Skip to main content

Nanostructure and thermal power of highly-textured and single-crystal-like Bi2Te3 thin films

Abstract

Bi2Te3-based alloys are known to have outstanding thermoelectric properties. Although structure-property relations have been studied, still, detailed analysis of the atomic and nano-scale structure of Bi2Te3 thin film in relation to their thermoelectric properties remains poorly explored. Herein, highly-textured (HT) and single-crystal-like (SCL) Bi2Te3 films have been grown using pulsed laser deposition (PLD) on Si wafer covered with (native or thermal) SiOx and mica substrates. All films are highly textured with c-axis out-of-plane, but the in-plane orientation is random for the films grown on oxide and single-crystal-like for the ones grown on mica. The power factor of the film on thermal oxide is about four times higher (56.8 µW·cm−1·K−2) than that of the film on mica (12.8 µW·cm−1·K−2), which is comparable to the one of the polycrystalline ingot at room temperature (RT). Reduced electron scattering in the textured thin films results in high electrical conductivity, where the SCL film shows the highest conductivity. However, its Seebeck coefficient shows a low value. The measured properties are correlated with the atomic structure details unveiled by scanning transmission electron microscopy. For instance, the high concentration of stacking defects observed in the HT film is considered responsible for the increase of Seebeck coefficient compared to the SCL film. This study demonstrates the influence of nanoscale structural effects on thermoelectric properties, which sheds light on tailoring thermoelectric thin films towards high performance.

This is a preview of subscription content, access via your institution.

References

  1. Poudel, B.; Hao, Q.; Ma, Y.; Lan, Y. C.; Minnich, A.; Yu, B.; Yan, X.; Wang, D. Z.; Muto, A.; Vashaee, D. et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 2008, 320, 634–638.

    Article  CAS  Google Scholar 

  2. Soni, A.; Zhao, Y. Y.; Yu, L. G.; Aik, M. K. K.; Dresselhaus, M. S.; Xiong, Q. H. Enhanced thermoelectric properties of solution grown Bi2Te3−xSex nanoplatelet composites. Nano Lett. 2012, 12, 1203–1209.

    Article  CAS  Google Scholar 

  3. Fang, H. Y.; Bahk, J. H.; Feng, T. L.; Cheng, Z.; Mohammed, A. M. S.; Wang, X. W.; Ruan, X. L.; Shakouri, A.; Wu, Y. Thermoelectric properties of solution-synthesized n-type Bi2Te3 nanocomposites modulated by Se: An experimental and theoretical study. Nano Res. 2016, 9, 117–127.

    Article  Google Scholar 

  4. Hao, F.; Qiu, P. F.; Tang, Y. S.; Bai, S. Q.; Xing, T.; Chu, H. S.; Zhang, Q. H.; Lu, P.; Zhang, T. S.; Ren, D. D. et al. High efficiency Bi2Te3-based materials and devices for thermoelectric power generation between 100 and 300 °C. Energy Environ. Sci. 2016, 9, 3120–3127.

    Article  CAS  Google Scholar 

  5. Hao, F.; Xing, T.; Qiu, P. F.; Hu, P.; Wei, T. R.; Ren, D. D.; Shi, X.; Chen, L. D. Enhanced thermoelectric performance in n-type Bi2Te3-based alloys via suppressing intrinsic excitation. ACS Appl. Mater. Interfaces 2018, 10, 21372–21380.

    Article  CAS  Google Scholar 

  6. Snyder, G. J.; Toberer, E. S. Complex thermoelectric materials. Nat. Mater. 2008, 7, 105–114.

    Article  CAS  Google Scholar 

  7. Chowdhury, I.; Prasher, R.; Lofgreen, K.; Chrysler, G.; Narasimhan, S.; Mahajan, R.; Koester, D.; Alley, R.; Venkatasubramanian, R. On-chip cooling by superlattice-based thin-film thermoelectrics. Nat. Nanotechnol. 2009, 4, 235–238.

    Article  CAS  Google Scholar 

  8. Wu, Z. H.; Mu, E. Z.; Wang, Z. C.; Chen, X.; Wu, Z. M.; Liu, Y.; Hu, Z. Y. Bi2Te3 nanoplates’ selective growth morphology on different interfaces for enhancing thermoelectric properties. Cryst. Growth Des. 2019, 19, 3639–3646.

