Skip to main content

Two-dimensional quantum dots for biological applications

Abstract

The two-dimensional quantum dots (2D-QDs) have been developed significantly in the past decades. The 2D-QDs could be used in bioimaging, biosensing, drug/gene delivery, and photodynamic/photothermal therapy. The potential applications in biology receive increasing attention, which makes them the novel and emerging candidates in biomaterial research fields. In this context, we discuss a variety of 2D-QDs with different physical and chemical properties. We focuse on the latest synthesis progress and recent applications in biotechnological, and biomedical applications of the 2D-QDs and we also evaluate the challenges and prospects in this field.

References

  1. [1]

    Service, R. F. Nanotechnology grows up. Science 2004, 304, 1732–1734.

    Article  CAS  Google Scholar 

  2. [2]

    Xu, Q.; Ding, L.; Wen, Y. Y.; Yang, W. J.; Zhou, H. J.; Chen, X. Z.; Street, J.; Zhou, A. G.; Ong, W. J.; Li, N. High photoluminescence quantum yield of 18.7% by using nitrogen-doped Ti3C2 MXene quantum dots. J. Mater. Chem. C 2018, 6, 6360–6369.

    Article  CAS  Google Scholar 

  3. [3]

    Liu, H.; Zhang, X.; Zhu, Y. F.; Cao, B.; Zhu, Q. Z.; Zhang, P.; Xu, B.; Wu, F.; Chen, R. J. Electrostatic self-assembly of 0D-2D SnO2 quantum dots/Ti3C2Tx MXene hybrids as anode for lithium-ion batteries. Nano-Micro Lett. 2019, 11, 65.

    Article  CAS  Google Scholar 

  4. [4]

    Underwood, S. M.; Posey, L. A.; Herrington, D. G.; Carmel, J. H.; Cooper, M. M. Adapting assessment tasks to support three-dimensional learning. J. Chem. Educ. 2018, 95, 207–217.

    Article  CAS  Google Scholar 

  5. [5]

    Chaudhuri, K.; Alhabeb, M.; Wang, Z. X.; Shalaev, V. M.; Gogotsi, Y.; Boltasseva, A. Highly broadband absorber using plasmonic titanium carbide (MXene). ACS Photonics 2018, 5, 1115–1122.

    Article  CAS  Google Scholar 

  6. [6]

    Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K.; Roth, S. et al. The Raman fingerprint of graphene. arXiv preprint: condmat/0606284 2006.

  7. [7]

    Huang, X.; Qi, X. Y.; Boey, F.; Zhang, H. Graphene-based composites. Chem. Soc. Rev. 2012, 41, 666–686.

    Article  CAS  Google Scholar 

  8. [8]

    Schwierz, F. Graphene transistors. Nat. Nanotech. 2010, 5, 487–496.

    Article  CAS  Google Scholar 

  9. [9]

    Mangayil, R.; Rajala, S.; Pammo, A.; Sarlin, E.; Luo, J.; Santala, V.; Karp, M.; Tuukkanen, S. Engineering and characterization of bacterial nanocellulose films as low cost and flexible sensor material. ACS Appl. Mater. Ieterfaces 2017, 9, 19048–19056.

    Article  CAS  Google Scholar 

  10. [10]

    Strauss, V.; Margraf, J. T.; Dolle, C.; Butz, B.; Nacken, T. J.; Walter, J.; Bauer, W.; Peukert, W.; Spiecker, E.; Clark, T. et al. Carbon nanodots: Toward a comprehensive understanding of their photoluminescence. J. Am. Chem. Soc. 2014, 136, 17308–17316.

    Article  CAS  Google Scholar 

  11. [11]

    Song, H. Q.; Liu, X. J.; Wang, B. Y.; Tang, Z. Y.; Lu, S. Y. High production-yield solid-state carbon dots with tunable photoluminescence for white/multi-color light-emitting diodes. Sci. Bull. 2019, 64, 1788–1794.

    Article  CAS  Google Scholar 

  12. [12]

    Song, H. Q.; Li, Y. H.; Shang, L.; Tang, Z. Y.; Zhang, T. R.; Lu, S. Y. Designed controllable nitrogen-doped carbon-dots-loaded MoP nanoparticles for boosting hydrogen evolution reaction in alkaline medium. Nano Energy 2020, 72, 104730.

    Article  CAS  Google Scholar 

  13. [13]

    Xu, Q.; Su, R. G.; Chen, Y. S.; Sreenivasan, S. T.; Li, N.; Zheng, X. S.; Zhu, J. F.; Pan, H. B.; Li, W. J.; Xu, C. M. et al. Metal charge transfer doped carbon dots with reversibly switchable, ultrahigh quantum yield photoluminescence. ACS Appl. Nano Mater. 2018, 1, 1886–1893.

    Article  CAS  Google Scholar 

  14. [14]

    Liu, Y.; Zhang, M. R.; Wu, Y. F.; Zhang, R.; Cao, Y.; Xu, X. Q.; Chen, X.; Cai, L. L.; Xu, Q. Multicolor tunable highly luminescent carbon dots for remote force measurement and white light emitting diodes. Chem. Commun. 2019, 55, 12164–12167.

    Article  CAS  Google Scholar 

  15. [15]

    Zhang, M. R.; Su, R. G.; Zhong, J.; Fei, L.; Cai, W.; Guan, Q. W.; Li, W. J.; Li, N.; Chen, Y. S.; Cai, L. L. et al. Red/orange dual-emissive carbon dots for pH sensing and cell imaging. Nano Res. 2019, 12, 815–821.

    Article  CAS  Google Scholar 

  16. [16]

    Chakraborty, I.; Bodurtha, K. J.; Heeder, N. J.; Godfrin, M. P.; Tripathi, A.; Hurt, R. H.; Shukla, A.; Bose, A. Massive electrical conductivity enhancement of multilayer graphene/polystyrene composites using a nonconductive filler. ACS Appl. Mater. Ieterfaces 2014, 6, 16472–16475.

    Article  CAS  Google Scholar 

  17. [17]

    Hu, H. W.; Zavabeti, A.; Quan, H. Y.; Zhu, W. Q.; Wei, H. Y.; Chen, D. C.; Ou, J. Z. Recent advances in two-dimensional transition metal dichalcogenides for biological sensing. Biosens. Bioelectroe. 2019, 142, 111573.

    Article  CAS  Google Scholar 

  18. [18]

    Huang, K.; Xu, K. L.; Zhu, W.; Yang, L.; Hou, X. D.; Zheng, C. B. Hydride generation for headspace solid-phase extraction with CdTe quantum dots immobilized on paper for sensitive visual detection of selenium. Anal. Chem. 2016, 88, 789–795.

    Article  CAS  Google Scholar 

  19. [19]

    Zhang, H.; He, H.; Jiang, X. M.; Xia, Z. N.; Wei, W. L. Preparation and characterization of chiral transition-metal dichalcogenide quantum dots and their enantioselective catalysis. ACS Appl. Mater. Ieterfaces 2018, 10, 30680–30688.

    Article  CAS  Google Scholar 

  20. [20]

    Zhang, C.; Hu, D. F.; Xu, J. W.; Ma, M. Q.; Xing, H. B.; Yao, K.; Ji, J.; Xu, Z. K. Polyphenol-assisted exfoliation of transition metal dichalcogenides into nanosheets as photothermal nanocarriers for enhanced antibiofilm activity. ACS Nano 2018, 12, 12347–12356.

    Article  CAS  Google Scholar 

  21. [21]

    Lee, H. U.; Park, S. Y.; Lee, S. C.; Choi, S.; Seo, S.; Kim, H.; Won, J.; Choi, K.; Kang, K. S.; Park, H. G. et al. Black phosphorus (BP) nanodots for potential biomedical applications. Small 2016, 12, 214–219.

    Article  CAS  Google Scholar 

  22. [22]

    Chen, W. S.; Ouyang, J.; Yi, X. Y.; Xu, Y.; Niu, C. C.; Zhang, W. Y.; Wang, L. Q.; Sheng, J. P.; Deng, L.; Liu, Y. N. et al. Black phosphorus nanosheets as a neuroprotective nanomedicine for neurodegenerative disorder therapy. Adv. Mater. 2018, 30, 1703458.

    Article  CAS  Google Scholar 

  23. [23]

    Cai, L. L.; He, L.; Wang, Y.; Zhong, J.; Zhao, C. J.; Zeng, S.; Yu, J. Y.; Bian, Y.; Wei, Y. Q.; Cai, W. et al. Efficient cocktail chemotherapy by co-delivery of a hydrogen sulfide-releasing aspirin prodrug and paclitaxel via single nanoparticles. RSC Adv. 2017, 7, 13458–13466.

    Article  CAS  Google Scholar 

  24. [24]

    Guan, Q. W.; Ma, J. F.; Yang, W. J.; Zhang, R.; Zhang, X. J.; Dong, X. X.; Fan, Y. T.; Cai, L. L.; Cao, Y.; Zhang, Y. L. et al. Highly fluorescent Ti3C2 MXene quantum dots for macrophage labeling and Cu2+ ion sensing. Nanoscale 2019, 11, 14123–14133.

    Article  CAS  Google Scholar 

  25. [25]

    Wu, L. X.; Lu, X. B.; Dhanjai, Wu, Z. S.; Dong, Y. F.; Wang, X. H.; Zheng, S. H.; Chen, J. P. 2D transition metal carbide MXene as a robust biosensing platform for enzyme immobilization and ultrasensitive detection of phenol. Biosens. Bioelectron. 2018, 107, 69–75.

    Article  CAS  Google Scholar 

  26. [26]

    Kumar, S.; Lei, Y. J.; Alshareef, N. H.; Quevedo-Lopez, M. A.; Salama, K. N. Biofunctionalized two-dimensional Ti3C2 MXenes for ultrasensitive detection of cancer biomarker. Biosens. Bioelectron. 2018, 121, 243–249.

    Article  CAS  Google Scholar 

  27. [27]

    Sun, H. J.; Ren, J. S.; Qu, X. G. Carbon nanomaterials and DNA: From molecular recognition to applications. Acc. Chem. Res. 2016, 49, 461–470.

