montoya, J.; Doyle, A.; Kirk, C.; Vojvodic, A.; Hwang, H. Y.; Norskov, J. K. et al. A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction. Science 2016, 353, 1011–1014.

    CAS  Article  Google Scholar 

  41. [41]

    McCrory, C. C. L.; Jung, S.; Ferrer, I. M.; Chatman, S. M.; Peters, J. C.; Jaramillo, T. F. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J. Am. Chem. Soc. 2015, 137, 4347–4357.

    CAS  Article  Google Scholar 

  42. [42]

    Su, J. W.; Ge, R. X.; Jiang, K. M.; Dong, Y.; Hao, F.; Tian, Z. Q.; Chen, G. X.; Chen, L. Assembling ultrasmall copper-doped ruthenium oxide nanocrystals into hollow porous polyhedra: Highly robust electrocatalysts for oxygen evolution in acidic media. Adv. Mater. 2018, 30, 1801351.

    Article  CAS  Google Scholar 

  43. [43]

    Kim, J.; Shih, P. C.; Tsao, K. C.; Pan, Y. T.; Yin, X.; Sun, C. J.; Yang, H. High-performance pyrochlore-type yttrium ruthenate electrocatalyst for oxygen evolution reaction in acidic media. J. Am. Chem. Soc. 2017, 139, 12076–12083.

    CAS  Article  Google Scholar 

  44. [44]

    Kim, B. J.; Abbott, D. F.; Cheng, X.; Fabbri, E.; Nachtegaal, M.; Bozza, F.; Castelli, I. E.; Lebedev, D.; Schäublin, R.; Copéret, C. et al. Unraveling thermodynamics, stability, and oxygen evolution activity of strontium ruthenium perovskite oxide. ACS Catal. 2017, 7, 3245–3256.

    CAS  Article  Google Scholar 

  45. [45]

    Lee, S. A.; Oh, S.; Hwang, J. Y.; Choi, M.; Youn, C.; Kim, J. W.; Chang, S. H.; Woo, S.; Bae, J. S.; Park, S. et al. Enhanced electrocatalytic activity via phase transitions in strongly correlated SrRuO3 thin films. Energy Environ. Sci. 2017, 10, 924–930.

    CAS  Article  Google Scholar 

  46. [46]

    Sahu, R. K.; Pandey, S. K.; Pathak, L. C. Valence and origin of metal-insulator transition in Mn doped SrRuO3 studied by electrical transport, X-ray photoelectron spectroscopy and LSDA+U calculation. J. Solid State Chem. 2011, 184, 523–530.

    CAS  Article  Google Scholar 

  47. [47]

    Chang, S. H.; Danilovic, N.; Chang, K. C.; Subbaraman, R.; Paulikas, A. P.; Fong, D. D.; Highland, M. J.; Baldo, P. M.; Stamenkovic, V. R.; Freeland, J. W. et al. Functional links between stability and reactivity of strontium ruthenate single crystals during oxygen evolution. Nat. Comm. 2014, 5, 4191.

    CAS  Article  Google Scholar 

  48. [48]

    Lee, Y.; Suntivich, J.; May, K. J.; Perry, E. E.; Shao-Horn, Y. Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J. Phys. Chem. Lett. 2012, 3, 399–404.

    CAS  Article  Google Scholar 

  49. [49]

    Chang, S. H.; Connell, J. G.; Danilovic, N.; Subbaraman, R.; Chang, K. C.; Stamenkovic, V. R.; Markovic, N. M. Activity-stability relationship in the surface electrochemistry of the oxygen evolution reaction. Faraday Discuss. 2014, 176, 125–133.

    CAS  Article  Google Scholar 

  50. [50]

    Rossmeisl, J.; Qu, Z. W.; Zhu, H.; Kroes, G. J.; Nørskov, J. K. Electrolysis of water on oxide surfaces. J. Electroanal. Chem. 2007, 607, 83–89.

    CAS  Article  Google Scholar 

  51. [51]

    Briquet, L. G. V.; Sarwar, M.; Mugo, J.; Jones, G.; Calle-Vallejo, F. A new type of scaling relations to assess the accuracy of computational predictions of catalytic activities applied to the oxygen evolution reaction. ChemCatChem 2017, 9, 1261–1268.

    CAS  Article  Google Scholar 

  52. [52]

    Hwang, J.; Rao, R. R.; Giordano, L.; Katayama, Y.; Yu, Y.; Shao-Horn, Y. Perovskites in catalysis and electrocatalysis. Science 2017, 358, 751–756.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22022508, 51602143 and 11874036), Guangdong Natural Science Foundation for Distinguished Young Scholars (No. 2016A030306020), and the National Key Research and Development Program of China (No. 2017YFB0701600). We also thank the staffs from BL14W1 beamline of National Facility for Protein Science in Shanghai (NFPS) at Shanghai Synchrotron Radiation Facility, for assistance during data collection. Tianjin and Guangzhou Supercomputing Center is also acknowledged for allowing the use of computational resources including TIANHE-1 and TIANHE-2.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Jin Wang, Jia Li or Yadong Li.

Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ji, M., Yang, X., Chang, S. et al. RuO2 clusters derived from bulk SrRuO3: Robust catalyst for oxygen evolution reaction in acid. Nano Res. (2021). https://doi.org/10.1007/s12274-021-3843-8

Download citation

Keywords

  • oxygen evolution reaction
  • RuO2 cluster
  • electrochemical leaching
  • acid solution