Skip to main content

Chiral self-assembly of terminal alkyne and selenium clusters organic-inorganic hybrid

Abstract

The on-surface self-assembly of inorganic atomic clusters and organic molecules offers significant opportunities to design novel hybrid materials with tailored functionalities. By adopting the advantages from both inorganic and organic components, the hybrid self-assembly molecules have shown great potential in future optoelectrical devices. Herein, we report the co-deposition of 4,8-diethynylbenzo[1,2-d-4,5-d0]bisoxazole (DEBBA) and Se atoms to produce a motif-adjustable organic-inorganic hybrid self-assembly system via the non-covalent interactions. By controlling the coverage of Se atoms, various chiral molecular networks containing Se, Se6, Se8, and terminal alkynes evolved on the Ag(111) surface. In particular, with the highest coverage of Se atoms, phase segregation into alternating one-dimensional chains of non-covalently bonded Se8 clusters and organic ligands has been noticed. The atom-coverage dependent evolution of self-assembly structures reflects the remarkable structural adaptability of Se clusters as building blocks based on the spontaneous resize to reach the maximum non-covalent interactions. This work has significantly extended the possibilities of flexible control in self-assembly nanostructures to enable more potential functions for broad applications.

This is a preview of subscription content, access via your institution.

References

  1. Schlickum, U.; Decker, R.; Klappenberger, F.; Zoppellaro, G.; Klyatskaya, S.; Auwärter, W.; Neppl, S.; Kern, K.; Brune, H.; Ruben, M. et al. Chiral kagomé lattice from simple ditopic molecular bricks. J. Am. Chem. Soc. 2008, 130, 11778–11782.

    CAS  Google Scholar 

  2. Shi, Z. L.; Lin, N. Porphyrin-based two-dimensional coordination Kagome lattice self-assembled on a Au(111) surface. J. Am. Chem. Soc. 2009, 131, 5376–5377.

    CAS  Google Scholar 

  3. Chen, T.; Chen, Q.; Zhang, X.; Wang, D.; Wan, L. J. Chiral Kagome network from thiacalix[4]arene tetrasulfonate at the interface of aqueous solution/Au(111) surface: An in situ electrochemical scanning tunneling microscopy study. J. Am. Chem. Soc. 2010, 132, 5598–5599.

    CAS  Google Scholar 

  4. Chen, Q.; Bae, S. C.; Granick, S. Directed self-assembly of a colloidal kagome lattice. Nature 2011, 469, 381–384.

    CAS  Google Scholar 

  5. Wang, T.; Fan, Q. T.; Feng, L.; Tao, Z. J.; Huang, J. M.; Ju, H. X.; Xu, Q.; Hu, S. W.; Zhu, J. F. Chiral Kagome lattices from on-surface synthesized molecules. ChemPhysChem 2017, 18, 3329–3333.

    CAS  Google Scholar 

  6. Xing, L. B.; Jiang, W.; Huang, Z. C.; Liu, J.; Song, H. J.; Zhao, W. H.; Dai, J. X.; Zhu, H.; Wang, Z. H.; Weiss, P. S. et al. Steering two-dimensional porous networks with σ-hole interactions of Br⋯S and Br⋯Br. Chem. Mater. 2019, 31, 3041–3048.

    CAS  Google Scholar 

  7. Hernández-López, L.; Piquero-Zulaica, I.; Downing, C. A.; Piantek, M.; Fujii, J.; Serrate, D.; Ortega, J. E.; Bartolomé, F.; Lobo-Checa, J. Searching for kagome multi-bands and edge states in a predicted organic topological insulator. Nanoscale 2021, 13, 5216–5223.

    Google Scholar 

  8. Adisoejoso, J.; Tahara, K.; Okuhata, S.; Lei, S. B.; Tobe, Y.; De Feyter, S. Two-dimensional crystal engineering: A four-component architecture at a liquid-solid interface. Angew. Chem., Int. Ed. 2009, 48, 7353–7357.

    CAS  Google Scholar 

  9. Écija, D.; Urgel, J. I.; Papageorgiou, A. C.; Joshi, S.; Auwärter, W.; Seitsonen, A. P.; Klyatskaya, S.; Ruben, M.; Fischer, S.; Vijayaraghavan, S. et al. Five-vertex Archimedean surface tessellation by lanthanide-directed molecular self-assembly. Proc. Natl. Acad. Sci. USA. 2013, 110, 6678–6681.