    Article  CAS  Google Scholar 

  28. [28]

    Li, G. L.; Fu, H. L.; Chen, X. J.; Gong, P. W.; Chen, G.; Xia, L.; Wang, H.; You, J. M.; Wu, Y. N. Facile and sensitive fluorescence sensing of alkaline phosphatase activity with photoluminescent carbon dots based on inner filter effect. Anal. Chem. 2016, 88, 2720–2726.

    Article  CAS  Google Scholar 

  29. [29]

    Ding, H.; Du, F. Y.; Liu, P. C.; Chen, Z. J.; Shen, J. C. DNA-carbon dots function as fluorescent vehicles for drug delivery. ACS Appl. Mater. Interfaces 2015, 7, 6889–6897.

    Article  CAS  Google Scholar 

  30. [30]

    Guo, T.; Wu, Y.; Lin, Y.; Xu, X.; Lian, H.; Huang, G. M.; Liu, J. Z.; Wu, X. P.; Yang, H. H. Black phosphorus quantum dots with renal clearance property for efficient photodynamic therapy. Small 2018, 14, 1702815.

    Article  CAS  Google Scholar 

  31. [31]

    Zhao, W. J.; Li, Y. H.; Yang, S.; Chen, Y.; Zheng, J.; Liu, C. H.; Qing, Z. H.; Li, J. S.; Yang, R. H. Target-activated modulation of dual-color and two-photon fluorescence of graphene quantum dots for in vivo imaging of hydrogen peroxide. Anal. Chem. 2016, 88, 4833–4840.

    Article  CAS  Google Scholar 

  32. [32]

    Zhu, H. Y.; Zhang, S. Y.; Ling, Y.; Meng, G. L.; Yang, Y.; Zhang, W. pH-responsive hybrid quantum dots for targeting hypoxic tumor siRNA delivery. J. Control. Release 2015, 220, 529–544.

    Article  CAS  Google Scholar 

  33. [33]

    Jiang, Y. L.; Wang, Z. Y.; Dai, Z. H. Preparation of silicon-carbon-based dots@dopamine and its application in intracellular Ag+ detection and cell imaging. ACS Appl. Mater. Interfaces 2016, 8, 3644–3650.

    Article  CAS  Google Scholar 

  34. [34]

    Zhao, S. J.; Lan, M. H.; Zhu, X. Y.; Xue, H. T.; Ng, T. W.; Meng, X. M.; Lee, C. S.; Wang, P. F.; Zhang, W. J. Green synthesis of bifunctional fluorescent carbon dots from garlic for cellular imaging and free radical scavenging. ACS Appl. Mater. Interfaces 2015, 7, 17054–17060.

    Article  CAS  Google Scholar 

  35. [35]

    Zhang, H. X.; Wang, Z. H.; Zhang, Q. X.; Wang, F.; Liu, Y. Ti3C2 MXenes nanosheets catalyzed highly efficient electrogenerated chemiluminescence biosensor for the detection of exosomes. Biosens. Bioelectron. 2019, 124–125, 184–190.

    Article  CAS  Google Scholar 

  36. [36]

    Chang, T. H.; Zhang, T. R.; Yang, H. T.; Li, K. R.; Tian, Y.; Lee, J. Y.; Chen, P. Y. Controlled crumpling of two-dimensional titanium carbide (MXene) for highly stretchable, bendable, efficient supercapacitors. ACS Nano 2018, 12, 8048–8059.

    Article  CAS  Google Scholar 

  37. [37]

    Su, Y. J.; Lu, X. N.; Xie, M. M.; Geng, H. J.; Wei, H.; Yang, Z.; Zhang, Y. F. A one-pot synthesis of reduced graphene oxide-Cu2S quantum dot hybrids for optoelectronic devices. Nanoscale 2013, 5, 8889–8893.

    Article  CAS  Google Scholar 

  38. [38]

    Celli, J. P.; Spring, B. Q.; Rizvi, I.; Evans, C. L.; Samkoe, K. S.; Verma, S.; Pogue, B. W.; Hasan, T. Imaging and photodynamic therapy: Mechanisms, monitoring, and optimization. Chem. Rev. 2010, 110, 2795–2838.

    Article  CAS  Google Scholar 

  39. [39]

    Liu, C. J.; Zhang, P.; Zhai, X. Y.; Tian, F.; Li, W. C.; Yang, J. H.; Liu, Y.; Wang, H. B.; Wang, W.; Liu, W. G. Nano-carrier for gene delivery and bioimaging based on carbon dots with PEI-passivation enhanced fluorescence. Biomaterials 2012, 33, 3604–3613.

    Article  CAS  Google Scholar 

  40. [40]

    Wang, Q.; Zhang, C. L.; Shen, G. X.; Liu, H. Y.; Fu, H. L.; Cui, D. X. Fluorescent carbon dots as an efficient siRNA nanocarrier for its interference therapy in gastric cancer cells. J. Nanobiotechnol. 2014, 12, 58.

    Article  CAS  Google Scholar 

  41. [41]

    Xue, Q.; Huang, H.; Wang, L.; Chen, Z. W.; Wu, M. H.; Li, Z.; Pan, D. Y. Nearly monodisperse graphene quantum dots fabricated by amine-assisted cutting and ultrafiltration. Nanoscale 2013, 5, 12098–12103.

    Article  CAS  Google Scholar 

  42. [42]

    Wang, N.; Zheng, A. Q.; Liu, X.; Chen, J. J.; Yang, T.; Chen, M. L.; Wang, J. H. Deep eutectic solvent-assisted preparation of nitrogen/chloride-doped carbon dots for intracellular biological sensing and live cell imaging. ACS Appl. Mater. Interfaces 2018, 10, 7901–7909.

    Article  CAS  Google Scholar 

  43. [43]

    Shangguan, J.; He, D. G.; He, X. X.; Wang, K. M.; Xu, F. Z.; Liu, J. Q.; Tang, J. L.; Yang, X.; Huang, J. Label-free carbon-dots-based ratiometric fluorescence pH nanoprobes for intracellular pH sensing. Anal. Chem. 2016, 88, 7837–7843.

    Article  CAS  Google Scholar 

  44. [44]

    Bu, F. X.; Zagho, M. M.; Ibrahim, Y.; Ma, B.; Elzatahry, A.; Zhao, D. Y. Porous MXenes: Synthesis, structures, and applications. Nano Today 2020, 30, 100803.

    Article  CAS  Google Scholar 

  45. [45]

    Singh, R. K.; Kumar, R.; Singh, D. P.; Savu, R.; Moshkalev, S. A. Progress in microwave-assisted synthesis of quantum dots (graphene/carbon/semiconducting) for bioapplications: A review. Mater. Today Chem. 2019, 12, 282–314.

    Article  CAS  Google Scholar 

  46. [46]

    Szuplewska, A.; Kulpińska, D.; Dybko, A.; Chudy, M.; Jastrzębska, A. M.; Olszyna, A.; Brzózka, Z. Future applications of MXenes in biotechnology, nanomedicine, and sensors. Trends Biotechnol. 2020, 38, 264–279.

    Article  CAS  Google Scholar 

  47. [47]

    Hardman, R. A toxicologic review of quantum dots: Toxicity depends on physicochemical and environmental factors. Environ. Health Perspect. 2006, 114, 165–172.

    Article  Google Scholar 

  48. [48]

    Li, H. X.; Yan, X.; Kong, D. S.; Jin, R.; Sun, C. Y.; Du, D.; Lin, Y. H.; Lu, G. Y. Recent advances in carbon dots for bioimaging applications. Nanoscale Horiz. 2020, 5, 218–234.

    Article  CAS  Google Scholar 

  49. [49]

    Molaei, M. J. A review on nanostructured carbon quantum dots and their applications in biotechnology, sensors, and chemiluminescence. Talanta 2019, 196, 456–478.

    Article  CAS  Google Scholar 

  50. [50]

    Ruan, S.; Qian, J.; Shen, S.; Zhu, J. H.; Jiang, X. G.; He, Q.; Gao, H. L. A simple one-step method to prepare fluorescent carbon dots and their potential application in non-invasive glioma imaging. Nanoscale 2014, 6, 10040–10047.

    Article  CAS  Google Scholar 

  51. [51]

    Liu, K.; Liu, X. M.; Zeng, Q. H.; Zhang, Y. L.; Tu, L. P.; Liu, T.; Kong, X. G.; Wang, Y. H.; Cao, F.; Lambrechts, S. A. G. et al. Covalently assembled NIR nanoplatform for simultaneous fluorescence imaging and photodynamic therapy of cancer cells. ACS Nano 2012, 6, 4054–4062.

    Article  CAS  Google Scholar 

  52. [52]

    Dolmans, D. E. J. G. J.; Fukumura, D.; Jain, R. K. Photodynamic therapy for cancer. Nat. Rev. Cancer 2003, 3, 380–387.

    Article  CAS  Google Scholar 

  53. [53]

    Yang, D.; Yang, G. X.; Sun, Q. Q.; Gai, S. L.; He, F.; Dai, Y. L.; Zhong, C. N.; Yang, P. P. Carbon-dot-decorated TiO2 nanotubes toward photodynamic therapy based on water-splitting mechanism. Adv. Healthc. Mater. 2018, 7, 1800042.

    Article  CAS  Google Scholar 

  54. [54]

    Kentish, S. E.; Scholes, C. A.; Stevens, G. W. Carbon dioxide separation through polymeric membrane systems for flue gas applications. Recent Pat. Chem. Eng. 2008, 1, 52–66.

    Article  Google Scholar 

  55. [55]

    Gobi, N.; Vijayakumar, D.; Keles, O.; Erogbogbo, F. Infusion of graphene quantum dots to create stronger, tougher, and brighter polymer composites. ACS Omega 2017, 2, 4356–4362.

    Article  CAS  Google Scholar 

  56. [56]

    Quan, B.; Yu, S. H.; Chung, D. Y.; Jin, A. H.; Park, J. H.; Sung, Y. E.; Piao, Y. Z. Single source precursor-based solvothermal synthesis of heteroatom-doped graphene and its energy storage and conversion applications. Sci. Rep. 2014, 4, 5639.

