Skip to main content

Carbothermal shock enabled facile and fast growth of carbon nanotubes in a second

Abstract

Carbon nanotubes (CNTs) hold great promise in many fields because of their unique structures and properties. However, the preparation of CNTs generally involves cumbersome equipment and time-consuming processes. Here, we report an ultra-fast carbothermal shock (CTS) approach for synthesizing CNTs with a simple homemade setup by employing Joule heating of a carbon substrate. Carbonized silk fabric (CSF) loaded with transition metal salts in ethanol solution was used as the substrate, which was treated with a pulse voltage of 40 V for only 50 ms and then covered with uniform CNTs grown with bimetallic alloy catalyst nanoparticles (diameter: ∼ 9 nm). The temperature ramp rate is as high as 105 K/s. The as-obtained sample has a unique fluffy structure similar to the trichobothrium of spiders, endowing it versatile applications such as airflow sensors or air filters. The CTS technique presents an easy-accessible and highly efficient approach for synthesizing CNTs, which may be also applied in synthesizing other nanomaterials.

This is a preview of subscription content, access via your institution.

References

  1. Zhang, Y. Y.; Zou, G. F.; Doom, S. K.; Htoon, H.; Stan, L.; Hawley, M. E.; Sheehan, C. J.; Zhu, Y. T.; Jia, Q. X. Tailoring the morphology of carbon nanotube arrays: From spinnable forests to undulating foams. ACS Nano 2009, 3, 2157–2162.

    CAS  Article  Google Scholar 

  2. Lima, M. D.; Li, N.; De Andrade, M. J.; Fang, S. L.; Oh, J.; Spinks, G. M.; Kozlov, M. E.; Haines, C. S.; Suh, D.; Foroughi, J. et al. Electrically, chemically, and photonically powered torsional and tensile actuation of hybrid carbon nanotube yarn muscles. Science 2012, 338, 928–932.

    CAS  Article  Google Scholar 

  3. De Volder, M. F. L.; Tawfick, S. H.; Baughman, R. H.; Hart, A. J. Carbon nanotubes: Present and future commercial applications. Science 2013, 339, 535–539.

    CAS  Article  Google Scholar 

  4. Yang, Z. B.; Ren, J.; Zhang, Z. T.; Chen, X. L.; Guan, G. Z.; Qiu, L. B.; Zhang, Y.; Peng, H. S. Recent advancement of nanostructured carbon for energy applications. Chem. Rev. 2015, 115, 5159–5223.

    CAS  Article  Google Scholar 

  5. Wang, H. M.; Wang, C. Y.; Jian, M. Q.; Wang, Q.; Xia, K. L.; Yin, Z.; Zhang, M. C.; Liang, X. P.; Zhang, Y. Y. Superelastic wire-shaped supercapacitor sustaining 850% tensile strain based on carbon nanotube@graphene fiber. Nano Res. 2018, 11, 2347–2356.

    CAS  Article  Google Scholar 

  6. Deng, J.; Li, J. F.; Chen, P. N.; Fang, X.; Sun, X. M.; Jiang, Y. S.; Weng, W.; Wang, B. J.; Peng, H. S. Tunable photothermal actuators based on a pre-programmed aligned nanostructure. J. Am. Chem. Soc. 2016, 138, 225–230.

    CAS  Article  Google Scholar 

  7. Wang, H. M.; Yang, Y.; Zhang, M. C.; Wang, Q.; Xia, K. L.; Yin, Z.; Wei, Y.; Ji, Y.; Zhang, Y. Y. Electricity-triggered self-healing of conductive and thermostable vitrimer enabled by paving aligned carbon nanotubes. ACS Appl. Mater. Interfaces 2020, 12, 14315–14322.

    CAS  Article  Google Scholar 

  8. Kim, S. H.; Haines, C. S.; Li, N.; Kim, K. J.; Mun, T. J.; Choi, C.; Di, J. T.; Oh, Y. J.; Oviedo, J. P.; Bykova, J. et al. Harvesting electrical energy from carbon nanotube yarn twist. Science 2017, 357, 773–778.

    CAS  Article  Google Scholar 

  9. Wang, H. M.; Li, S.; Wang, Y. L.; Wang, H. M.; Shen, X. Y.; Zhang, M. C.; Lu, H. J.; He, M. S.; Zhang, Y. Y. Bioinspired fluffy fabric with in situ grown carbon nanotubes for ultrasensitive wearable airflow sensor. Adv. Mater. 2020, 32, 1908214.

    CAS  Article  Google Scholar 

  10. Wang, H. M.; He, M. S.; Zhang, Y. Y. Carbon nanotube films: Preparation and application in flexible electronics. Acta Phys.-Chim. Sin. 2019, 35, 1207–1223.

    CAS  Article  Google Scholar 

  11. Shi, Z. J.; Lian, Y. F.; Zhou, X. H.; Gu, Z. N.; Zhang, Y. G.; Iijima, S.; Zhou, L. X.; Yue, K. T.; Zhang, S. L. Mass-production of singlewall carbon nanotubes by arc discharge method. Carbon 1999, 37, 1449–1453.

