Skip to main content

Tuning the oxidation state of Ru to surpass Pt in hydrogen evolution reaction

Abstract

The high price of state-of-the-art Pt electrocatalysts has plagued the acidic water electrolysis technique for decades. As a cheaper alternative to Pt, ruthenium is considered an inferior hydrogen evolution reaction (HER) catalyst than Pt due to its high susceptibility to oxidation and loss of activity. Herein, we reveal that the HER activity on Ru based catalysts could surpass Pt via tuning Ru oxidation state. Specifically, RuP clusters encapsulated in few layers of N, P-doped carbon (RuP@NPC) display a minimum over potential of 15.6 mV to deliver 10 mA·cm−2. Moreover, we for the first time show that a Ru based catalyst could afford current density up to 4 A·cm−2 in a practical water electrolysis cell, with voltage even lower than the Pt/C-based cell, as well as high robustness during 200 h operation. Using a combination of experiment probing and calculation, we postulate that the suitably charged Ru (∼ +2.4) catalytic center is the origin for its superior catalytic behavior. While the moderately charged Ru is empowered with optimized H adsorption behavior, the carbon encapsulation layers protect RuP clusters from over oxidation, thereby conferring the catalyst with high robustness.

References

  1. [1]

    Jiang, P.; Chen, J. T.; Wang, C. L.; Yang, K.; Gong, S. P.; Liu, S.; Lin, Z. Y.; Li, M. S.; Xia, G. L.; Yang, Y. et al. Tuning the activity of carbon for electrocatalytic hydrogen evolution via an iridium-cobalt alloy core encapsulated in nitrogen-doped carbon cages. Adv. Mater. 2018, 30, 1705324.

    Article  CAS  Google Scholar 

  2. [2]

    Feng, J. R.; Lv, F.; Zhang, W. Y.; Li, P. H.; Wang, K.; Yang, C.; Wang, B.; Yang, Y.; Zhou, J. H.; Lin, F. et al. Iridium-based multimetallic porous hollow nanocrystals for efficient overall-water-splitting catalysis. Adv. Mater. 2017, 29, 1703798.

    Article  CAS  Google Scholar 

  3. [3]

    Kweon, D. H.; Okyay, M. S.; Kim, S. J.; Jeon, J. P.; Noh, H. J.; Park, N.; Mahmood, J.; Baek, J. B. Ruthenium anchored on carbon nanotube electrocatalyst for hydrogen production with enhanced faradaic efficiency. Nat. Commun. 2020, 11, 1278.

    Article  CAS  Google Scholar 

  4. [4]

    Chen, L. N.; Hou, K. P.; Liu, Y. S.; Qi, Z Y..; Zheng, Q.; Lu, Y. H.; Chen, J. Y.; Chen, J. L.; Pao, C. W.; Wang, S. B. et al. Efficient hydrogen production from methanol using a single-site Pt1/CeO2 catalyst. J. Am. Chem. Soc. 2019, 141, 17995–17999.

    Article  CAS  Google Scholar 

  5. [5]

    Tiwari, J. N.; Sultan, S.; Myung, C. W.; Yoon, T.; Li, N. N.; Ha, M. R.; Harzandi, A. M.; Park, H. J.; Kim, D. Y.; Chandrasekaran, S. S. et al. Multicomponent electrocatalyst with ultralow Pt loading and high hydrogen evolution activity. Nat. Energy 2018, 3, 773–782.

    Article  CAS  Google Scholar 

  6. [6]

    Jing, S. Y.; Lu, J. J.; Yu, G. T.; Yin, S. B.; Luo, L.; Zhang, Z. S.; Ma, Y. F.; Chen, W.; Shen, P. K. Carbon-encapsulated WOx hybrids as efficient catalysts for hydrogen evolution. Adv. Mater. 2018, 30, 1705979.

    Article  CAS  Google Scholar 

  7. [7]

    Schlapbach, L. Hydrogen-fuelled vehicles. Nature 2009, 460, 809–811.

    Article  CAS  Google Scholar 

  8. [8]

    Dresselhaus, M. S.; Thomas, I. L. Alternative energy technologies. Nature 2001, 414, 332–337.

    Article  CAS  Google Scholar 

  9. [9]

    Tiwari, J. N.; Harzandi, A. M.; Ha, M. R.; Sultan, S.; Myung, C. W.; Park, H. J.; Kim, D. Y.; Thangavel, P.; Singh, A. N.; Sharma, P. et al. High-performance hydrogen evolution by Ru single atoms and nitrided-Ru nanoparticles implanted on N-doped graphitic sheet. Adv. Energy Mater. 2019, 9, 1900931.