    Article  CAS  Google Scholar 

  9. Le, P. H.; Liao, C. N.; Luo, C. W.; Leu, J. Thermoelectric properties of nanostructured bismuth-telluride thin films grown using pulsed laser deposition. J. Alloys Compd. 2014, 615, 546–552.

    Article  CAS  Google Scholar 

  10. Bassi, A. L.; Bailini, A.; Casari, C. S.; Donati, F.; Mantegazza, A.; Passoni, M.; Russo, V.; Bottani, C. E. Thermoelectric properties of Bi-Te films with controlled structure and morphology. J. Appl. Phys. 2009, 105, 124307.

    Article  Google Scholar 

  11. Lin, J. M.; Chen, Y. C.; Lin, C. P. Annealing effect on the thermoelectric properties of Bi2Te3 thin films prepared by thermal evaporation method. J. Nanomater. 2013, 2013, 201017.

    Article  Google Scholar 

  12. Fan, P.; Zhang, P. C.; Liang, G. X.; Li, F.; Chen, Y. X.; Luo, J. T.; Zhang, X. H.; Chen, S.; Zheng, Z. H. High-performance bismuth telluride thermoelectric thin films fabricated by using the two-step single-source thermal evaporation. J. Alloys Compd. 2020, 819, 153027.

    Article  CAS  Google Scholar 

  13. Suh, J.; Yu, K. M.; Fu, D. Y.; Liu, X. Y.; Yang, F.; Fan, J.; Smith, D. J.; Zhang, Y. H.; Furdyna, J. K.; Dames, C. et al. Simultaneous enhancement of electrical conductivity and thermopower of Bi2Te3 by multifunctionality of native defects. Adv. Mater. 2015, 27, 3681–3686.

    Article  CAS  Google Scholar 

  14. Qiao, J. X.; Zhao, Y.; Jin, Q.; Tan, J.; Kang, S. Q.; Qiu, J. H.; Tai, K. P. Tailoring nanoporous structures in Bi2Te3 thin films for improved thermoelectric performance. ACS Appl. Mater. Interfaces 2019, 11, 38075–38083.

    Article  CAS  Google Scholar 

  15. Zeipl, R.; Walachová, J.; Pavelka, M.; Jelínek, M.; Studnička, V.; Kocourek, T. Power factor of very thin thermoelectric layers of different thickness prepared by laser ablation. Appl. Phys. A 2008, 93, 663–667.

    Article  CAS  Google Scholar 

  16. Vigil-Galán, O.; Cruz-Gandarilla, F.; Fandiño, J.; Roy, F.; Sastré-Hernández, J.; Contreras-Puente, G. Physical properties of Bi2Te3 and Sb2Te3 films deposited by close space vapor transport. Semicond. Sci. Technol. 2009, 24, 025025.

    Article  Google Scholar 

  17. Zhang, Z. W.; Wang, Y.; Deng, Y.; Xu, Y. B. The effect of (00l) crystal plane orientation on the thermoelectric properties of Bi2Te3 thin film. Solid State Commun. 2011, 151, 1520–1523.

    Article  CAS  Google Scholar 

  18. Jin, Q.; Shi, W. B.; Qiao, J. X.; Sun, C.; Tai, K. P.; Lei, H.; Jiang, X. Enhanced thermoelectric properties of bismuth telluride films with inplane and out-of-plane well-ordered microstructures. Scr Mater. 2016, 119, 33–37.

    Article  CAS  Google Scholar 

  19. Saito, Y.; Fons, P.; Bolotov, L.; Miyata, N.; Kolobov, A. V.; Tominaga, J. A two-step process for growth of highly oriented Sb2Te3 using sputtering. AIP Adv. 2016, 6, 045220.

    Article  Google Scholar 

  20. Li, H. D.; Wang, Z. Y.; Kan, X.; Guo, X.; He, H. T.; Wang, Z.; Wang, J. N.; Wong, T. L.; Wang, N.; Xie, M. H. The van der Waals epitaxy of Bi2Se3 on the vicinal Si (111) surface: An approach for preparing high-quality thin films of a topological insulator. New J. Phys. 2010, 12, 103038.