    CAS  Article  Google Scholar 

  12. Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58.

    CAS  Article  Google Scholar 

  13. Yudasaka, M.; Komatsu, T.; Ichihashi, T.; Iijima, S. Single-wall carbon nanotube formation by laser ablation using double-targets of carbon and metal. Chem. Phys. Lett. 1997, 278, 102–106.

    CAS  Article  Google Scholar 

  14. Zhang, S. C.; Hu, Y.; Wu, J. X.; Liu, D.; Kang, L. X.; Zhao, Q. C.; Zhang, J. Selective scission of C-O and C-C bonds in ethanol using bimetal catalysts for the preferential growth of semiconducting SWNT arrays. J. Am. Chem. Soc. 2015, 137, 1012–1015.

    CAS  Article  Google Scholar 

  15. Zhang, S. C.; Kang, L. X.; Wang, X.; Tong, L. M.; Yang, L. W.; Wang, Z. Q.; Qi, K.; Deng, S. B.; Li, Q. W.; Bai, X. D. et al. Arrays of horizontal carbon nanotubes of controlled chirality grown using designed catalysts. Nature 2017, 543, 234–238.

    CAS  Article  Google Scholar 

  16. He, M. S.; Chernov, A. I.; Obraztsova, E. D.; Jiang, H.; Kauppinen, E. I.; Lehtonen, J. Synergistic effects in FeCu bimetallic catalyst for low temperature growth of single-walled carbon nanotubes. Carbon 2013, 52, 590–594.

    CAS  Article  Google Scholar 

  17. He, M. S.; Chernov, A. I.; Fedotov, P. V.; Obraztsova E. D.; Sainio, J.; Rikkinen, E.; Jiang, H.; Zhu, Z.; Tian, Y.; Kauppinen, E. I. et al. Predominant (6,5) single-walled carbon nanotube growth on a copper-promoted iron catalyst. J. Am. Chem. Soc. 2010, 132, 13994–13996.

    CAS  Article  Google Scholar 

  18. He, M. S.; Liu, B. L.; Chernov, A. I.; Obraztsova, E. D.; Kauppi, I.; Jiang, H.; Anoshkin, I.; Cavalca, F.; Hansen, T. W.; Wagner, J. B. et al. Growth mechanism of single-walled carbon nanotubes on iron-copper catalyst and chirality studies by electron diffraction. Chem. Mater. 2012, 24, 1796–1801.

    CAS  Article  Google Scholar 

  19. Yao, Y. G.; Huang, Z. N.; Xie, P. F.; Lacey, S. D.; Jacob, R. J.; Xie, H.; Chen, F. J.; Nie, A. M.; Pu, T. C.; Rehwoldt, M. et al. Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science 2018, 359, 1489–1494.

    CAS  Article  Google Scholar 

  20. Neuer, G. Spectral and total emissivity measurements of highly emitting materials. Int. J. Thermophys. 1995, 16, 257–265.

    CAS  Article  Google Scholar 

  21. Yao, Y. G.; Fu, K. K.; Zhu, S. Z.; Dai, J. Q.; Wang, Y. B.; Pastel, G.; Chen, Y. N.; Li, T.; Wang, C. W.; Li, T. et al. Carbon welding by ultrafast Joule heating. Nano Lett. 2016, 16, 7282–7289.

    CAS  Article  Google Scholar 

  22. Dollimore, D.; Griffiths, D. L.; Nicholson, D. 488. The thermal decomposition of oxalates. Part II. Thermogravimetric analysis of various oxalates in air and in nitrogen. J. Chem. Soc. 1963, 2617–2623.

  23. Sinha, A. S. K.; Shankar, V. Characterization and activity of cobalt oxide catalysts for total oxidation of hydrocarbons. Chem. Eng. J. 1993, 52, 115–120.

    CAS  Article  Google Scholar 

  24. He, M. S.; Zhang, S. C.; Wu, Q. R.; Xue, H.; Xin, B. W.; Wang, D.; Zhang, J. Designing catalysts for chirality-selective synthesis of single-walled carbon nanotubes: Past success and future opportunity. Adv. Mater. 2019, 31, 1800805.

    Article  Google Scholar 

  25. Wang, C. Y.; Li, X.; Gao, E. L.; Jian, M. Q.; Xia, K. L.; Wang, Q.; Xu, Z. P.; Ren, T. L.; Zhang, Y. Y. Carbonized silk fabric for ultrastretchable, highly sensitive, and wearable strain sensors. Adv. Mater. 2016, 28, 6640–6648.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Technology R&D Program of China (No. 2020YFA0210702), and the National Natural Science Foundation of China (No. 21975141).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingying Zhang.

Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Wang, H., Zhang, S. et al. Carbothermal shock enabled facile and fast growth of carbon nanotubes in a second. Nano Res. 15, 2576–2581 (2022). https://doi.org/10.1007/s12274-021-3762-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3762-8

Keywords

  • carbothermal shock
  • Joule heating
  • carbon nanotube
  • ultra-fast growth
  • fluffy structure