    Article  CAS  Google Scholar 

  57. [57]

    Tetsuka, H.; Asahi, R.; Nagoya, A.; Okamoto, K.; Tajima, I.; Ohta, R.; Okamoto, A. Optically tunable amino-functionalized graphene quantum dots. Adv. Mater. 2012, 24, 5333–5338.

    Article  CAS  Google Scholar 

  58. [58]

    Xu, Q.; Xu, H.; Chen, J. R.; Lv, Y. Z.; Dong, C. B.; Sreeprasad, T. S. Graphene and graphene oxide: Advanced membranes for gas separation and water purification. Inorg. Chem. Front. 2015, 2, 417–424.

    Article  CAS  Google Scholar 

  59. [59]

    Cao, L.; Wang, X.; Meziani, M. J.; Lu, F. S.; Wang, H. F.; Luo, P. G.; Lin, Y.; Harruff, B. A.; Veca, L. M.; Murray, D. et al. Carbon dots for multiphoton bioimaging. J. Am. Chem. Soc. 2007, 129, 11318–11319.

    Article  CAS  Google Scholar 

  60. [60]

    Franklin-Mergarejo, R.; Alvarez, D. O.; Tretiak, S.; Fernandez-Alberti, S. Carbon nanorings with inserted acenes: Breaking symmetry in excited state dynamics. Sci. Rep. 2016, 6, 31253.

    Article  CAS  Google Scholar 

  61. [61]

    Han, S. T.; Hu, L.; Wang, X. D.; Zhou, Y.; Zeng, Y. J.; Ruan, S. C.; Pan, C. F.; Peng, Z. C. Black phosphorus quantum dots with tunable memory properties and multilevel resistive switching characteristics. Adv. Sci. 2017, 4, 1600435.

    Article  CAS  Google Scholar 

  62. [62]

    Choi, J. R.; Yong, K. W.; Choi, J. Y.; Nilghaz, A.; Lin, Y.; Xu, J.; Lu, X. N. Black phosphorus and its biomedical applications. Theranostics 2018, 8, 1005–1026.

    Article  CAS  Google Scholar 

  63. [63]

    Liu, X. Y.; Cao, J.; Feng, B.; Yang, L. L.; Wei, M. B.; Zhai, H. J.; Liu, H. L.; Sui, Y. R.; Yang, J. H.; Liu, Y. H. Facile fabrication and photocatalytic properties of ZnO nanorods/ZnSe nanosheets heterostructure. Superlatt. Microst. 2015, 83, 447–458.

    Article  CAS  Google Scholar 

  64. [64]

    Abdelsalam, H.; Saroka, V. A.; Ali, M.; Teleb, N. H.; Elhaes, H.; Ibrahim, M. A. Stability and electronic properties of edge functionalized silicene quantum dots: A first principles study. Phys. E: Low-Dimees. Syst. Nanostruct. 2019, 108, 339–346.

    Article  CAS  Google Scholar 

  65. [65]

    Feng, C.; Ouyang, J.; Tang, Z. M.; Kong, N.; Liu, Y.; Fu, L. Y.; Ji, X. Y.; Xie, T.; Farokhzad, O. C.; Tao, W. Germanene-based theranostic materials for surgical adjuvant treatment: inhibiting tumor recurrence and wound infection. Matter 2020, 3, 127–144.

    Article  Google Scholar 

  66. [66]

    Hassan, M.; Gomes, V. G.; Dehghani, A.; Ardekani, S. M. Engineering carbon quantum dots for photomediated theranostics. Nano Res. 2018, 11, 1–41.

    Article  CAS  Google Scholar 

  67. [67]

    de Ávila, B. E. F.; Angsantikul, P.; Li, J. X.; Lopez-Ramirez, M. A.; Ramírez-Herrera, D. E.; Thamphiwatana, S.; Chen, C. R.; Delezuk, J.; Samakapiruk, R.; Ramez, V. et al. Micromotor-enabled active drug delivery for in vivo treatment of stomach infection. Nat. Commun. 2017, 8, 272.

    Article  CAS  Google Scholar 

  68. [68]

    Ding, C. Q.; Zhu, A. W.; Tian, Y. Functional surface engineering of C-dots for fluorescent biosensing and in vivo bioimaging. Acc. Chem. Res. 2014, 47, 20–30.

    Article  CAS  Google Scholar 

  69. [69]

    Fouladi-Oskouei, J.; Shojaei, S.; Liu, Z. Robust tunable excitonic features in monolayer transition metal dichalcogenide quantum dots. J. Phys.: Condens. Matter 2018, 30, 145301.

    CAS  Google Scholar 

  70. [70]

    Li, J. P.; Yang, S. W.; Liu, Z. Y.; Wang, G.; He, P.; Wei, W.; Yang, M. Y.; Deng, Y.; Gu, P.; Xie, X. M. et al. Imaging cellular aerobic glycolysis using carbon dots for early warning of tumorigenesis. Adv. Mater. 2021, 33, 2005096.

    Article  CAS  Google Scholar 

  71. [71]

    Sun, Z. B.; Xie, H. H.; Tang, S. Y.; Yu, X. F.; Guo, Z. N.; Shao, J. D.; Zhang, H.; Huang, H.; Wang, H. Y.; Chu, P. K. Ultrasmall black phosphorus quantum dots: Synthesis and use as photothermal agents. Angew. Chem., Int. Ed. 2015, 54, 11526–11530.

    Article  CAS  Google Scholar 

  72. [72]

    Chen, Y.; Wang, L. Z.; Shi, J. L. Two-dimensional non-carbonaceous materials-enabled efficient photothermal cancer therapy. Nano Today 2016, 11, 292–308.

    Article  CAS  Google Scholar 

  73. [73]

    Sruthy, P. C.; Nagarajan, V.; Chandiramouli, R. Interaction studies of kidney biomarker volatiles on black phosphorene nanoring: A first-principles investigation. J. Mol. Graph. Model. 2020, 97, 107566.

    Article  CAS  Google Scholar 

  74. [74]

    Mannix, A. J.; Zhou, X.-F.; Kiraly, B.; Wood, J. D.; Alducin, D.; Myers, B. D.; Liu, X. L.; Fisher, B. L.; Santiago, U.; Guest, J. R. et al. Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs. Science 2015, 350, 1513–1516.

    Article  CAS  Google Scholar 

  75. [75]

    Feng, B. J.; Sugino, O.; Liu, R. Y.; Zhang, J.; Yukawa, R.; Kawamura, M.; Iimori, T.; Kim, H.; Hasegawa, Y.; Li, H. et al. Dirac fermions in borophene. Phys. Rev. Lett. 2017, 118, 096401.

    Article  Google Scholar 

  76. [76]

    Feng, B. J.; Ding, Z. J.; Meng, S.; Yao, Y. G.; He, X. Y.; Cheng, P.; Chen, L.; Wu, K. H. Evidence of silicene in honeycomb structures of silicon on Ag (111). Nano Lett. 2012, 12, 3507–3511.

    Article  CAS  Google Scholar 

  77. [77]

    Vogt, P.; De Padova, P.; Quaresima, C.; Avila, J.; Frantzeskakis, E.; Asensio, M. C.; Resta, A.; Ealet, B.; Le Lay, G. Silicene: Compelling experimental evidence for graphenelike two-dimensional silicon. Phys. Rev. Lett. 2012, 108, 155501.

    Article  CAS  Google Scholar 

  78. [78]

    Szafran, B.; Żebrowski, D.; Mreńca-Kolasińska, A. Electrostatic quantum dots in silicene. Sci. Rep. 2018, 8, 7166.

    Article  CAS  Google Scholar 

  79. [79]

    Yang, K.; Zhou, G. L.; Xu, Q. The elasticity of MOFs under mechanical pressure. RSC Adv. 2016, 6, 37506–37514.

    Article  CAS  Google Scholar 

  80. [80]

    Guo, X. X.; Dai, D. J.; Fan, B. L.; Fan, J. Y. Experimental evidence of α→ β phase transformation in SiC quantum dots and their size-dependent luminescence. Appl. Phys. Lett. 2014, 105, 193110.

    Article  CAS  Google Scholar 

  81. [81]

    Ong, W. J.; Tan, L. L.; Ng, Y. H.; Yong, S. T.; Chai, S. P. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability? Chem. Rev. 2016, 116, 7159–7329.

    Article  CAS  Google Scholar 

  82. [82]

    Peng, D.; Zhang, L.; Li, F. F.; Cui, W. R.; Liang, R. P.; Qiu, J. D. Facile and green approach to the synthesis of boron nitride quantum dots for 2,4,6-trinitrophenol sensing. ACS Appl. Mater. Ieterfaces 2018, 10, 7315–7323.

    Article  CAS  Google Scholar 

  83. [83]

    Yeh, Y. T.; Tang, Y.; Lin, Z.; Fujisawa, K.; Lei, Y.; Zhou, Y. J.; Rotella, C.; Elías, A. L.; Zheng, S. Y.; Mao, Y. W. et al. Light-emitting transition metal dichalcogenide monolayers under cellular digestion. Adv. Mater. 2018, 30, 1703321.

    Article  CAS  Google Scholar 

  84. [84]

    Botsoa, J.; Lysenko, V.; Géloën, A.; Marty, O.; Bluet, J. M.; Guillot, G. Application of 3C-SiC quantum dots for living cell imaging. Appl. Phys. Lett. 2008, 92, 173902.

    Article  CAS  Google Scholar 

  85. [85]

    Krauss, T. F. Slow light in photonic crystal waveguides. J. Phys. D: Appl. Phys. 2007, 40, 2666–2670.

    Article  CAS  Google Scholar 

  86. [86]

    Wu, X. L.; Fan, J. Y.; Qiu, T.; Yang, X.; Siu, G. G.; Chu, P. K. Experimental evidence for the quantum confinement effect in 3C-SiC nanocrystallites. Phys. Rev. Lett. 2005, 94, 026102.

    Article  CAS  Google Scholar 

  87. [87]

    Yao, W. Y.; Shi, J.; Ling, J.; Guo, Y. D.; Ding, C. S.; Ding, Y. J. SiC-functionalized fluorescent aptasensor for determination of Proteus mirabilis. Microchim. Acta 2020, 187, 406.

