Skip to main content

Integrated nanoelectronic-photonic devices and bioresorbable materials

Reference

  1. [1]

    Kan, F.; Ershad, F.; Rao, Z.; Yu, C. J. Flexible organic solar cells for biomedical devices. Nano Res. 2021, 14, 2891–2903.

    CAS  Article  Google Scholar 

  2. [2]

    Yoo, Y. J.; Heo, S.-Y.; Kim, Y. J.; Ko, J. H.; Mira, Z. F.; Song, Y. M. Functional photonic structures for external interaction with flexible/wearable devices. Nano Res. 2021, 14, 2904–2918.

    CAS  Article  Google Scholar 

  3. [3]

    Ding, H.; Lv, G. Q.; Shi, Z.; Cheng, D. L.; Xie, Y.; Huang, Y. X.; Yin, L.; Yang, J.; Wang, Y. T.; Sheng, X. Optoelectronic sensing of biophysical and biochemical signals based on photon recycling of a micro-LED. Nano Res. 2021, 14, 3208–3213

    CAS  Article  Google Scholar 

  4. [4]

    Song, J.-K.; Kim, M. S.; Yoo, S.; Koo, J. H.; Kim, D.-H. Materials and devices for flexible and stretchable photodetectors and lightemitting diodes. Nano Res. 2021, 14, 2919–2937.

    CAS  Article  Google Scholar 

  5. [5]

    Seo, S. G.; Kim, S. Y.; Jeong, J.; Jin, S. H. Progress in light-to-frequency conversion circuits based on low dimensional semiconductors. Nano Res. 2021, 14, 2938–2964.

    CAS  Article  Google Scholar 

  6. [6]

    Seo, S. G.; Jeong, J.; Kim, S. Y.; Kumar, A.; Jin, S. H. Reversible and controllable threshold voltage modulation for n-channel MoS2 and p-channel MoTe2 field-effect transistors via multiple counter doping with ODTS/poly-L-lysine charge enhancers. Nano Res. 2021, 14, 3214–3227.

    CAS  Article  Google Scholar 

  7. [7]

    Nam, S.-H; Hyun, G.; Cho, D.; Han, S.; Bae, G.; Chen, H.; Kim, K.; Ham, Y.; Park, J.; Jeon, S. Fundamental principles and development of proximity-field nanopatterning toward advanced 3D nanofabrication. Nano Res. 2021, 14, 2965–2980.

    CAS  Article  Google Scholar 

  8. [8]

    Wei, Q. L.; Kuhn, D. L.; Zander, Z.; DeLacy, B. G.; Dai, H.-L.; Sun, Y. G. Silica-coating-assisted nitridation of TiO2 nanoparticles and their photothermal property. Nano Res. 2021, 14, 3228–3233.

    CAS  Article  Google Scholar 

  9. [9]

    Zhang, W. Q.; Mao, K. K.; Low, J. X.; Liu, H. J.; Bo, Y. N.; Ma, J.; Liu, Q. X.; Jiang, Y. W.; Yang, J. Z.; Pan, Y. et al. Working-in-tandem mechanism of multi-dopants in enhancing electrocatalytic nitrogen reduction reaction performance of carbonbased materials. Nano Res. 2021, 14, 3234–3239.

    CAS  Article  Google Scholar 

  10. [10]

    Li, Y.; Ling, W.; Liu, X. Y.; Shang, X.; Zhou, P.; Chen, Z. R.; Xu, H.; Huang, X. Metal-organic frameworks as functional materials for implantable flexible biochemical sensors. Nano Res. 2021, 14, 2981–3009.

    CAS  Article  Google Scholar 

  11. [11]

    Sarkar, A.; Lee, Y.; Ahn, J.-H. Si nanomebranes: Material properties and applications. Nano Res. 2021, 14, 3010–3032.

    CAS  Article  Google Scholar 

  12. [12]

    Xu, Y. D.; Fei, Q. H.; Page, M.; Zhao, G. G.; Ling, Y.; Chen, D.; Yan, Z. Laser-induced graphene for bioelectronics and soft actuators. Nano Res. 2021, 14, 3033–3050.

    CAS  Article  Google Scholar 

  13. [13]

    Cao, Q. Carbon nanotube transistor technology for More-Moore scaling. Nano Res. 2021, 14, 3051–3069.

    CAS  Article  Google Scholar 

  14. [14]

    Kwon, Y. W.; Jun, Y. S.; Park, Y.-G.; Jang, J.; Park, J.-U. Recent advances in electronic devices for monitoring and modulation of brain. Nano Res. 2021, 14, 3070–3095.

    CAS  Article  Google Scholar 

  15. [15]

    Qiang, Y.; Gu, W.; Liu, Z. H.; Liang, S. C.; Ryu, J. H.; Seo, K. J.; Liu, W. T.; Fang, H. Crosstalk in polymer microelectrode arrays. Nano Res. 2021, 14, 3240–3247.

    CAS  Article  Google Scholar 

  16. [16]

    Kang, K.; Park, J.; Kim, K.; Yu, K. Y. Recent developments of emerging inorganic, metal and carbonbased nanomaterials for pressure sensors and their healthcare monitoring applications. Nano Res. 2021, 14, 3096–3111.

    CAS  Article  Google Scholar 

  17. [17]

    Chen, X. J.; Gao, X. X.; Nomoto, A.; Shi, K. R.; Lin, M. Y.; Hu, H. J.; Gu, Y.; Zhu, Y. Z.; Wu, Z. H.; Chen, X. et al. Fabric-substrated capacitive biopotential sensors enhanced by dielectric nanoparticles. Nano Res. 2021, 14, 3248–3252.

    CAS  Article  Google Scholar 

  18. [18]

    Wang, T.; Bao, Y. W.; Zhuang, M. D.; Li, J. C.; Chen, J. C.; Xu, H. X. Nanoscale engineering of conducting polymers for emerging applications in soft electronics. Nano Res. 2021, 14, 3112–3125.

    CAS  Article  Google Scholar 

  19. [19]

    Kang, S. J.; Hong, H.; Jeong, C.; Lee, J. S.; Ryu, H.; Yang, J.; Kim, J. U.; Shin, Y. J.; Kim, T. Avoiding heating interference and guided thermal conduction in stretchable devices using thermal conductive composite islands. Nano Res. 2021, 14, 3253–3259.

    CAS  Article  Google Scholar 

  20. [20]

    Sung, S. H.; Kim, T. J.; Shin, H.; Namkung, H.; Im, T. H.; Wang, H. S.; Lee, K. J. Memory-centric neuromorphic computing for unstructured data processing. Nano Res. 2021, 14, 3126–3142.

    CAS  Article  Google Scholar 

  21. [21]

    Yoo, J. I.; Kim, S. H.; Ko, H. C. Stick-and-play system based on interfacial adhesion control enhanced by micro/nanostructures. Nano Res. 2021, 14, 3143–3158.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to John A. Rogers.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rogers, J.A. Integrated nanoelectronic-photonic devices and bioresorbable materials. Nano Res. 14, 2885–2887 (2021). https://doi.org/10.1007/s12274-021-3742-z

Download citation