Skip to main content
Log in

Boosting image-guiding radiation therapy through W18O49 nanospheres and the second near-infrared light irradiation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

More than 60% of cancer patients receive radiation therapy (RT) during their anticancer treatment. However, there is a huge challenge to improve the therapeutic efficacy of RT in less radioresponsive tumors and decrease damages dealt to the surrounding healthy tissues. Herein, we have reported the development of an efficacious RT treatment of relatively radioresistant breast cancer using W18O49 nanospheres and the second near-infrared (NIR) light irradiation. Featuring the X-ray attenuation ability and photothermal effect, together with ability to generate intracellular singlet oxygen and ·OH, W18O49 nanospheres can significantly increase radiation-induced DNA damage and decrease the mitochondrial membrane potential of cancer cells during RT, causing in nearby three-times improvement in inhibiting the proliferation of 4T1 cells. The in vivo evaluations verify that a rather effective therapeutic outcome is achieved by treatment of 4T1 tumor xenograft with NIR-enhanced RT using W18O49 nanospheres. Moreover, the X-ray attenuation ability and the strong near-infrared absorption of W18O49 nanospheres have enabled highly resolved in vivo computer tomography (CT)/photoacoustic (PA) imaging. This work presents an “all-in-one” synergistic platform to improve the therapeutic efficacy of RT in less radioresponsive tumors, therefore opening a new door for multimodal cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gluz, O.; Liedtke, C.; Gottschalk, N.; Pusztai, L.; Nitz, U.; Harbeck, N. Triple-negative breast cancer —current status and future directions. Ann. Oncol. 2009, 20, 1913–1927.

    Article  CAS  Google Scholar 

  2. Bai, X. P.; Ni, J.; Beretov, J.; Graham, P.; Li, Y. Triple-negative breast cancer therapeutic resistance: Where is the Achilles’ heel? Cancer Lett. 2021, 497, 100–111.

    Article  CAS  Google Scholar 

  3. Formenti, S. C.; Demaria, S. Systemic effects of local radiotherapy. Lancet Oncol. 2009, 10, 718–726.

    Article  Google Scholar 

  4. Song, G. S.; Cheng, L.; Chao, Y.; Yang, K.; Liu, Z. Emerging nanotechnology and advanced materials for cancer radiation therapy. Adv. Mater. 2017, 29, 1700996.

    Article  Google Scholar 

  5. The Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature 2012, 490, 61–70.

    Article  Google Scholar 

  6. He, M. Y.; Rancoule, C.; Rehailia-Blanchard, A.; Espenel, S.; Trone, J. C.; Bernichon, E.; Guillaume, E.; Vallard, A.; Magné, N. Radiotherapy in triple-negative breast cancer: Current situation and upcoming strategies. Critical Rev. Oncol./Hematol. 2018, 131, 96–101.

    Article  Google Scholar 

  7. Schmid, P.; Adams, S.; Rugo, H. S.; Schneeweiss, A.; Barrios, C. H.; Iwata, H.; Diéras, V.; Hegg, R.; Im, S. A.; Wright, G. S. et al. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N. Engl. J. Med. 2018, 379, 2108–2121.

    Article  CAS  Google Scholar 

  8. Mi, Y.; Shao, Z. Y.; Vang, J.; Kaidar-Person, O.; Wang, A. Z. Application of nanotechnology to cancer radiotherapy. Cancer Nanotechnol. 2016, 7, 11.

    Article  Google Scholar 

  9. Du, J. F.; Gu, Z. J.; Yan, L.; Yong, Y.; Yi, X.; Zhang, X.; Liu, J.; Wu, R. F.; Ge, C. C.; Chen, C. Y. et al. Poly(vinylpyrollidone)- and selenocysteine-modified Bi2Se3 nanoparticles enhance radiotherapy efficacy in tumors and promote radioprotection in normal tissues. Adv. Mater. 2017, 29, 1701268.

    Article  Google Scholar 

  10. Kwatra, D.; Venugopal, A.; Anant, S. Nanoparticles in radiation therapy: A summary of various approaches to enhance radiosensitization in cancer. Transl. Cancer Res. 2013, 2, 330–342.