    Article  CAS  Google Scholar 

  88. [88]

    Liu, Q.; Wang, X. L.; Yang, Q.; Zhang, Z. G.; Fang, X. M. Mesoporous g-C3N4 nanosheets prepared by calcining a novel supramolecular precursor for high-efficiency photocatalytic hydrogen evolution. Appl. Surf. Sci. 2018, 450, 46–56.

    Article  CAS  Google Scholar 

  89. [89]

    Cai, X. Y.; Zhang, J. Y.; Fujitsuka, M.; Majima, T. Graphitic-C3N4 hybridized N-doped La2Ti2O7 two-dimensional layered composites as efficient visible-light-driven photocatalyst. Appl. Catal. B: Environ. 2017, 202, 191–198.

    Article  CAS  Google Scholar 

  90. [90]

    Chu, X.; Li, K.; Guo, H. Y.; Zheng, H. B.; Shuda, S.; Wang, X. L.; Zhang, J. Y.; Chen, W.; Zhang, Y. Exploration of graphitic-C3N4 quantum dots for microwave-induced photodynamic therapy. ACS Biomater. Sci. Eng. 2017, 3, 1836–1844.

    Article  CAS  Google Scholar 

  91. [91]

    Chan, C. F.; Zhou, Y.; Guo, H. Y.; Zhang, J. Y.; Jiang, L. J.; Chen, W.; Shiu, K. K.; Wong, W. K.; Wong, K. L. pH-dependent cancer-directed photodynamic therapy by a water-soluble graphitic-phase carbon nitride-porphyrin nanoprobe. ChemPlusChem 2016, 81, 535–540.

    Article  CAS  Google Scholar 

  92. [92]

    Zhang, Y. Y.; Cheng, Y. R.; Yang, F.; Yuan, Z. P.; Wei, W.; Lu, H. T.; Dong, H. F.; Zhang, X. J. Near-infrared triggered Ti3C2/g-C3N4 heterostructure for mitochondria-targeting multimode photodynamic therapy combined photothermal therapy. Nano Today 2020, 34, 100919.

    Article  CAS  Google Scholar 

  93. [93]

    Li, H. L.; Tay, R. Y.; Tsang, S. H.; Zhen, X.; Teo, E. H. T. Controllable synthesis of highly luminescent boron nitride quantum dots. Small 2015, 11, 6491–6499.

    Article  CAS  Google Scholar 

  94. [94]

    Lin, L. X.; Xu, Y. X.; Zhang, S. W.; Ross, I. M.; Ong, A. C. M.; Allwood, D. A. Fabrication and luminescence of monolayered boron nitride quantum dots. Small 2014, 10, 60–65.

    Article  CAS  Google Scholar 

  95. [95]

    Azimi, S.; Behin, J.; Abiri, R.; Rajabi, L.; Derakhshan, A. A.; Karimnezhad, H. Synthesis, characterization and antibacterial activity of chlorophyllin functionalized graphene oxide nanostructures. Sci. Adv. Mater. 2014, 6, 771–781.

    Article  CAS  Google Scholar 

  96. [96]

    Fei, H. L.; Ye, R. Q.; Ye, G. L.; Gong, Y. J.; Peng, Z. W.; Fan, X. J.; Samuel, E. L. G.; Ajayan, P. M.; Tour, J. M. Boron-and nitrogen-doped graphene quantum dots/graphene hybrid nanoplatelets as efficient electrocatalysts for oxygen reduction. ACS Nano 2014, 8, 10837–10843.

    Article  CAS  Google Scholar 

  97. [97]

    Chen, H.; Liu, T. J; Su, Z. Q; Shang, L.; Wei, G. 2D transition metal dichalcogenide nanosheets for photo/thermo-based tumor imaging and therapy. Nanoscale Horiz. 2018, 3, 74–89.

    Article  CAS  Google Scholar 

  98. [98]

    Hua, X. W.; Bao, Y. W.; Chen, Z.; Wu, F. G. Carbon quantum dots with intrinsic mitochondrial targeting ability for mitochondria-based theranostics. Nanoscale 2017, 9, 10948–10960.

    Article  CAS  Google Scholar 

  99. [99]

    Loo, A. H.; Bonanni, A.; Sofer, Z.; Pumera, M. Transitional metal/chalcogen dependant interactions of hairpin DNA with transition metal dichalcogenides, MX2. ChemPhysChem 2015, 16, 2304–2306.

    Article  CAS  Google Scholar 

  100. [100]

    Voiry, D.; Mohite, A.; Chhowalla, M. Phase engineering of transition metal dichalcogenides. Chem. Soc. Rev. 2015, 44, 2702–2712.

    Article  CAS  Google Scholar 

  101. [101]

    Zhang, Y.; Zheng, B.; Zhu, C. F.; Zhang, X.; Tan, C. L.; Li, H.; Chen, B.; Yang, J.; Chen, J. Z.; Huang, Y. et al. Single — layer transition metal dichalcogenide nanosheet-based nanosensors for rapid, sensitive, and multiplexed detection of DNA. Adv. Mater. 2015, 27, 935–939.

    Article  CAS  Google Scholar 

  102. [102]

    Li, B. L.; Wang, J. P.; Zou, H. L.; Garaj, S.; Lim, C. T.; Xie, J. P.; Li, N. B.; Leong, D. T. Low-dimensional transition metal dichalcogenide nanostructures based sensors. Adv. Funct. Mater. 2016, 26, 7034–7056.

    Article  CAS  Google Scholar 

  103. [103]

    Jiang, G. H.; Jiang, T. T.; Zhou, H. J.; Yao, J. M.; Kong, X. D. Preparation of N-doped carbon quantum dots for highly sensitive detection of dopamine by an electrochemical method. RSC Adv. 2015, 5, 9064–9068.

    Article  CAS  Google Scholar 

  104. [104]

    Xu, Q.; Cai, W.; Li, W. K.; Sreeprasad, T. S.; He, Z. Y.; Ong, W. J.; Li, N. Two-dimensional quantum dots: Fundamentals, photoluminescence mechanism and their energy and environmental applications. Mater. Today Energy 2018, 10, 222–240.

    Article  Google Scholar 

  105. [105]

    Tang, L. B.; Ji, R. B.; Cao, X. K.; Lin, J. Y.; Jiang, H. X.; Li, X. M.; Teng, K. S.; Luk, C. M.; Zeng, S. J.; Hao, J. H. et al. Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots. ACS Nano 2012, 6, 5102–5110.

    Article  CAS  Google Scholar 

  106. [106]

    Xu, Q.; Yang, W. J.; Wen, Y. Y.; Liu, S. K.; Liu, Z.; Ong, W. J.; Li, N. Hydrochromic full-color MXene quantum dots through hydrogen bonding toward ultrahigh-efficiency white light-emitting diodes. Appl. Mater. Today 2019, 16, 90–101.

    Article  Google Scholar 

  107. [107]

    Chen, X. Z.; Kong, Z. Z.; Li, N.; Zhao, X. J.; Sun, C. H. Proposing the prospects of Ti3CN transition metal carbides (MXenes) as anodes of Li-ion batteries: A DFT study. Phys. Chem. Chem. Phys. 2016, 18, 32937–32943.

    Article  CAS  Google Scholar 

  108. [108]

    Liu, G. Y.; Zou, J. H.; Tang, Q. Y.; Yang, X. Y.; Zhang, Y. W.; Zhang, Q.; Huang, W.; Chen, P.; Shao, J. J.; Dong, X. C. Surface modified Ti3C2 MXene nanosheets for tumor targeting photothermal/photodynamic/chemo synergistic therapy. ACS Appl. Mater. Interfaces 2017, 9, 40077–40086.

    Article  CAS  Google Scholar 

  109. [109]

    Lukatskaya, M. R.; Bak, S. M.; Yu, X. Q.; Yang, X. Q.; Barsoum, M. W.; Gogotsi, Y. Probing the mechanism of high capacitance in 2D titanium carbide using in situ X-ray absorption spectroscopy. Adv. Energy Mater. 2015, 5, 1500589.

    Article  CAS  Google Scholar 

  110. [110]

    Luo, J. M.; Tao, X. Y.; Zhang, J.; Xia, Y.; Huang, H.; Zhang, L. Y.; Gan, Y. P.; Liang, C.; Zhang, W. K. Sn4+ ion decorated highly conductive Ti3C2 MXene: Promising lithium-ion anodes with enhanced volumetric capacity and cyclic performance. ACS Nano 2016, 10, 2491–2499.

    Article  CAS  Google Scholar 

  111. [111]

    Wang, H.; Li, H.; Huang, Y.; Xiong, M. H.; Wang, F.; Li, C. A label-free electrochemical biosensor for highly sensitive detection of gliotoxin based on DNA nanostructure/MXene nanocomplexes. Biosens. Bioelectron. 2019, 142, 111531.

    Article  CAS  Google Scholar 

  112. [112]

    Liu, Y. Y.; Xiao, H.; Goddard III, W. A. Schottky-barrier-free contacts with two-dimensional semiconductors by surface-engineered MXenes. J. Am. Chem. Soc. 2016, 138, 15853–15856.

    Article  CAS  Google Scholar 

  113. [113]

    Rasool, K.; Helal, M.; Ali, A.; Ren, C. E.; Gogotsi, Y.; Mahmoud, K. A. Antibacterial activity of Ti3C2Tx MXene. ACS Nano 2016, 10, 3674–3684.

    Article  CAS  Google Scholar 

  114. [114]

    Fu, X. Y.; Wang, L. L.; Zhao, L. J.; Yuan, Z. Y.; Zhang, Y. P.; Wang, D. Y.; Wang, D. P.; Li, J. Z.; Li, D. D.; Shulga, V. et al. Controlled assembly of MXene nanosheets as an electrode and active layer for high-performance electronic skin. Adv. Funct. Mater. 2021, 31, 2010533.

    Article  CAS  Google Scholar 

  115. [115]

    Zhang, J.; Yang, L.; Yuan, Y.; Jiang, J.; Yu, S. H. One-pot gramscale synthesis of nitrogen and sulfur embedded organic dots with distinctive fluorescence behaviors in free and aggregated states. Chem. Mater. 2016, 28, 4367–4374.