    Article  CAS  Google Scholar 

  10. [10]

    Chen, C. H.; Wu, D. Y.; Li, Z.; Zhang, R.; Kuai, C. G.; Zhao, X. R.; Dong, C. K.; Qiao, S. Z.; Liu, H.; Du, X. W. Ruthenium-based singleatom alloy with high electrocatalytic activity for hydrogen evolution. Adv. Energy Mater. 2019, 9, 1803913.

    Article  CAS  Google Scholar 

  11. [11]

    Cheng, X.; Lu, Y.; Zheng, L. R.; Cui, Y. T.; Niibe, M.; Tokushima, T.; Li, H. Y.; Zhang, Y. F.; Chen, G.; Sun, S. R. et al. Charge redistribution within platinum-nitrogen coordination structure to boost hydrogen evolution. Nano Energy 2020, 73, 104739.

    Article  CAS  Google Scholar 

  12. [12]

    Tavakkoli, M.; Holmberg, N.; Kronberg, R.; Jiang, H.; Sainio, J.; Kauppinen, E. I.; Kallio, T.; Laasonen, K. Electrochemical activation of single-walled carbon nanotubes with pseudo-atomic-scale platinum for the hydrogen evolution reaction. ACS Catal. 2017, 7, 3121–3130.

    Article  CAS  Google Scholar 

  13. [13]

    Gu, W. L.; Hu, L. Y.; Shang, C. S.; Li, J.; Wang, E. K. Enhancement of the hydrogen evolution performance by finely tuning the morphology of Co-based catalyst without changing chemical composition. Nano Res. 2019, 12, 191–196.

    Article  CAS  Google Scholar 

  14. [14]

    Pan, Y.; Sun, K. A.; Liu, S. J.; Cao, X.; Wu, K. L.; Cheong, W. C.; Chen, Z.; Wang, Y.; Li, Y.; Liu, Y. Q. et al. Core-shell ZIF-8@ZIF-67-derived CoP nanoparticle-embedded N-doped carbon nanotube hollow polyhedron for efficient overall water splitting. J. Am. Chem. Soc. 2018, 140, 2610–2618.

    Article  CAS  Google Scholar 

  15. [15]

    Ma, X. X.; Chang, Y. Q.; Zhang, Z.; Tang, J. L. Forest-like NiCoP@Cu3P supported on copper foam as a bifunctional catalyst for efficient water splitting. J. Mater. Chem. A 2018, 6, 2100–2106.

    Article  CAS  Google Scholar 

  16. [16]

    Hu, E. L.; Feng, Y. F.; Nai, J. W.; Zhao, D.; Hu, Y.; Lou, X. W. Construction of hierarchical Ni-Co-P hollow nanobricks with oriented nanosheets for efficient overall water splitting. Energy Environ. Sci. 2018, 11, 872–880.

    Article  CAS  Google Scholar 

  17. [17]

    Chung, D. Y.; Jun, S. W.; Yoon, G.; Kim, H.; Yoo, J. M.; Lee, K. S.; Kim, T.; Shin, H.; Sinha, A. K.; Kwon, S. G. et al. Large-scale synthesis of carbon-shell-coated FeP nanoparticles for robust hydrogen evolution reaction electrocatalyst. J. Am. Chem. Soc. 2017, 139, 6669–6674.

    Article  CAS  Google Scholar 

  18. [18]

    Najafi, L.; Bellani, S.; Oropesa-Nuñez, R.; Martín-García, B.; Prato, M.; Pasquale, L.; Panda, J. K.; Marvan, P.; Sofer, Z.; Bonaccorso, F. et al. TaS2, TaSe2, and their heterogeneous films as catalysts for the hydrogen evolution reaction. ACS Catal. 2020, 10, 3313–3325.

    Article  CAS  Google Scholar 

  19. [19]

    Wang, X.; Zhang, Y. W.; Si, H. N.; Zhang, Q. H.; Wu, J.; Gao, L.; Wei, X. F.; Sun, Y.; Liao, Q. L.; Zhang, Z. et al. Single-atom vacancy defect to trigger high-efficiency hydrogen evolution of MoS2. J. Am. Chem. Soc. 2020, 142, 4298–4308.

    Article  CAS  Google Scholar 

  20. [20]

    Wang, H.; Xiao, X.; Liu, S. Y.; Chiang, C. L.; Kuai, X. X.; Peng, C. K.; Lin, Y. C.; Meng, X.; Zhao, J. Q.; Choi, J. et al. Structural and electronic optimization of MoS2 edges for hydrogen evolution. J. Am. Chem. Soc. 2019, 141, 18578–18584.