    Article  Google Scholar 

  21. Saito, Y.; Fons, P.; Makino, K.; Mitrofanov, K. V.; Uesugi, F.; Takeguchi, M.; Kolobov, A. V.; Tominaga, J. Compositional tuning in sputter-grown highly-oriented Bi-Te films and their optical and electronic structures. Nanoscale 2017, 9, 15115–15121.

    Article  CAS  Google Scholar 

  22. Taskin, A. A.; Sasaki, S.; Segawa, K.; Ando, Y. Manifestation of topological protection in transport properties of epitaxial Bi2Se3 thin films. Phys. Rev. Lett. 2012, 109, 066803.

    Article  CAS  Google Scholar 

  23. Vermeulen, P. A.; Mulder, J.; Momand, J.; Kooi, B. J. Strain engineering of van der Waals heterostructures. Nanoscale 2018, 10, 1474–1480.

    Article  CAS  Google Scholar 

  24. Zhang, H.; Yimam, D. T.; de Graaf, S.; Momand, J.; Vermeulen, P. A.; Wei, Y. F.; Noheda, B.; Kooi, B. J. Strain relaxation in “2D/2D and 2D/3D systems”: Highly textured mica/Bi2Te3, Sb2Te3/Bi2Te3, and Bi2Te3/GeTe heterostructures. ACS Nano 2021, 15, 2869–2879.

    Article  CAS  Google Scholar 

  25. Rijnders, G.; Blank, D.H.A. In situ diagnostics by high-pressure RHEED during PLD. In Pulsed Laser Deposition of Thin Films: Applications-Led Growth of Functional Materials. Eason, R., Ed.; John Wiley & Sons, Inc.: Hoboken, 2007; pp 85–97.

    Google Scholar 

  26. Tang, F.; Parker, T.; Wang, G. C.; Lu, T. M. Surface texture evolution of polycrystalline and nanostructured films: RHEED surface pole figure analysis. J. Phys. D:. Appl. Phys. 2007, 40, R427–R439.

    Article  CAS  Google Scholar 

  27. Ning, J.; Martinez, J. C.; Momand, J.; Zhang, H.; Tiwari, S. C.; Shimojo, F.; Nakano, A.; Kalia, R. K.; Vashishta, P.; Branicio, P. S. et al. Differences in Sb2Te3 growth by pulsed laser and sputter deposition. Acta Mater. 2020, 200, 811–820.

    Article  CAS  Google Scholar 

  28. Kim, Y.; Cho, S.; DiVenere, A.; Wong, G. K. L.; Ketterson, J. B. Composition-dependent layered structure and transport properties in BiTe thin films. Phys. Rev. B 2001, 63, 155306.

    Article  Google Scholar 

  29. Takagaki, Y.; Jenichen, B.; Kopp, V.; Jahn, U.; Ramsteiner, M.; Herrmann, C. Semicoherent growth of Bi2Te3 layers on InP substrates by hot wall epitaxy. Semicond. Sci. Technol. 2014, 29, 075021.

    Article  CAS  Google Scholar 

  30. Boschker, J. E.; Tisbi, E.; Placidi, E.; Momand, J.; Redaelli, A.; Kooi, B. J.; Arciprete, F.; Calarco, R. Textured Sb2Te3 films and GeTe/Sb2Te3 superlattices grown on amorphous substrates by molecular beam epitaxy. AIP Adv. 2017, 2, 015106.

    Article  Google Scholar 

  31. Harrison, S. E.; Li, S.; Huo, Y.; Zhou, B.; Chen, Y. L.; Harris, J. S. Two-step growth of high quality Bi2Te3 thin films on Al2O3(0001) by molecular beam epitaxy. Appl. Phys. Lett. 2013, 102, 171906.

    Article  Google Scholar 

  32. Lotnyk, A.; Hilmi, I.; Ross, U.; Rauschenbach, B. Van der Waals interfacial bonding and intermixing in GeTe-Sb2Te3-based superlattices. Nano Res. 2018, 11, 1676–1686.