    CAS  Google Scholar 

  11. Carter, J. D.; Cheng, N. N.; Qu, Y. Q.; Suarez, G. D.; Guo, T. Nanoscale energy deposition by X-ray absorbing nanostructures. J. Phys. Chem. B 2007, 111, 11622–11625.

    Article  CAS  Google Scholar 

  12. Wang, S. F.; Liu, J. L.; Qiu, S. F.; Yu, J. M. Facile fabrication of Cu9-S5 loaded core-shell nanoparticles for near infrared radiation mediated tumor therapeutic strategy in human esophageal squamous carcinoma cells nursing care of esophageal cancer patients. J. Photochem. Photobiol. B 2019, 199, 111583.

    Article  CAS  Google Scholar 

  13. Gao, S. Q.; Li, T. Y.; Guo, Y.; Sun, C. X.; Xianyu, B. R.; Xu, H. P. Selenium-containing nanoparticles combine the NK cells mediated immunotherapy with radiotherapy and chemotherapy. Adv. Mater. 2020, 32, 1907568.

    Article  CAS  Google Scholar 

  14. Wang, L. Y.; Zhang, T. T.; Huo, M. F.; Guo, J.; Chen, Y.; Xu, H. X. Construction of nucleus-targeting iridium nanocrystals for photonic hyperthermia-synergized cancer radiotherapy. Small 2019, 15, e1903254.

    Article  Google Scholar 

  15. Song, G. S.; Chao, Y.; Chen, Y. Y.; Liang, C.; Yi, X.; Yang, G. B.; Yang, K.; Cheng, L.; Zhang, Q.; Liu, Z. All-in-one theranostic nanoplatform based on hollow TaOx for chelator-free labeling imaging, drug delivery, and synergistically enhanced radiotherapy. Adv. Funct. Mater. 2016, 26, 8243–8254.

    Article  CAS  Google Scholar 

  16. Song, G. S.; Chen, Y. Y.; Liang, C.; Yi, X.; Liu, J. J.; Sun, X. Q.; Shen, S. D.; Yang, K.; Liu, Z. Catalase-loaded TaOx nanoshells as bio-nanoreactors combining high-Z element and enzyme delivery for enhancing radiotherapy. Adv. Mater. 2016, 28, 7143–7148.

    Article  CAS  Google Scholar 

  17. Atkinson, R. L.; Zhang, M.; Diagaradjane, P.; Peddibhotla, S.; Contreras, A.; Hilsenbeck, S. G.; Woodward, W. A.; Krishnan, S.; Chang, J. C.; Rosen, J. M. Thermal enhancement with optically activated gold nanoshells sensitizes breast cancer stem cells to radiation therapy. Sci. Transl. Med. 2010, 2, 55ra79.

    Article  Google Scholar 

  18. Yang, Y. S.; Carney, R. P.; Stellacci, F.; Irvine, D. J. Enhancing radiotherapy by lipid nanocapsule-mediated delivery of amphiphilic gold nanoparticles to intracellular membranes. ACS Nano 2014, 8, 8992–9002.

    Article  CAS  Google Scholar 

  19. Bonvalot, S.; Rutkowski, P. L.; Thariat, J.; Carrère, S.; Ducassou, A.; Sunyach, M. P.; Agoston, P.; Hong, A.; Mervoyer, A.; Rastrelli, M. et al. NBTXR3, a first-in-class radioenhancer hafnium oxide nanoparticle, plus radiotherapy versus radiotherapy alone in patients with locally advanced soft-tissue sarcoma (Act. In. Sarc): A multicentre, phase 2–3, randomised, controlled trial. Lancet Oncol. 2019, 20, 1148–1159.

    Article  CAS  Google Scholar 

  20. Maggiorella, L.; Barouch, G.; Devaux, C.; Pottier, A.; Deutsch, E.; Bourhis, J.; Borghi, E.; Levy, L. Nanoscale radiotherapy with hafnium oxide nanoparticles. Future Oncol. 2012, 8, 1167–1181.