    Article  CAS  Google Scholar 

  21. [21]

    Khan, M.; Yousaf, A. B.; Chen, M. M.; Wei, C. S.; Wu, X. B.; Huang, N. D.; Qi, Z. M.; Li, L. B. Molybdenum sulfide/graphene-carbon nanotube nanocomposite material for electrocatalytic applications in hydrogen evolution reactions. Nano Res. 2016, 9, 837–848.

    Article  CAS  Google Scholar 

  22. [22]

    Ye, W.; Ren, C. H.; Liu, D. B.; Wang, C. M.; Zhang, N.; Yan, W. S.; Song, L.; Xiong, Y. J. Maneuvering charge polarization and transport in 2HMoS2 for enhanced electrocatalytic hydrogen evolution reaction. Nano Res. 2016, 9, 2662–2671.

    Article  CAS  Google Scholar 

  23. [23]

    Diao, J. X.; Qiu, Y.; Liu, S. Q.; Wang, W. T.; Chen, K.; Li, H. L.; Yuan, W. Y.; Qu, Y. T.; Guo, X. H. Interfacial engineering of W2N/WC heterostructures derived from solid-state synthesis: A highly efficient trifunctional electrocatalyst for orr, oer, and her. Adv. Mater. 2020, 32, e1905679.

    Article  CAS  Google Scholar 

  24. [24]

    Xu, Y. T.; Xiao, X. F.; Ye, Z. M.; Zhao, S. L.; Shen, R. A.; He, C. T.; Zhang, J. P.; Li, Y. D.; Chen, X. M. Cage-confinement pyrolysis route to ultrasmall tungsten carbide nanoparticles for efficient electrocatalytic hydrogen evolution. J. Am. Chem. Soc. 2017, 139, 5285–5288.

    Article  CAS  Google Scholar 

  25. [25]

    Cheng, H. F.; Yang, N. L.; Liu, G. G.; Ge, Y. Y.; Huang, J. T.; Yun, Q. B.; Du, Y. H.; Sun, C. J.; Chen, B.; Liu, J. W. et al. Ligand-exchange-induced amorphization of Pd nanomaterials for highly efficient electrocatalytic hydrogen evolution reaction. Adv. Mater. 2020, 32, e1902964.

    Article  CAS  Google Scholar 

  26. [26]

    Ramalingam, V.; Varadhan, P.; Fu, H. C.; Kim, H.; Zhang, D. L.; Chen, S. M.; Song, L.; Ma, D.; Wang, Y.; Alshareef, H. N. et al. Heteroatom-mediated interactions between ruthenium single atoms and an MXene support for efficient hydrogen evolution. Adv. Mater. 2019, 31, 1903841.

    Article  CAS  Google Scholar 

  27. [27]

    Li, M. X.; Wang, H. Y.; Zhu, W. D.; Li, W. M.; Wang, C.; Lu, X. F. RuNi nanoparticles embedded in N-doped carbon nanofibers as a robust bifunctional catalyst for efficient overall water splitting. Adv. Sci. 2020, 7, 1901833.

    Article  CAS  Google Scholar 

  28. [28]

    Zheng, Y.; Jiao, Y.; Zhu, Y. H.; Li, L. H.; Han, Y.; Chen, Y.; Jaroniec, M.; Qiao, S. Z. High electrocatalytic hydrogen evolution activity of an anomalous ruthenium catalyst. J. Am. Chem. Soc. 2016, 138, 16174–16181.

    Article  CAS  Google Scholar 

  29. [29]

    Wang, J.; Wei, Z. Z.; Mao, S. J.; Li, H. R.; Wang, Y. Highly uniform Ru nanoparticles over N-doped carbon: pH and temperature-universal hydrogen release from water reduction. Energy Environ. Sci. 2018, 11, 800–806.

    Article  CAS  Google Scholar 

  30. [30]

    Li, W. D.; Liu, Y.; Wu, M.; Feng, X. L.; Redfern, S. A. T.; Shang, Y.; Yong, X.; Feng, T. L.; Wu, K. F.; Liu, Z. Y. et al. Carbon-quantum-dots-loaded ruthenium nanoparticles as an efficient electrocatalyst for hydrogen production in alkaline media. Adv. Mater. 2018, 30, 1800676.

    Article  CAS  Google Scholar 

  31. [31]

    Mahmood, J.; Li, F.; Jung, S. M.; Okyay, M. S.; Ahmad, I.; Kim, S. J.; Park, N.; Jeong, H. Y.; Baek, J. B. An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction. Nat. Nanotechnol. 2017, 12, 441–446.

    Article  CAS  Google Scholar 

  32. [32]

    Zhao, Y. M.; Wang, X. W.; Li, Z.; Zhao, P. P.; Tao, C. L.; Cheng, G. Z.; Luo, W. Enhanced catalytic activity of Ru through N modification toward alkaline hydrogen electrocatalysis. Chin. Chem. Lett., in press, https://doi.org/10.1016/j.cclet.2021.05.038.