    Article  CAS  Google Scholar 

  116. [116]

    Ci, L. J.; Song, L.; Jin, C. H.; Jariwala, D.; Wu, D. X.; Li, Y. J.; Srivastava, A.; Wang, Z.F.; Storr, K.; Balicas, L. et al. Atomic layers of hybridized boron nitride and graphene domains. Nat. Mater. 2010, 9, 430–435.

    Article  CAS  Google Scholar 

  117. [117]

    Zhu, H. J.; Lai, Z. C.; Fang, Y.; Zhen, X.; Tan, C. L.; Qi, X. Y.; Ding, D.; Chen, P.; Zhang, H.; Pu, K. Y. Ternary chalcogenide nanosheets with ultrahigh photothermal conversion efficiency for photoacoustic theranostics. Small 2017, 13, 1604139.

    Article  CAS  Google Scholar 

  118. [118]

    Liu, Q.; Guo, B. D.; Rao, Z. Y.; Zhang, B. H.; Gong, J. R. Strong two-photon-induced fluorescence from photostable, biocompatible nitrogen-doped graphene quantum dots for cellular and deep-tissue imaging. Nano Lett. 2013, 13, 2436–2441.

    Article  CAS  Google Scholar 

  119. [119]

    Yuan, F. L.; Ding, L.; Li, Y. C.; Li, X. H.; Fan, L. Z.; Zhou, S. X.; Fang, D. C.; Yang, S. H. Multicolor fluorescent graphene quantum dots colorimetrically responsive to all-pH and a wide temperature range. Nanoscale 2015, 7, 11727–11733.

    Article  CAS  Google Scholar 

  120. [120]

    Zhang, Q.; Deng, S. N.; Liu, J. L.; Zhong, X. X.; He, J.; Chen, X. F.; Feng, B. W.; Chen, Y. F.; Ostrikov, K. Cancer-targeting graphene quantum dots: Fluorescence quantum yields, stability, and cell selectivity. Adv. Funct. Mater. 2019, 29, 1805860.

    Article  CAS  Google Scholar 

  121. [121]

    Zhang, J. L.; Zhao, X. W.; Xian, M.; Dong, C.; Shuang, S. M. Folic acid-conjugated green luminescent carbon dots as a nanoprobe for identifying folate receptor-positive cancer cells. Talanta 2018, 183, 39–47.

    Article  CAS  Google Scholar 

  122. [122]

    Yang, P.; Zhu, Z. Q.; Zhang, T.; Zhang, W.; Chen, W. M.; Cao, Y. Z.; Chen, M. Z.; Zhou, X. Y. Orange-emissive carbon quantum dots: Toward application in wound pH monitoring based on colorimetric and fluorescent changing. Small 2019, 15, 1902823.

    Article  CAS  Google Scholar 

  123. [123]

    Kim, S.; Choi, Y.; Park, G.; Won, C.; Park, Y. J.; Lee, Y.; Kim, B. S.; Min, D. H. Highly efficient gene silencing and bioimaging based on fluorescent carbon dots in vitro and in vivo. Nano Res. 2017, 10, 503–519.

    Article  CAS  Google Scholar 

  124. [124]

    Wang, L.; Li, B. Q.; Xu, F.; Li, Y.; Xu, Z. H.; Wei, D. Q.; Feng, Y. J.; Wang, Y. M.; Jia, D. C.; Zhou, Y. Visual in vivo degradation of injectable hydrogel by real-time and non-invasive tracking using carbon nanodots as fluorescent indicator. Biomaterials 2017, 145, 192–206.

    Article  CAS  Google Scholar 

  125. [125]

    Hua, X. W.; Bao, Y. W.; Zeng, J.; Wu, F. G. Nucleolus-targeted red emissive carbon dots with polarity-sensitive and excitation-independent fluorescence emission: High-resolution cell imaging and in vivo tracking. ACS Appl. Mater. Interfaces 2019, 11, 32647–32658.

    Article  CAS  Google Scholar 

  126. [126]

    Wang, J.; Liang, D.; Qu, Z. H.; Kislyakov, I. M.; Kiselev, V. M.; Liu, J. PEGylated-folic acid-modified black phosphorus quantum dots as near-infrared agents for dual-modality imaging-guided selective cancer cell destruction. Nanophotonics 2020, 9, 2425–2435.

    Article  CAS  Google Scholar 

  127. [127]

    Ding, X. G.; Peng, F.; Zhou, J.; Gong, W. B.; Slaven, G.; Loh, K. P.; Lim, C. T.; Leong, D. T. Defect engineered bioactive transition metals dichalcogenides quantum dots. Nat. Commun. 2019, 10, 41.

    Article  CAS  Google Scholar 

  128. [128]

    Ariyasu, S.; Mu, J.; Zhang, X.; Huang, Y.; Yeow, E. K. L.; Zhang, H.; Xing, B. G. Investigation of thermally induced cellular ablation and heat response triggered by planar MoS2-based nanocomposite. Bioconjug. Chem. 2017, 28, 1059–1067.

    Article  CAS  Google Scholar 

  129. [129]

    Karunakaran, S.; Pandit, S.; Basu, B.; De, M. Simultaneous exfoliation and functionalization of 2H-MoS2 by thiolated surfactants: Applications in enhanced antibacterial activity. J. Am. Chem. Soc. 2018, 140, 12634–12644.

    Article  CAS  Google Scholar 

  130. [130]

    Bao, Y. J.; Li, J. J.; Wang, Y. T.; Yu, L.; Wang, J.; Du, W. J.; Lou, L.; Zhu, Z. Q.; Peng, H.; Zhu, J. Z. Preparation of water soluble CdSe and CdSe/CdS quantum dots and their uses in imaging of cell and blood capillary. Opt. Mater. 2012, 34, 1588–1592.

    Article  CAS  Google Scholar 

  131. [131]

    Han, X. X.; Huang, J.; Lin, H.; Wang, Z. G.; Li, P.; Chen, Y. 2D ultrathin MXene-based drug-delivery nanoplatform for synergistic photothermal ablation and chemotherapy of cancer. Adv. Healthc. Mater. 2018, 7, 1701394.

    Article  CAS  Google Scholar 

  132. [132]

    Rafieerad, A.; Yan, W. A.; Sequiera, G. L.; Sareen, N.; Abu-El-Rub, E.; Moudgil, M.; Dhingra, S. Application of Ti3C2 MXene quantum dots for immunomodulation and regenerative medicine. Adv. Healthc. Mater. 2019, 8, 1900569.

    Article  CAS  Google Scholar 

  133. [133]

    Han, X. X.; Jing, X. X.; Yang, D. Y.; Lin, H.; Wang, Z. G.; Ran, H. T.; Li, P.; Chen, Y. Therapeutic mesopore construction on 2D Nb2C MXenes for targeted and enhanced chemo-photothermal cancer therapy in NIR-II biowindow. Theranostics 2018, 8, 4491–4508.

    Article  CAS  Google Scholar 

  134. [134]

    Liu, Z.; Lin, H.; Zhao, M. L.; Dai, C.; Zhang, S. J.; Peng, W. J.; Chen, Y. 2D superparamagnetic tantalum carbide composite MXenes for efficient breast-cancer theranostics. Theranostics 2018, 8, 1648–1664.

    Article  CAS  Google Scholar 

  135. [135]

    Lu, S. Y.; Sui, L. Z.; Liu, J. J.; Zhu, S. J.; Chen, A. M.; Jin, M. X.; Yang, B. Near-infrared photoluminescent polymer-carbon nanodots with two-photon fluorescence. Adv. Mater. 2017, 29, 1603443.

    Article  CAS  Google Scholar 

  136. [136]

    Kang, Z. H.; Tsang, C. H. A.; Zhang, Z. D.; Zhang, M. L.; Wong, N. B.; Zapien, J. A.; Shan, Y. Y.; Lee, S. T. A polyoxometalate-assisted electrochemical method for silicon nanostructures preparation: From quantum dots to nanowires. J. Am. Chem. Soc. 2007, 129, 5326–5327.

    Article  CAS  Google Scholar 

  137. [137]

    Dong, H. F.; Tang, S. S.; Hao, Y. S.; Yu, H. Z.; Dai, W. H.; Zhao, G. F.; Cao, Y.; Lu, H. T.; Zhang, X. J.; Ju, H. X. Fluorescent MoS2 quantum dots: Ultrasonic preparation, up-conversion and down-conversion bioimaging, and photodynamic therapy. ACS Appl. Mater. Ieterfaces 2016, 8, 3107–3114.

    Article  CAS  Google Scholar 

  138. [138]

    Wei, S.; Zhang, R.; Liu, Y.; Ding, H.; Zhang, Y. L. Graphene quantum dots prepared from chemical exfoliation of multiwall carbon nanotubes: An efficient photocatalyst promoter. Catal. Commun. 2016, 74, 104–109.

    Article  CAS  Google Scholar 

  139. [139]

    de Medeiros, T. V.; Manioudakis, J.; Noun, F.; Macairan, J. R.; Victoria, F.; Naccache, R. Microwave-assisted synthesis of carbon dots and their applications. J. Mater. Chem. C 2019, 7, 7175–7195.

    Article  CAS  Google Scholar 

  140. [140]

    Jiang, J.; He, Y.; Li, S. Y.; Cui, H. Amino acids as the source for producing carbon nanodots: Microwave assisted one-step synthesis, intrinsic photoluminescence property and intense chemiluminescence enhancement. Chem. Commun. 2012, 48, 9634–9636.

    Article  CAS  Google Scholar 

  141. [141]

    Ali, J.; Siddiqui, G. U. D.; Yang, Y. J.; Lee, K. T.; Um, K.; Choi, K. H. Direct synthesis of graphene quantum dots from multilayer graphene flakes through grinding assisted co-solvent ultrasonication for all-printed resistive switching arrays. RSC Adv. 2016, 6, 5068–5078.

    Article  CAS  Google Scholar 

  142. [142]

    Qu, K. G.; Zheng, Y.; Zhang, X. X.; Davey, K.; Dai, S.; Qiao, S. Z. Promotion of electrocatalytic hydrogen evolution reaction on nitrogen-doped carbon nanosheets with secondary heteroatoms. ACS Nano 2017, 11, 7293–7300.