    Article  CAS  Google Scholar 

  21. Bonvalot, S.; Le Pechoux, C.; De Baere, T.; Kantor, G.; Buy, X.; Stoeckle, E.; Terrier, P.; Sargos, P.; Coindre, J. M.; Lassau, N. et al. First-in-human study testing a new radioenhancer using nanoparticles (NBTXR3) activated by radiation therapy in patients with locally advanced soft tissue sarcomas. Clin. Cancer Res. 2017, 27, 908–917.

    Article  Google Scholar 

  22. Chen, Q.; Chen, J. W.; Yang, Z. J.; Xu, J.; Xu, L. G.; Liang, C.; Han, X.; Liu, Z. Nanoparticle-enhanced radiotherapy to trigger robust cancer immunotherapy. Adv. Mater. 2019, 31, 1802228.

    Article  Google Scholar 

  23. Huo, D.; Liu, S.; Zhang, C.; He, J.; Zhou, Z. Y.; Zhang, H.; Hu, Y. Hypoxia-targeting, tumor microenvironment responsive nanocluster bomb for radical-enhanced radiotherapy. ACS Nano 2017, 11, 10159–10174.

    Article  CAS  Google Scholar 

  24. Carlisi, D.; De Blasio, A.; Drago-Ferrante, R.; Di Fiore, R.; Buttitta, G.; Morreale, M.; Scerri, C.; Vento, R.; Tesoriere, G. Parthenolide prevents resistance of MDA-MB231 cells to doxorubicin and mitoxantrone: The role of Nrf2. Cell Death Discov. 2017, 3, 17078.

    Article  CAS  Google Scholar 

  25. Yong, Y.; Cheng, X. J.; Bao, T.; Zu, M.; Yan, L.; Yin, W. Y.; Ge, C. C.; Wang, D. L.; Gu, Z. J.; Zhao, Y. L. Tungsten sulfide quantum dots as multifunctional nanotheranostics for in vivo dual-modal image-guided photothermal/radiotherapy synergistic therapy. ACS Nano 2015, 9, 12451–12463.

    Article  CAS  Google Scholar 

  26. Park, Y. S.; Liz-Marzán, L. M.; Kasuya, A.; Kobayashi, Y.; Nagao, D.; Konno, M.; Mamykin, S.; Dmytruk, A.; Takeda, M.; Ohuchi, N. X-ray absorption of gold nanoparticles with thin silica shell. J. Nanosci. Nanotechnol. 2006, 6, 3503–3506.

    Article  CAS  Google Scholar 

  27. Qiu, J. J.; Xiao, Q. F.; Zheng, X. P.; Zhang, L. B.; Xing, H. Y.; Ni, D. L.; Liu, Y. Y.; Zhang, S. J.; Ren, Q. G.; Hua, Y. Q. et al. Single W18O49 nanowires: A multifunctional nanoplatform for computed tomography imaging and photothermal/photodynamic/radiation synergistic cancer therapy. Nano Res. 2015, 8, 3580–3590.

    Article  CAS  Google Scholar 

  28. Chen, Z. G.; Wang, Q.; Wang, H. L.; Zhang, L. S.; Song, G. S.; Song, L. L.; Hu, J. Q.; Wang, H. Z.; Liu, J. S.; Zhu, M. F. et al. Ultrathin PEGylated W18O49 nanowires as a new 980 nm-laser-driven photothermal agent for efficient ablation of cancer cells in vivo. Adv. Mater. 2013, 25, 2095–2100.

    Article  CAS  Google Scholar 

  29. Kalluru, P.; Vankayala, R.; Chiang, C. S.; Hwang, K. C. Photosensitization of singlet oxygen and in vivo photodynamic therapeutic effects mediated by PEGylated W18O49 nanowires. Angew. Chem., Int. Ed. 2013, 52, 12332–12336.