    Google Scholar 

  10. Zhang, Y. Q.; Paszkiewicz, M.; Du, P.; Zhang, L. D.; Lin, T.; Chen, Z.; Klyatskaya, S.; Ruben, M.; Seitsonen, A. P.; Barth, J. V. et al. Complex supramolecular interfacial tessellation through convergent multi-step reaction of a dissymmetric simple organic precursor. Nat. Chem. 2018, 10, 296–304.

    CAS  Google Scholar 

  11. Cheng, F.; Wu, X. J.; Hu, Z. X.; Lu, X. F.; Ding, Z. J.; Shao, Y.; Xu, H.; Ji, W.; Wu, J. S.; Loh, K. P. Two-dimensional tessellation by molecular tiles constructed from halogen-halogen and halogen-metal networks. Nat. Commun. 2018, 9, 4871.

    Google Scholar 

  12. Sharma, H. R.; Nozawa, K.; Smerdon, J. A.; Nugent, P. J.; McLeod, I.; Dhanak, V. R.; Shimoda, M.; Ishii, Y.; Tsai, A. P.; McGrath, R. Templated three-dimensional growth of quasicrystalline lead. Nat. Commun. 2013, 4, 2715.

    CAS  Google Scholar 

  13. Wasio, N. A.; Quardokus, R. C.; Forrest, R. P.; Lent, C. S.; Corcelli, S. A.; Christie, J. A.; Henderson, K. W.; Kandel, S. A. Self-assembly of hydrogen-bonded two-dimensional quasicrystals. Nature 2014, 507, 86–89.

    CAS  Google Scholar 

  14. Urgel, J. I.; Écija, D.; Lyu, G. Q.; Zhang, R.; Palma, C. A.; Auwärter, W.; Lin, N.; Barth, J. V. Quasicrystallinity expressed in two-dimensional coordination networks. Nat. Chem. 2016, 8, 657–662.

    CAS  Google Scholar 

  15. Collins, L. C.; Witte, T. G.; Silverman, R.; Green, D. B.; Gomes, K. K. Imaging quasiperiodic electronic states in a synthetic Penrose tiling. Nat. Commun. 2017, 8, 15961.

    CAS  Google Scholar 

  16. Kalashnyk, N.; Ledieu, J.; Gaudry, É.; Cui, C.; Tsai, A. P.; Fournée, V. Building 2D quasicrystals from 5-fold symmetric corannulene molecules. Nano Res. 2018, 11, 2129–2138.

    CAS  Google Scholar 

  17. Paßens, M.; Karthäuser, S. Rotational switches in the two-dimensional fullerene quasicrystal. Acta Crystallogr. A:Found Adv. 2019, 75, 41–49.

    Google Scholar 

  18. Shang, J.; Wang, Y. F.; Chen, M.; Dai, J. X.; Zhou, X.; Kuttner, J.; Hilt, G.; Shao, X.; Gottfried, J. M.; Wu, K. Assembling molecular Sierpiński triangle fractals. Nat. Chem. 2015, 7, 389–393.

    CAS  Google Scholar 

  19. Li, N.; Zhang, X.; Gu, G. C.; Wang, H.; Nieckarz, D.; Szabelski, P.; He, Y.; Wang, Y.; Lü, J. T.; Tang, H. et al. Sierpiński-triangle fractal crystals with the C3v point group. Chin. Chem. Lett. 2015, 26, 1198–1202.

    Google Scholar 

  20. Mo, Y. P.; Chen, T.; Dai, J. X.; Wu, K.; Wang, D. On-surface synthesis of highly ordered covalent Sierpiński triangle fractals. J. Am. Chem. Soc. 2019, 141, 11378–11382.

    CAS  Google Scholar 

  21. Wang, Y. F.; Xue, N.; Li, R. N.; Wu, T. H.; Li, N.; Hou, S. M.; Wang, Y. F. Construction and properties of Sierpinski triangular fractals on surfaces. ChemPhysChem 2019, 20, 2262–2270.