    Article  CAS  Google Scholar 

  143. [143]

    Xu, Q.; Kuang, T. R.; Liu, Y.; Cai, L. L.; Peng, X. F.; Sreeprasad, T. S.; Zhao, P.; Yu, Z. Q.; Li, N. Heteroatom-doped carbon dots: Synthesis, characterization, properties, photoluminescence mechanism and biological applications. J. Mater. Chem. B 2016, 4, 7204–7219.

    Article  CAS  Google Scholar 

  144. [144]

    Qu, L. H.; Peng, X. G. Control of photoluminescence properties of CdSe nanocrystals in growth. J. Am. Chem. Soc. 2002, 124, 2049–2055.

    Article  CAS  Google Scholar 

  145. [145]

    Qu, L. H.; Peng, Z. A.; Peng, X. G. Alternative routes toward high quality CdSe nanocrystals. Nano Lett. 2001, 1, 333–337.

    Article  CAS  Google Scholar 

  146. [146]

    Mukhina, M. V.; Maslov, V. G.; Baranov, A. V.; Fedorov, A. V.; Orlova, A. O.; Purcell-Milton, F.; Govan, J.; Gun’ko, Y. K. Intrinsic chirality of CdSe/ZnS quantum dots and quantum rods. Nano Lett. 2015, 15, 2844–2851.

    Article  CAS  Google Scholar 

  147. [147]

    Coropceanu, I.; Rossinelli, A.; Caram, J. R.; Freyria, F. S.; Bawendi, M. G. Slow-injection growth of seeded CdSe/CdS nanorods with unity fluorescence quantum yield and complete shell to core energy transfer. ACS Nano 2016, 10, 3295–3301.

    Article  CAS  Google Scholar 

  148. [148]

    Bridewell, V. L.; Alam, R.; Karwacki, C. J.; Kamat, P. V. CdSe/CdS nanorod photocatalysts: Tuning the interfacial charge transfer process through shell length. Chem. Mater. 2015, 27, 5064–5071.

    Article  CAS  Google Scholar 

  149. [149]

    Ding, H.; Yu, S. B.; Wei, J. S.; Xiong, H. M. Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano 2016, 10, 484–491.

    Article  CAS  Google Scholar 

  150. [150]

    Zhu, S. J.; Meng, Q. N.; Wang, L.; Zhang, J. H.; Song, Y. B.; Jin, H.; Zhang, K.; Sun, H. C.; Wang, H. Y.; Yang, B. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew. Chem., Int. Ed. 2013, 52, 3953–3957.

    Article  CAS  Google Scholar 

  151. [151]

    Vinci, J. C.; Colon, L. A. Fractionation of carbon-based nanomaterials by anion-exchange HPLC. Anal. Chem. 2012, 84, 1178–1183.

    Article  CAS  Google Scholar 

  152. [152]

    Barman, S.; Sadhukhan, M. Facile bulk production of highly blue fluorescent graphitic carbon nitride quantum dots and their application as highly selective and sensitive sensors for the detection of mercuric and iodide ions in aqueous media. J. Mater. Chem. 2012, 22, 21832–21837.

    Article  CAS  Google Scholar 

  153. [153]

    Shan, X. Y.; Chai, L. J.; Ma, J. J.; Qian, Z. S.; Chen, J. R.; Feng, H. B-doped carbon quantum dots as a sensitive fluorescence probe for hydrogen peroxide and glucose detection. Analyst 2014, 139, 2322–2325.

    Article  CAS  Google Scholar 

  154. [154]

    Chandra, S.; Patra, P.; Pathan, S. H.; Roy, S.; Mitra, S.; Layek, A.; Bhar, R.; Pramanik, P.; Goswami, A. Luminescent S-doped carbon dots: an emergent architecture for multimodal applications. J. Mater. Chem. B 2013, 1, 2375–2382.

    Article  CAS  Google Scholar 

  155. [155]

    Xue, M. Y.; Zhang, L. L.; Zhan, Z. H.; Zou, M. B.; Huang, Y.; Zhao, S. L. Sulfur and nitrogen binary doped carbon dots derived from ammonium thiocyanate for selective probing doxycycline in living cells and multicolor cell imaging. Talanta 2016, 150, 324–330.

    Article  CAS  Google Scholar 

  156. [156]

    Zhao, J.; Li, F. T.; Zhang, S.; An, Y.; Sun, S. Q. Preparation of N-doped yellow carbon dots and N, P co-doped red carbon dots for bioimaging and photodynamic therapy of tumors. New J. Chem. 2019, 43, 6332–6342.

    Article  CAS  Google Scholar 

  157. [157]

    Chen, N.; He, Y.; Su, Y. Y.; Li, X. M.; Huang, Q.; Wang, H. F.; Zhang, X. Z.; Tai, R. Z.; Fan, C. H. The cytotoxicity of cadmium-based quantum dots. Biomaterials 2012, 33, 1238–1244.

    Article  CAS  Google Scholar 

  158. [158]

    Zhang, T.; Hu, Y. Y.; Tang, M.; Kong, L.; Ying, J. L.; Wu, T. S.; Xue, Y. Y.; Pu, Y. P. Liver toxicity of cadmium telluride quantum dots (CdTe QDs) due to oxidative stress in vitro and in vivo. Int. J. Mol. Sci. 2015, 16, 23279–23299.

    Article  CAS  Google Scholar 

  159. [159]

    Mu, X. Y.; Wang, J. Y.; Bai, X. T.; Xu, F. J.; Liu, H. X.; Yang, J.; Jing, Y. Q.; Liu, L. F.; Xue, X. H.; Dai, H. T. et al. Black phosphorus quantum dot induced oxidative stress and toxicity in living cells and mice. ACS Appl. Mater. Ieterfaces 2017, 9, 20399–20409.

    Article  CAS  Google Scholar 

  160. [160]

    Lin, C. H.; Yang, M. H.; Chang, L. W.; Yang, C. S.; Chang, H.; Chang, W. H.; Tsai, M. H.; Wang, C. J.; Lin, P. P. Cd/Se/Te-based quantum dot 705 modulated redox homeostasis with hepatotoxicity in mice. Nanotoxicology 2011, 5, 650–663.

    Article  CAS  Google Scholar 

  161. [161]

    Vallieres, L.; Rivest, S. Interleukin-6 is a needed proinflammatory cytokine in the prolonged neural activity and transcriptional activation of corticotropin-releasing factor during endotoxemia. Endocrieology 1999, 140, 3890–3903.

    Article  CAS  Google Scholar 

  162. [162]

    Del Campo, J. A.; Gallego, P.; Grande, L. Role of inflammatory response in liver diseases: Therapeutic strategies. World J. Hepatol. 2018, 10, 1–7.

    Article  Google Scholar 

  163. [163]

    Manshian, B. B.; Soenen, S. J.; Al-Ali, A.; Brown, A.; Hondow, N.; Wills, J.; Jenkins, G. J.; Doak, S. H. Cell type-dependent changes in CdSe/ZnS quantum dot uptake and toxic endpoints. Toxicol. Sci. 2015, 144, 246–258.

    Article  CAS  Google Scholar 

  164. [164]

    Shao, J. D.; Xie, H. H.; Huang, H.; Li, Z. B.; Sun, Z. B.; Xu, Y. H.; Xiao, Q. L.; Yu, X. F.; Zhao, Y. T.; Zhang, H. et al. Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy. Nat. Commun. 2016, 7, 12967.

    Article  CAS  Google Scholar 

  165. [165]

    Alves, J. Q.; Máximo, L. N. C.; Franco, L. P.; da Silva, R. S.; de Oliveira, M. F. Fluorescence-quenching CdTe quantum dots applied for identification of cocaine-structure analogues. Anal. Methods 2019, 11, 185–191.

    Article  CAS  Google Scholar 

  166. [166]

    Tang, Y.; Han, S. L.; Liu, H. M.; Chen, X.; Huang, L.; Li, X. H.; Zhang, J. X. The role of surface chemistry in determining in vivo biodistribution and toxicity of CdSe/ZnS core-shell quantum dots. Biomaterials 2013, 34, 8741–8755.

    Article  CAS  Google Scholar 

  167. [167]

    Hola, K.; Zhang, Y.; Wang, Y.; Giannelis, E. P.; Zboril, R.; Rogach, A. L. Carbon dots—Emerging light emitters for bioimaging, cancer therapy and optoelectronics. Nano Today 2014, 9, 590–603.

    Article  CAS  Google Scholar 

  168. [168]

    Lim, S. Y.; Shen, W.; Gao, Z. Q. Carbon quantum dots and their applications. Chem. Soc. Rev. 2015, 44, 362–381.

    Article  CAS  Google Scholar 

  169. [169]

    Shamsipur, M.; Barati, A.; Karami, S. Long-wavelength, multicolor, and white-light emitting carbon-based dots: Achievements made, challenges remaining, and applications. Carbon 2017, 124, 429–472.

    Article  CAS  Google Scholar 

  170. [170]

    Shuhendler, A. J.; Prasad, P.; Chan, H. K. C.; Gordijo, C. R.; Soroushian, B.; Kolios, M.; Yu, K.; O’Brien, P. J.; Rauth, A. M.; Wu, X. Y. Hybrid quantum dot-fatty ester stealth nanoparticles: Toward clinically relevant in vivo optical imaging of deep tissue. ACS Nano 2011, 5, 1958–1966.

    Article  CAS  Google Scholar 

  171. [171]

    Li, Y.; Liu, Z. M.; Hou, Y. Q.; Yang, G. C.; Fei, X. X.; Zhao, H. N.; Guo, Y. X.; Su, C. K.; Wang, Z.; Zhong, H. Q. et al. Multifunctional nanoplatform based on black phosphorus quantum dots for bioimaging and photodynamic/photothermal synergistic cancer therapy. ACS Appl. Mater. Ieterfaces 2017, 9, 25098–25106.

    Article  CAS  Google Scholar 

  172. [172]

    Ouarrad, H.; Ramadan, F. Z.; Drissi, L. B. Size engineering optoelectronic features of C, Si and CSi hybrid diamond-shaped quantum dots. RSC Adv. 2019, 9, 28609–28617.