  33. [33]

    Liu, Y.; Li, W. D.; Wu, H.; Lu, S. Y. Carbon dots enhance ruthenium nanoparticles for efficient hydrogen production in alkaline. Acta Phys.-Chim. Sin. 2021, 37, 2009082.

    Google Scholar 

  34. [34]

    Zhou, Y. Y.; Xie, Z. Y.; Jiang, J. X.; Wang, J.; Song, X. Y.; He, Q.; Ding, W.; Wei, Z. D. Lattice-confined Ru clusters with high CO tolerance and activity for the hydrogen oxidation reaction. Nat. Catal. 2020, 3, 454–462.

    Article  CAS  Google Scholar 

  35. [35]

    Tu, Y. C.; Deng, J.; Ma, C.; Yu, L.; Bao, X. H.; Deng, D. H. Double-layer hybrid chainmail catalyst for high-performance hydrogen evolution. Nano Energy 2020, 72, 104700.

    Article  CAS  Google Scholar 

  36. [36]

    Deng, D. H.; Yu, L.; Chen, X. Q.; Wang, G. X.; Jin, L.; Pan, X. L.; Deng, J.; Sun, G. Q.; Bao, X. H. Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction. Angew. Chem., Int. Ed. 2013, 52, 371–375.

    Article  CAS  Google Scholar 

  37. [37]

    Deng, J.; Ren, P. J.; Deng, D. H.; Bao, X. H. Enhanced electron penetration through an ultrathin graphene layer for highly efficient catalysis of the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2015, 54, 2100–2104.

    Article  CAS  Google Scholar 

  38. [38]

    Pu, Z. H.; Amiinu, I. S.; Kou, Z. K.; Li, W. Q.; Mu, S. C. RuP2-based catalysts with platinum-like activity and higher durability for the hydrogen evolution reaction at all pH values. Angew. Chem., Int. Ed. 2017, 56, 11559–11564.

    Article  CAS  Google Scholar 

  39. [39]

    Asefa, T. Metal-free and noble metal-free heteroatom-doped nanostructured carbons as prospective sustainable electrocatalysts. Acc. Chem. Res. 2016, 49, 1873–1883.

    Article  CAS  Google Scholar 

  40. [40]

    Zou, X. X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148–5180.

    Article  CAS  Google Scholar 

  41. [41]

    Zheng, Y.; Jiao, Y.; Ge, L.; Jaroniec, M.; Qiao, S. Z. Two-step boron and nitrogen doping in graphene for enhanced synergistic catalysis. Angew. Chem., Int. Ed. 2013, 52, 3110–3116.

    Article  CAS  Google Scholar 

  42. [42]

    Pan, L. J.; Yu, G. H.; Zhai, D. Y.; Lee, H. R.; Zhao, W. T.; Liu, N.; Wang, H. L.; Tee, B. C. K.; Shi, Y.; Cui, Y. et al. Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity. Proc. Natl. Acad. Sci. USA 2012, 109, 9287–9292.

    Article  Google Scholar 

  43. [43]

    Zhang, J. T.; Zhao, Z. H.; Xia, Z. H.; Dai, L. M. A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nat. Nanotechnol. 2015, 10, 444–452.

    Article  CAS  Google Scholar 

  44. [44]

    Jeong, H.; Shin, D.; Kim, B. S.; Bae, J.; Shin, S.; Choe, C.; Han, J. W.; Lee, H. Controlling the oxidation state of Pt single atoms for maximizing catalytic activity. Angew. Chem., Int. Ed. 2020, 59, 20691–20696.

    Article  CAS  Google Scholar 

  45. [45]

    Chou, T. C.; Chang, C. C.; Yu, H. L.; Yu, W. Y.; Dong, C. L.; Velasco-Vélez, J. J.; Chuang, C. H.; Chen, L. C.; Lee, J. F.; Chen, J. M. et al. Controlling the oxidation state of the Cu electrode and reaction intermediates for electrochemical CO2 reduction to ethylene. J. Am. Chem. Soc. 2020, 142, 2857–2867.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding from the National Key R&D Program of China (No. 2018YFB1502400), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA21090400), and the Jilin Province Science and Technology Development Program (Nos. 20190201300JC and 20180101030JC).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Xiao Zhao, Junjie Ge or Wei Xing.

Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ma, R., Wang, Y., Li, G. et al. Tuning the oxidation state of Ru to surpass Pt in hydrogen evolution reaction. Nano Res. 14, 4321–4327 (2021). https://doi.org/10.1007/s12274-021-3780-6

Download citation

Keywords

  • RuP clusters
  • Ru oxidation state
  • hydrogen evolution
  • encapsulating/confining layers