    Article  CAS  Google Scholar 

  33. Borisova, S.; Krumrain, J.; Luysberg, M.; Mussler, G.; Grützmacher, D. Mode of growth of ultrathin topological insulator Bi2Te3 films on Si (111) substrates. Cryst. Growth Des. 2012, 12, 6098–6103.

    Article  CAS  Google Scholar 

  34. Momand, J.; Lange, F. R. L.; Wang, R. N.; Boschker, J. E.; Verheijen, M. A.; Calarco, R.; Wuttig, M.; Kooi, B. J. Atomic stacking and van-der-Waals bonding in GeTe-Sb2Te3 superlattices. J. Mater. Res. 2016, 31, 3115–3124.

    Article  CAS  Google Scholar 

  35. Ross, U.; Lotnyk, A.; Thelander, E.; Rauschenbach, B. Microstructure evolution in pulsed laser deposited epitaxial Ge-Sb-Te chalcogenide thin films. J. Alloys Compd. 2016, 676, 582–590.

    Article  CAS  Google Scholar 

  36. Wang, N.; Chen, H. J.; He, H. C.; Norimatsu, W.; Kusunoki, M.; Koumoto, K. Enhanced thermoelectric performance of Nb-doped SrTiO3 by nano-inclusion with low thermal conductivity. Sci. Rep. 2013, 3, 3449.

    Article  Google Scholar 

  37. Alam, H.; Ramakrishna, S. A review on the enhancement of figure of merit from bulk to nano-thermoelectric materials. Nano Energy 2013, 2, 190–212.

    Article  CAS  Google Scholar 

  38. Bando, H.; Koizumi, K.; Oikawa, Y.; Daikohara, K.; Kulbachinskii, V. A.; Ozaki, H. The time-dependent process of oxidation of the surface of Bi2Te3 studied by X-ray photoelectron spectroscopy. J. Phys.: Condens. Matter 2000, 12, 5607–5616.

    CAS  Google Scholar 

  39. Goldsmid, H. J. Thermoelectric Refrigeration; Temple Press Books: London, 1964.

    Book  Google Scholar 

  40. Deng, Y.; Zhang, Z. W.; Wang, Y.; Xu, Y. B. Preferential growth of Bi2Te3 films with a nanolayer structure: Enhancement of thermoelectric properties induced by nanocrystal boundaries. J. Nanopart. Res. 2012, 14, 775.

    Article  Google Scholar 

  41. Mao, J.; Wu, Y. X.; Song, S. W.; Zhu, Q.; Shuai, J.; Liu, Z. H.; Pei, Y. Z.; Ren, Z. F. Defect engineering for realizing high thermoelectric performance in n-type Mg3Sb2-based materials. ACS Energy Lett, 2017, 2, 2245–2250.

    Article  CAS  Google Scholar 

  42. Nurnus, J.; Bottner, H.; Beyer, H.; Lambrecht, A. Epitaxial bismuth telluride layers grown on [111] barium fluoride substrates suitable for MQW-growth. In Eighteenth International Conference on Thermoelectrics. Proceedings, ICT’99(Cat. No.99TH8407), Baltimore, 1999, pp 696–699.

  43. Rowe, D.M. CRC Handbook of Thermoelectrics, CRC Press: Boca Raton, 1995.

    Google Scholar 

  44. Bos, J. W. G.; Zandbergen, H. W.; Lee, M. H.; Ong, N. P.; Cava, R. J. Structures and thermoelectric properties of the infinitely adaptive series (Bi2)m(Bi2Te3)n. Phys. Rev. B 2007, 75, 195203.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Hans de Vries for assisting in the operation of the pulsed laser deposition system. We are grateful to Prof. Beatriz Noheda for offering use of her lab facilities, in particular the setup for the van der Pauw measurements. We would also like to acknowledge the financial support from the China Scholarship Council, in particular for Heng Zhang’s scholarship (No. 201706890019).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Heng Zhang or Bart J. Kooi.

Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Momand, J., Levinsky, J. et al. Nanostructure and thermal power of highly-textured and single-crystal-like Bi2Te3 thin films. Nano Res. 15, 2382–2390 (2022). https://doi.org/10.1007/s12274-021-3743-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3743-y

Keywords

  • Bi2Te3 films
  • highly-textured structure
  • single-crystal-like structure
  • thermoelectric properties
  • pulsed laser deposition