    Article  CAS  Google Scholar 

  30. Zhou, Z. G.; Kong, B.; Yu, C.; Shi, X. Y.; Wang, M. W.; Liu, W.; Sun, Y. N.; Zhang, Y. J.; Yang, H.; Yang, S. P. Tungsten oxide nanorods: An efficient nanoplatform for tumor CT imaging and photothermal therapy. Sci. Rep. 2014, 4, 3653.

    Article  Google Scholar 

  31. Guo, W.; Guo, C. S.; Zheng, N. N.; Sun, T. D.; Liu, S. Q. CsxWO3 nanorods coated with polyelectrolyte multilayers as a multifunctional nanomaterial for bimodal imaging-guided photothermal/photodynamic cancer treatment. Adv. Mater. 2017, 29, 1604157.

    Article  Google Scholar 

  32. Peng, H. P.; Liu, P.; Lin, D. W.; Deng, Y. N.; Lei, Y.; Chen, W.; Chen, Y. Z.; Lin, X. H.; Xia, X. H.; Liu, A. L. Fabrication and multifunctional properties of ultrasmall water-soluble tungsten oxide quantum dots. Chem. Commun. 2016, 52, 9534–9537.

    Article  CAS  Google Scholar 

  33. Deng, K. R.; Hou, Z. Y.; Deng, X. R.; Yang, P. P.; Li, C. X.; Lin, J. Enhanced antitumor efficacy by 808 nm laser-induced synergistic photothermal and photodynamic therapy based on a indocyanine-green-attached W18O49 nanostructure. Adv. Funct. Mater. 2015, 25, 7280–7290.

    Article  CAS  Google Scholar 

  34. Sordillo, L. A.; Pu, Y.; Pratavieira, S.; Budansky, Y.; Alfano, R. R. Deep optical imaging of tissue using the second and third near-infrared spectral windows. J. Biomed. Opt. 2014, 19, 056004.

    Article  Google Scholar 

  35. Liu, Y.; Zhen, W. Y.; Jin, L. H.; Zhang, S. T.; Sun, G. Y.; Zhang, T. Q.; Xu, X.; Song, S. Y.; Wang, Y. H.; Liu, J. H. et al. All-in-one theranostic nanoagent with enhanced reactive oxygen species generation and modulating tumor microenvironment ability for effective tumor eradication. ACS Nano 2018, 12, 4886–4893.

    Article  CAS  Google Scholar 

  36. Feng, W.; Han, X. G.; Wang, R. Y.; Gao, X.; Hu, P.; Yue, W. W.; Chen, Y.; Shi, J. L. Nanocatalysts-augmented and photothermal-enhanced tumor-specific sequential nanocatalytic therapy in both NIR-I and NIR-II biowindows. Adv. Mater. 2019, 31, 1805919.

    Google Scholar 

  37. Fan, L.; Xu, X. D.; Zhu, C. H.; Han, J.; Gao, L. Z.; Xi, J. Q.; Guo, R. Tumor catalytic-photothermal therapy with yolk-shell gold@carbon nanozymes. ACS Appl. Mater. Interfaces 2018, 10, 4502–4511.

    Article  CAS  Google Scholar 

  38. Wang, L. M.; Sun, Q.; Wang, X.; Wen, T.; Yin, J. J.; Wang, P. Y.; Bai, R.; Zhang, X. Q.; Zhang, L. H.; Lu, A. H. et al. Using hollow carbon nanospheres as a light-induced free radical generator to overcome chemotherapy resistance. J. Am. Chem. Soc. 2015, 137, 1947–1955.

    Article  CAS  Google Scholar 

  39. Dewhirst, M. W.; Cao, Y. T.; Moeller, B. Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response. Nat. Rev. Cancer 2008, 8, 425–437.

    Article  CAS  Google Scholar 

  40. Zhu, C. L.; Zheng, S. Q.; Cao, T.; Lin, C. C.; Xie, Z. H. Surface oxygen vacancies induced peroxidase-like activity for W18O49 nanospheres and their application in degradation of methylene blue. J. Nanopart. Res. 2018, 20, 173.