    Article  CAS  Google Scholar 

  173. [173]

    Wang, X. J.; Wang, Y. N.; He, H.; Chen, X.; Sun, X.; Sun, Y. W.; Zhou, G. J.; Xu, H.; Huang, F. Steering graphene quantum dots in living cells: Lighting up the nucleolus. J. Mater. Chem. B 2016, 4, 779–784.

    Article  CAS  Google Scholar 

  174. [174]

    Yu, C. Y.; Xuan, T. T.; Chen, Y. W.; Zhao, Z. J.; Liu, X. X.; Lian, G. H.; Li, H. L. Gadolinium-doped carbon dots with high quantum yield as an effective fluorescence and magnetic resonance bimodal imaging probe. J. Alloys Compd. 2016, 688, 611–619.

    Article  CAS  Google Scholar 

  175. [175]

    Arvaniti, E.; Claassen, M. Sensitive detection of rare disease-associated cell subsets via representation learning. Nature Commun. 2017, 8, 14828.

    Article  CAS  Google Scholar 

  176. [176]

    Gu, W.; Yan, Y. H.; Pei, X. Y.; Zhang, C. L.; Ding, C. P.; Xian, Y. Z. Fluorescent black phosphorus quantum dots as label-free sensing probes for evaluation of acetylcholinesterase activity. Sens. Actuators B: Chem. 2017, 250, 601–607.

    Article  CAS  Google Scholar 

  177. [177]

    Speranskaya, E. S.; Dmitrienko, V. P.; Dmitrienko, A. O.; Potapkina, D. A.; Goryacheva, I. Y. The influence of synthetic conditions on optical properties of cadmium selenide quantum dots. Nanotechnol. Russia 2011, 6, 516.

    Article  Google Scholar 

  178. [178]

    Ye, X. X.; Xiang, Y. H.; Wang, Q. R.; Li, Z.; Liu, Z. H. A red emissive two-photon fluorescence probe based on carbon dots for intracellular pH detection. Small 2019, 15, 1901673.

    Article  CAS  Google Scholar 

  179. [179]

    Li, C.; Ji, Y.; Wang, C.; Liang, S. J.; Pan, F.; Zhang, C. L.; Chen, F.; Fu, H. L.; Wang, K.; Cui, D. X. BRCAA1 antibody-and Her2 antibody-conjugated amphiphilic polymer engineered CdSe/ZnS quantum dots for targeted imaging of gastric cancer. Nanoscale Res. Lett. 2014, 9, 244.

    Article  CAS  Google Scholar 

  180. [180]

    Otis, G.; Bhattacharya, S.; Malka, O.; Kolusheva, S.; Bolel, P.; Porgador, A.; Jelinek, R. Selective labeling and growth inhibition of Pseudomonas aeruginosa by aminoguanidine carbon dots. ACS Infectious Dis. 2019, 5, 292–302.

    Article  CAS  Google Scholar 

  181. [181]

    Yang, L.; Deng, W. F.; Cheng, C.; Tan, Y. M.; Xie, Q. Q.; Yao, S. Z. Fluorescent immunoassay for the detection of pathogenic bacteria at the single-cell level using carbon dots-encapsulated breakable organosilica nanocapsule as labels. ACS Appl. Mater. Interfaces 2018, 10, 3441–3448.

    Article  CAS  Google Scholar 

  182. [182]

    Liu, J. H.; Cao, L.; LeCroy, G. E.; Wang, P.; Meziani, M. J.; Dong, Y. Y.; Liu, Y. F.; Luo, P. G.; Sun, Y. P. Carbon “quantum” dots for fluorescence labeling of cells. ACS Appl. Mater. Interfaces 2015, 7, 19439–19445.

    Article  CAS  Google Scholar 

  183. [183]

    Zhao, J. Y.; Chen, G.; Gu, Y. P.; Cui, R.; Zhang, Z. L.; Yu, Z. L.; Tang, B.; Zhao, Y. F.; Pang, D. W. Ultrasmall magnetically engineered Ag2Se quantum dots for instant efficient labeling and whole-body high-resolution multimodal real-time tracking of cell-derived microvesicles. J. Am. Chem. Soc. 2016, 138, 1893–1903.

    Article  CAS  Google Scholar 

  184. [184]

    Law, J. W. F.; Ab Mutalib, N. S.; Chan, K. G.; Lee, L. H. Rapid methods for the detection of foodborne bacterial pathogens: Principles, applications, advantages and limitations. Front. Microbiol. 2015, 5, 770.

    Article  Google Scholar 

  185. [185]

    Brecher, M. E.; Hay, S. N. Bacterial contamination of blood components. Clin. Microbiol. Rev. 2005, 18, 195–204.

    Article  Google Scholar 

  186. [186]

    Huo, F.; Liang, W. F.; Tang, Y. R.; Zhang, W.; Liu, X. H.; Pei, D. S.; Wang, H. B.; Jia, W. J.; Jia, P. P.; Yang, F. Full-color carbon dots with multiple red-emission tuning: On/off sensors, in vitro and in vivo multicolor bioimaging. J. Mater. Sci. 2019, 54, 6815–6825.

    Article  CAS  Google Scholar 

  187. [187]

    Lin, Y.; Zhang, L. Z.; Yao, W.; Qian, H. Q.; Ding, D.; Wu, W.; Jiang, X. Q. Water-soluble chitosan-quantum dot hybrid nanospheres toward bioimaging and biolabeling. ACS Appl. Mater. Interfaces 2011, 3, 995–1002.

    Article  CAS  Google Scholar 

  188. [188]

    Reasoner, D. J.; Geldreich, E. E. A new medium for the enumeration and subculture of bacteria from potable water. Appl. Environ. Microbiol. 1985, 49, 1–7.

    Article  CAS  Google Scholar 

  189. [189]

    Gao, J.; Li, L.; Ho, P. L.; Mak, G. C.; Gu, H.; Xu, B. Combining fluorescent probes and biofunctional magnetic nanoparticles for rapid detection of bacteria in human blood. Adv. Mater. 2006, 18, 3145–3148.

    Article  CAS  Google Scholar 

  190. [190]

    Mothershed, E. A.; Whitney, A. M. Nucleic acid-based methods for the detection of bacterial pathogens: Present and future considerations for the clinical laboratory. Clin. Chim. Acta 2006, 363, 206–220.

    Article  CAS  Google Scholar 

  191. [191]

    Wang, J. Y.; Zhu, Y. H.; Wang, L. Synthesis and applications of red-emissive carbon dots. Chem. Rec. 2019, 19, 2083–2094.

    Article  CAS  Google Scholar 

  192. [192]

    Gao, W. L.; Song, H. H.; Wang, X.; Liu, X. Q.; Pang, X. B.; Zhou, Y. M.; Gao, B.; Peng, X. J. Carbon dots with red emission for sensing of Pt2+, Au3+, and Pd2+ and their bioapplications in vitro and in vivo. ACS Appl. Mater. Interfaces 2018, 10, 1147–1154.

    Article  CAS  Google Scholar 

  193. [193]

    Iqbal, A.; Tian, Y. J.; Wang, X. D.; Gong, D. Y.; Guo, Y. L.; Iqbal, K.; Wang, Z. P.; Liu, W. S.; Qin, W. W. Carbon dots prepared by solid state method via citric acid and 1,10-phenanthroline for selective and sensing detection of Fe2+ and Fe3+. Sens. Actuators B: Chem. 2016, 237, 408–415.

    Article  CAS  Google Scholar 

  194. [194]

    Liu, S. Y.; Pang, S.; Na, W. D.; Su, X. G. Near-infrared fluorescence probe for the determination of alkaline phosphatase. Biosens. Bioelectron. 2014, 55, 249–254.

    Article  CAS  Google Scholar 

  195. [195]

    Ma, Y.; Chen, A. Y.; Huang, Y. Y.; He, X.; Xie, X. F.; He, B.; Yang, J. H.; Wang, X. Y. Off-on fluorescent switching of boron-doped carbon quantum dots for ultrasensitive sensing of catechol and glutathione. Carbon 2020, 162, 234–244.

    Article  CAS  Google Scholar 

  196. [196]

    Hahn, M. A.; Tabb, J. S.; Krauss, T. D. Detection of single bacterial pathogens with semiconductor quantum dots. Anal. Chem. 2005, 77, 4861–4869.

    Article  CAS  Google Scholar 

  197. [197]

    Gaikwad, A.; Joshi, M.; Patil, K.; Sathaye, S.; Rode, C. Fluorescent carbon-dots thin film for fungal detection and bio-labeling applications. ACS Appl. Bio Mater. 2019, 2, 5829–5840.

    Article  CAS  Google Scholar 

  198. [198]

    Hu, J.; Jiang, Y. Z.; Tang, M.; Wu, L. L.; Xie, H. Y.; Zhang, Z. L.; Pang, D. W. Colorimetric-fluorescent-magnetic nanosphere-based multimodal assay platform for Salmonella detection. Anal. Chem. 2018, 91, 1178–1184.

    Article  CAS  Google Scholar 

  199. [199]

    Wang, J. J.; Lin, Y.; Jiang, Y. Z.; Zheng, Z. H.; Xie, H. Y.; Lv, C.; Chen, Z. L.; Xiong, L. H.; Zhang, Z. L.; Wang, H. Z. et al. Multifunctional cellular beacons with in situ synthesized quantum dots make pathogen detectable with the naked eye. Anal. Chem. 2019, 91, 7280–7287.

    Article  CAS  Google Scholar 

  200. [200]

    Gao, R.; Zhong, Z. T.; Gao, X. M.; Jia, L. Graphene oxide quantum dots assisted construction of fluorescent aptasensor for rapid detection of Pseudomonas aeruginosa in food samples. J. Agric. Chem. 2018, 66, 10898–10905.

    Article  CAS  Google Scholar 

  201. [201]

    Alizadeh, N.; Memar, M. Y.; Moaddab, S. R.; Kafil, H. S. Aptamer-assisted novel technologies for detecting bacterial pathogens. Biomed. Pharmacother. 2017, 93, 737–745.