    CAS  Google Scholar 

  22. Feng, G. Y.; Shen, Y. T.; Yu, Y. X.; Liang, Q.; Dong, J.; Lei, S. B.; Hu, W. P. Boronic ester Sierpinski triangle fractals: From precursor design to on-surface synthesis and self-assembling superstructures. Chem. Commun. 2021, 57, 2065–2068.

    CAS  Google Scholar 

  23. Elemans, J. A. A. W.; Lei, S. B.; De Feyter, S. Molecular and supramolecular networks on surfaces: From two-dimensional crystal engineering to reactivity. Angew. Chem., Int. Ed. 2009, 48, 7298–7332.

    CAS  Google Scholar 

  24. Chen, T.; Wang, D.; Wan, L. J. Two-dimensional chiral molecular assembly on solid surfaces: Formation and regulation. Natl. Sci. Rev. 2015, 2, 205–216.

    CAS  Google Scholar 

  25. Mali, K. S.; Pearce, N.; De Feyter, S.; Champness, N. R. Frontiers of supramolecular chemistry at solid surfaces. Chem. Soc. Rev. 2017, 46, 2520–2542.

    CAS  Google Scholar 

  26. Xing, L. B.; Peng, Z. T.; Li, W. T.; Wu, K. On controllability and applicability of surface molecular self-assemblies. Acc. Chem. Res. 2019, 52, 1048–1058.

    CAS  Google Scholar 

  27. Huan, J. W.; Zhang, X. M.; Zeng, Q. D. Two-dimensional supramolecular crystal engineering: Chirality manipulation. Phys. Chem. Chem. Phys. 2019, 21, 11537–11553.

    CAS  Google Scholar 

  28. Li Y. H.; Yu C. B.; Li Z.; Jiang, P. Zhou, X. Y.; Gao C. F.; Li J. Y. Layer-dependent and light-tunable surface potential of two-dimensional indium selenide (InSe) flakes. Rare Met. 2020, 39, 1356–1363.

    CAS  Google Scholar 

  29. Zaera, F. Chirality in adsorption on solid surfaces. Chem. Soc. Rev. 2017, 46, 7374–7398.

    CAS  Google Scholar 

  30. Zhang, Y. Q.; Björk, J.; Barth, J. V.; Klappenberger, F. Intermolecular hybridization creating nanopore orbital in a supramolecular hydrocarbon sheet. Nano Lett. 2016, 16, 4274–4281.

    CAS  Google Scholar 

  31. Chen, Q.; Chen, T.; Wang, D.; Liu, H. B.; Li, Y. L.; Wan, L. J. Structure and structural transition of chiral domains in oligo(p-phenylenevinylene) assembly investigated by scanning tunneling microscopy. Proc. Natl. Acad. Sci. USA. 2010, 107, 2169–2774.

    Google Scholar 

  32. Liu, J.; Chen, T.; Deng, X.; Wang, D.; Pei, J.; Wan, L. J. Chiral hierarchical molecular nanostructures on two-dimensional surface by controllable trinary self-assembly. J. Am. Chem. Soc. 2011, 133, 21010–21015.

    CAS  Google Scholar 

  33. Hu, B. J.; Wu, P. Y. Facile synthesis of large-area ultrathin two-dimensional supramolecular nanosheets in water. Nano Res. 2020, 13, 868–874.

    CAS  Google Scholar 

  34. Fang, Z. W.; Xing, Q. Y.; Fernandez, D.; Zhang, X.; Yu, G. H. A mini review on two-dimensional nanomaterial assembly. Nano Res. 2020, 13, 1179–1190.

    Google Scholar 

  35. Yuan, Z.; Tai, H. L.; Su, Y. J.; Xie, G. Z.; Du, X. S.; Jiang, Y. D. Self-assembled graphene oxide/polyethyleneimine films as high-performance quartz crystal microbalance humidity sensors. Rare Met. 2021, 40, 1597–1603.

    CAS  Google Scholar 

  36. Huang, M.; Liu, J. X.; Huang, P.; Hu, H.; Lai, C. Self-assembly synthesis of SnNb2O6/amino-functionalized graphene nanocomposite as high-rate anode materials for sodium-ion batteries. Rare Met. 2021, 40, 425–432.