    Article  Google Scholar 

  41. Liu, Z. X.; Gong, S. D.; Wang, Y.; Chen, T.; Niu, Y. S.; Xu, Y. H. Recognition of the enzymatically active and inhibitive oxygenous groups on WO3−x quantum dots by chemical deactivation and density functional theory calculations. ACS Appl. Bio Mater. 2020, 3, 1459–1468.

    Article  CAS  Google Scholar 

  42. Fan, K. L.; Xi, J. Q.; Fan, L.; Wang, P. X.; Zhu, C. H.; Tang, Y.; Xu, X. D.; Liang, M. M.; Jiang, B.; Yan, X. Y. et al. In vivo guiding nitrogen-doped carbon nanozyme for tumor catalytic therapy. Nat. Commun. 2018, 9, 1440.

    Article  Google Scholar 

  43. Hoertz, P. G.; Magnus-Aryitey, D.; Gupta, V.; Norton, C.; Doorn, S.; Ennis, T. Photocatalytic and radiocatalytic nanomaterials for the degradation of organicspecies. Radiat. Phys. Chem. 2013, 84, 51–58.

    Article  CAS  Google Scholar 

  44. Wang, X.; Zhang, C. Y.; Du, J. F.; Dong, X. H.; Jian, S.; Yan, L.; Gu, Z. J.; Zhao, Y. L. Enhanced generation of non-oxygen dependent free radicals by Schottky-type heterostructures of Au-Bi2S3 nanoparticles via X-ray-induced catalytic reaction for radiosensitization. ACS Nano 2019, 13, 5947–5958.

    Article  CAS  Google Scholar 

  45. Guo, C. S.; Yin, S.; Yan, M.; Kobayashi, M.; Kakihana, M.; Sato, T. Morphology-controlled synthesis of W18O49 nanostructures and their near-infrared absorption properties. Inorg. Chem. 2012, 51, 4763–4771.

    Article  CAS  Google Scholar 

  46. Manthiram, K.; Alivisatos, A. P. Tunable localized surface plasmon resonances in tungsten oxide nanocrystals. J. Am. Chem. Soc. 2012, 134, 3995–3998.

    Article  CAS  Google Scholar 

  47. Zhou, J.; Ding, Y.; Deng, S. Z.; Gong, L.; Xu, N. S.; Wang, Z. L. Three-Dimensional tungsten oxide nanowire networks. Adv. Mater. 2005, 17, 2107–2110.

    Article  CAS  Google Scholar 

  48. Sinha, L.; Shirage, P. M. Surface Oxygen vacancy formulated energy storage application: Pseudocapacitor-battery trait of W18O49 nanorods. J. Electrochem. Soc. 2019, 166, A3496–A3503.

    Article  CAS  Google Scholar 

  49. Zhang, R. K.; Ning, F. Y.; Xu, S. M.; Zhou, L.; Shao, M. F.; Wei, M. Oxygen vacancy engineering of WO3 toward largely enhanced photoelectrochemical water splitting. Electrochim. Acta 2018, 274, 217–223.

    Article  CAS  Google Scholar 

  50. Lu, D. Y.; Chen, J.; Zhou, J.; Deng, S. Z.; Xu, N. S.; Xu, J. B. Raman spectroscopic study of oxidation and phase transition in W18O49 nanowires. J. Raman Spectrosc. 2007, 38, 176–180.

    Article  CAS  Google Scholar 

  51. Xi, G. C.; Ouyang, S. X.; Li, P.; Ye, J. H.; Ma, Q.; Su, N.; Bai, H.; Wang, C. Ultrathin W18O49 nanowires with diameters below 1 nm: Synthesis, near-infrared absorption, photoluminescence, and photochemical reduction of carbon dioxide. Angew. Chem., Int. Ed. 2012, 51, 2395–2399.

    Article  CAS  Google Scholar 

  52. Mattox, T. M.; Bergerud, A.; Agrawal, A.; Milliron, D. J. Influence of shape on the surface plasmon resonance of tungsten bronze nanocrystals. Chem. Mater. 2014, 26, 1779–1784.