    Article  CAS  Google Scholar 

  202. [202]

    Wu, W.; Fang, Z. Y.; Zhao, S. M.; Lu, X. W.; Yu, L. X.; Mei, T.; Zeng, L. W. A simple aptamer biosensor for Salmonellae enteritidis based on fluorescence-switch signaling graphene oxide. RSC Adv. 2014, 4, 22009–22012.

    Article  CAS  Google Scholar 

  203. [203]

    Dargaville, T. R.; Farrugia, B. L.; Broadbent, J. A.; Pace, S.; Upton, Z.; Voelcker, N. H. Sensors and imaging for wound healing: A review. Biosens. Bioelectron. 2013, 41, 30–42.

    Article  CAS  Google Scholar 

  204. [204]

    Ding, H.; Wei, J. S.; Zhang, P.; Zhou, Z. Y.; Gao, Q. Y.; Xiong, H. M. Solvent-controlled synthesis of highly luminescent carbon dots with a wide color gamut and narrowed emission peak widths. Small 2018, 14, 1800612.

    Article  CAS  Google Scholar 

  205. [205]

    Wang, Y. X.; Xu, N.; Li, D. Y.; Zhu, J. Thermal properties of two dimensional layered materials. Adv. Funct. Mater. 2017, 27, 1604134.

    Article  CAS  Google Scholar 

  206. [206]

    Yu, G. C.; Zhou, J.; Shen, J.; Tang, G. P.; Huang, F. H. Cationic pillar[6]arene/ATP host-guest recognition: Selectivity, inhibition of ATP hydrolysis, and application in multidrug resistance treatment. Chem. Sci. 2016, 7, 4073–4078.

    Article  CAS  Google Scholar 

  207. [207]

    Devi, P.; Saini, S.; Kim, K. H. The advanced role of carbon quantum dots in nanomedical applications. Biosens. Bioelectron. 2019, 141, 111158.

    Article  CAS  Google Scholar 

  208. [208]

    Danhier, F.; Feron, O.; Préat, V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J. Control. Release 2010, 148, 135–146.

    Article  CAS  Google Scholar 

  209. [209]

    Singh, R.; Lillard, Jr, J. W. Nanoparticle-based targeted drug delivery. Exp. Mol. pathol. 2009, 86, 215–223.

    Article  CAS  Google Scholar 

  210. [210]

    Yu, G. C.; Yu, W.; Mao, Z. W.; Gao, C. Y.; Huang, F. H. A pillararene-based ternary drug-delivery system with photocontrolled anticancer drug release. Small 2015, 11, 919–925.

    Article  CAS  Google Scholar 

  211. [211]

    Veiseh, O.; Gunn, J. W.; Zhang, M. Q. Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv. Drug Deliv. Rev. 2010, 62, 284–304.

    Article  CAS  Google Scholar 

  212. [212]

    Zheng, M.; Ruan, S. B.; Liu, S.; Sun, T. T.; Qu, D.; Zhao, H. F.; Xie, Z. G.; Gao, H. L.; Jing, X. B.; Sun, Z. C. Self-targeting fluorescent carbon dots for diagnosis of brain cancer cells. ACS Nano 2015, 9, 11455–11461.

    Article  CAS  Google Scholar 

  213. [213]

    Abate, Y.; Akinwande, D.; Gamage, S.; Wang, H.; Snure, M.; Poudel, N.; Cronin, S. B. Recent progress on stability and passivation of black phosphorus. Adv. Mater. 2018, 30, 1704749.

    Article  CAS  Google Scholar 

  214. [214]

    Favron, A.; Gaufrès, E.; Fossard, F.; Phaneuf-L’Heureux, A. L.; Tang, N. Y. W.; Lévesque, P. L.; Loiseau, A.; Leonelli, R.; Francoeur, S.; Martel, R. Photooxidation and quantum confinement effects in exfoliated black phosphorus. Nat. Mater. 2015, 10, 826–832.

    Article  CAS  Google Scholar 

  215. [215]

    Ge, X. X.; Xia, Z. H.; Guo, S. J. Recent advances on black phosphorus for biomedicine and biosensing. Adv. Funct. Mater. 2019, 29, 1900318.

    Article  CAS  Google Scholar 

  216. [216]

    Tabish, T. A.; Zhang, S. W.; Winyard, P. G. Developing the next generation of graphene-based platforms for cancer therapeutics: The potential role of reactive oxygen species. Redox Biol. 2018, 15, 34–40.

    Article  CAS  Google Scholar 

  217. [217]

    Sun, D.; Ban, R.; Zhang, P. H.; Wu, G. H.; Zhang, J. R.; Zhu, J. J. Hair fiber as a precursor for synthesizing of sulfur-and nitrogen-codoped carbon dots with tunable luminescence properties. Carbon 2013, 64, 424–434.

    Article  CAS  Google Scholar 

  218. [218]

    Riley, R. S.; Day, E. S. Gold nanoparticle-mediated photothermal therapy: Applications and opportunities for multimodal cancer treatment. Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol. 2017, 9, e1449.

    Google Scholar 

  219. [219]

    Shankar, S. S.; Shereema, R. M.; Rakhi, R. B. Electrochemical determination of adrenaline using MXene/Graphite composite paste electrodes. ACS Appl. Mater. Ieterfaces 2018, 10, 43343–43351.

    Article  CAS  Google Scholar 

  220. [220]

    Yang, X.; An, J. X.; Luo, Z.; Yang, R.; Yan, S. Z.; Liu, D. E.; Fu, H.; Gao, H. A cyanine-based polymeric nanoplatform with microenvironment-driven cascaded responsiveness for imaging-guided chemo-photothermal combination anticancer therapy. J. Mater. Chem. B 2020, 8, 2115–2122.

    Article  CAS  Google Scholar 

  221. [221]

    Nourmohammadi, A.; Rahighi, R.; Akhavan, O.; Moshfegh, A. Graphene oxide sheets involved in vertically aligned zinc oxide nanowires for visible light photoinactivation of bacteria. J. Alloys Compd. 2014, 612, 380–385.

    Article  CAS  Google Scholar 

  222. [222]

    Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263–275.

    Article  Google Scholar 

  223. [223]

    Yim, D. B.; Kim, J. E.; Kim, H. I.; Yang, J. K.; Kang, T. W.; Nam, J.; Han, S. H.; Jun, B.; Lee, C. H.; Lee, S. U. et al. Adjustable intermolecular interactions allowing 2D transition metal dichalcogenides with prolonged scavenging activity for reactive oxygen species. Small 2018, 14, 1800026.

    Article  CAS  Google Scholar 

  224. [224]

    Choi, J.; Chen, H.; Li, F. R.; Yang, L. M.; Kim, S. S.; Naik, R. R.; Ye, P. D.; Choi, J. H. Nanomanufacturing of 2D transition metal dichalcogenide materials using self-assembled DNA nanotubes. Small 2015, 11, 5520–5527.

    Article  CAS  Google Scholar 

  225. [225]

    Tan, E.; Li, B. L.; Ariga, K.; Lim, C.-T.; Garaj, S.; Leong, D. T. Toxicity of two-dimensional layered materials and their heterostructures. Bioconjugate Chem. 2019, 30, 2287–2299.

    Article  CAS  Google Scholar 

  226. [226]

    Zhu, X. B.; Ji, X. Y.; Kong, N.; Chen, Y. H.; Mahmoudi, M.; Xu, X. D.; Ding, L.; Tao, W.; Cai, T.; Li, Y. J. et al. Intracellular mechanistic understanding of 2D MoS2 nanosheets for anti-exocytosis-enhanced synergistic cancer therapy. ACS Nano 2018, 12, 2922–2938.

    Article  CAS  Google Scholar 

  227. [227]

    Feng, L. L.; Xie, R.; Wang, C. Q.; Gai, S. L.; He, F.; Yang, D.; Yang, P. P.; Lin, J. Magnetic targeting, tumor microenvironment-responsive intelligent nanocatalysts for enhanced tumor ablation. ACS Nano 2018, 12, 11000–11012.

    Article  CAS  Google Scholar 

  228. [228]

    Feng, T.; Ai, X. Z.; Ong, H. M.; Zhao, Y. L. Dual-responsive carbon dots for tumor extracellular microenvironment triggered targeting and enhanced anticancer drug delivery. ACS Appl. Mater. Ieterfaces 2016, 8, 18732–18740.

    Article  CAS  Google Scholar 

  229. [229]

    Yuan, Q.; Hein, S.; Misra, R. D. K. New generation of chitosanencapsulated ZnO quantum dots loaded with drug: Synthesis, characterization and in vitro drug delivery response. Acta Biomater. 2010, 6, 2732–2739.

    Article  CAS  Google Scholar 

  230. [230]

    Feng, T.; Ai, X. Z.; An, G. H.; Yang, P. P.; Zhao, Y. L. Correction to charge-convertible carbon dots for imaging-guided drug delivery with enhanced in vivo cancer therapeutic efficiency. ACS Nano 2016, 10, 5587.

    Article  CAS  Google Scholar 

  231. [231]

    Ge, J. C.; Jia, Q. Y.; Liu, W. M.; Lan, M. H.; Zhou, B. J.; Guo, L.; Zhou, H. Y.; Zhang, H. Y.; Wang, Y.; Gu, Y. et al. Carbon dots with intrinsic theranostic properties for bioimaging, red-light-triggered photodynamic/photothermal simultaneous therapy in vitro and in vivo. Adv. Healthc. Mater. 2016, 5, 665–675.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2020YFC2005500), the National Natural Science Foundation of China (Nos. 51875577 and 81972901), the Key Research and Development Program of Science and Technology Department of Sichuan Province (Nos. 2020YFS0570 and 2019YFS0514), Science and Technology Project of Chengdu (No. 2019-YF05-00784-SN), and Science Foundation of China University of Petroleum (Nos. 2462020YXZZ018 and 2462019QNXZ02).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Lulu Cai or Quan Xu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Niu, Y., Li, J., Gao, J. et al. Two-dimensional quantum dots for biological applications. Nano Res. 14, 3820–3839 (2021). https://doi.org/10.1007/s12274-021-3757-5

Download citation

Keywords

  • two-dimensional
  • quantum dots
  • biotechnological
  • biomedical applications