    CAS  Google Scholar 

  37. Lyu, M. Q.; Yun, J. H.; Cai, M. L.; Jiao, Y. L.; Bernhardt, P. V.; Zhang, M.; Wang, Q.; Du, A. J.; Wang, H. X.; Liu, G.; et al. Organic-inorganic bismuth (III)-based material: A lead-free, air-stable and solution-processable light-absorber beyond organolead perovskites. Nano Res. 2016, 9, 692–702.

    CAS  Google Scholar 

  38. Brenner, T. M.; Egger, D. A.; Kronik, L.; Hodes, G.; Cahen, D. Hybrid organic-inorganic perovskites: Low-cost semiconductors with intriguing charge-transport properties. Nat. Rev. Mater. 2016, 1, 15007.

    CAS  Google Scholar 

  39. Saparov, B.; Mitzi, D. B. Organic-inorganic perovskites: Structural versatility for functional materials design. Chem. Rev. 2016, 116, 4558–4596.

    CAS  Google Scholar 

  40. Dietz, J.; Müller, U.; Müller, V.; Dehnicke, K. The crystal structures of (NEt4+)2[Se52− · 1/2 Se6 · Se7] and (NPr4)2Se11. Z. Naturforsch. B 1991, 46, 1293–1299.

    CAS  Google Scholar 

  41. Panthöfer, M.; Shopova, D.; Jansen, M. Crystal structure and stablility of the fullerene-chalcogene co-crystal C60Se8CS2. Z. Anorg. Allg. Chem. 2005, 631, 1387–1390.

    Google Scholar 

  42. Shopova, D.; Panthöfer, M.; Petricek, V.; Jansen, M. Refinement strategies for fullerene structures: Use of local, non-crystallographical point group symmetry. Z. Kristallogr. 2007, 222, 546–550.

    CAS  Google Scholar 

  43. Lister, T. E.; Stickney, J. L. Atomic level studies of selenium electrodeposition on Gold(111) and Gold(110). J. Phys. Chem. 1996, 100, 19568–19576.

    CAS  Google Scholar 

  44. Ruano, G.; Tosi, E.; Sanchez, E.; Abufager, P.; Martiarena, M. L.; Grizzi, O.; Zampieri, G. Stages of Se adsorption on Au(111): A combined XPS, LEED, TOF-DRS, and DFT study. Surf. Sci. 2017, 662, 113–122.

    CAS  Google Scholar 

  45. Chen, Z.; Lin, T.; Li, H. H.; Cheng, F.; Su, C. L.; Loh, K. P. Hydrogen bond guided synthesis of close-packed one-dimensional graphdiyne on the Ag(111) surface. Chem. Sci. 2019, 10, 10849–10852.

    CAS  Google Scholar 

  46. Wang, D. L.; Fang, Y.; Wang, S. Y.; Ji, S. J. Silver-mediated activation of terminal alkynes: A strategy to construct bis-ethynynl selenides and tellurides. Tetrahedron 2020, 76, 131083.

    CAS  Google Scholar 

  47. Karhu, A. J.; Pakkanen, O. J.; Rautiainen, J. M.; Oilunkaniemi, R.; Chivers, T.; Laitinen, R. S. Experimental and computational 77Se NMR investigations of the cyclic eight-membered selenium imides 1, 3, 5, 7-Se4(NR)4 (R = Me, tBu) and 1, 5-Se6(NMe)2. Inorg. Chem. 2015, 54, 4990–4997.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Guangdong Basic and Applied Basic Research Foundation (Nos. 2019A1515110819 and 2020A1515010767), NRF-CRP grant “Two Dimensional Covalent Organic Framework: Synthesis and Applications” (No. NRF-CRP 16-2015-02, funded by National Research Foundation, Prime Minister’s Office, Singapore), the Shenzhen Peacock Plan (No. KQTD2016053112042971), and the National Natural Science Foundation of China (Nos. 21802067 and 21771156).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chenliang Su, Bolong Huang or Kian Ping Loh.

Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Lin, T., Li, H. et al. Chiral self-assembly of terminal alkyne and selenium clusters organic-inorganic hybrid. Nano Res. 15, 2741–2745 (2022). https://doi.org/10.1007/s12274-021-3824-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3824-y

Keywords

  • self-assembly
  • inorganic-organic hybrid
  • chiral
  • Se cluster
  • concentration-dependent