    Article  CAS  Google Scholar 

  53. Liu, W.; Bai, H.; Li, X. S.; Li, W. T.; Zhai, J. F.; Li, J. F.; Xi, G. C. Improved surface-enhanced raman spectroscopy sensitivity on metallic tungsten oxide by the synergistic effect of surface plasmon resonance coupling and charge transfer. J. Phys. Chem. Lett. 2018, 9, 4096–4100.

    Article  CAS  Google Scholar 

  54. Tian, Q. W.; Jiang, F. R.; Zou, R. J.; Liu, Q.; Chen, Z. G.; Zhu, M. F.; Yang, S. P.; Wang, J. L.; Wang, J. H.; Hu, J. Q. Hydrophilic Cu9S5 nanocrystals: A photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo. ACS Nano 2011, 5, 9761–9771.

    Article  CAS  Google Scholar 

  55. Awazu, K.; Fujimaki, M.; Rockstuhl, C.; Tominaga, J.; Murakami, H.; Ohki, Y.; Yoshida, N.; Watanabe, T. A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide. J. Am. Chem. Soc. 2008, 130, 1676–1680.

    Article  CAS  Google Scholar 

  56. Tang, W. J.; Liu, Y. W.; Zhang, H.; Wang, C. X. New approximate formula for Arrhenius temperature integral. Thermochim. Acta 2003, 408, 39–43.

    Article  CAS  Google Scholar 

  57. Hasebe, N.; Suzuki, K.; Horiuchi, H.; Suzuki, H.; Yoshihara, T.; Okutsu, T.; Tobita, S. Absolute phosphorescence quantum yields of singlet molecular oxygen in solution determined using an integrating sphere instrument. Anal. Chem. 2015, 87, 2360–2366.

    Article  CAS  Google Scholar 

  58. Park, C.; Papiez, L.; Zhang, S. C.; Story, M.; Timmerman, R. D. Universal survival curve and single fraction equivalent dose: Useful tools in understanding potency of ablative radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2008, 70, 847–852.

    Article  Google Scholar 

  59. Rofstad, E. K. Retention of cellular radiation sensitivity in cell and xenograft lines established from human melanoma surgical specimens. Cancer Res. 1992, 52, 1764–1769.

    CAS  Google Scholar 

  60. Li, M. F.; Zhao, Q.; Yi, X.; Zhong, X. Y.; Song, G. S.; Chai, Z. F.; Liu, Z.; Yang, K. Au@MnS@ZnS core/shell/shell nanoparticles for magnetic resonance imaging and enhanced cancer radiation therapy. ACS Appl. Mater. Interfaces 2016, 8, 9557–9564.

    Article  CAS  Google Scholar 

  61. Gravina, G. L.; Festuccia, C.; Marampon, F.; Popov, V. M.; Pestell, R. G.; Zani, B. M.; Tombolini, V. Biological rationale for the use of DNA methyltransferase inhibitors as new strategy for modulation of tumor response to chemotherapy and radiation. Mol. Cancer 2010, 9, 305.

    Article  CAS  Google Scholar 

  62. Zhao, H.; Wu, C. H.; Gao, D.; Chen, S. P.; Zhu, Y. D.; Sun, J.; Luo, H. R.; Yu, K.; Fan, H S.; Zhang, X. D. Antitumor effect by hydroxyapatite nanospheres: Activation of mitochondria-dependent apoptosis and negative regulation of phosphatidylinositol-3-kinase/protein kinase B pathway. ACS Nano 2018, 12, 7838–7854.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Fund for Distinguished Young Scholars (No. 51825202, S. Q. L.), the National Natural Science Foundation of China (Nos. 21775032 (S. Q. L.) and U20A20339 (N. N. Z.)), and Heilongjiang Touyan Innovation Team Program (S. Q. L.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wanhai Xu or Shaoqin Liu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, N., Zhang, S., Wang, L. et al. Boosting image-guiding radiation therapy through W18O49 nanospheres and the second near-infrared light irradiation. Nano Res. 15, 2315–2323 (2022). https://doi.org/10.1007/s12274-021-3814-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3814-0

Keywords

Navigation