Skip to main content
Log in

Non-covalent interaction-based molecular electronics with graphene electrodes

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Recent years have witnessed the fabrication of various non-covalent interaction-based molecular electronic devices. In the non-covalent interaction-based molecular devices, the strength of the interfacial coupling between molecule and electrode is weakened compared to that of the covalent interaction-based molecular devices, which provides wide applications in fabricating versatile molecular devices. In this review, we start with the methods capable of fabricating graphene-based nanogaps, and the following routes to construct non-covalent interaction-based molecular junctions with graphene electrodes. Then we give an introduction to the reported non-covalent interaction-based molecular devices with graphene electrodes equipped with different electrical functions. Moreover, we summarize the recent progress in the design and fabrication of new-type molecular devices based on graphene and graphene-like two-dimensional (2D) materials. The review ends with a prospect on the challenges and opportunities of non-covalent interaction-based molecular electronics in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Coskun, A.; Spruell, J. M.; Barin, G.; Dichtel, W. R.; Flood, A. H.; Botros, Y. Y.; Stoddart, J. F. High hopes: Can molecular electronics realise its potential? Chem. Soc. Rev. 2012, 41, 4827–4859.

    CAS  Google Scholar 

  2. Xiang, D.; Wang, X. L.; Jia, C. C.; Lee, T.; Guo, X. F. Molecular-scale electronics: From concept to function. Chem. Rev. 2016, 116, 4318–4440.

    CAS  Google Scholar 

  3. Zhang, J. L.; Zhong, J. Q.; Lin, J. D.; Hu, W. P.; Wu, K.; Xu, G. Q.; Wee, A. T. S.; Chen, W. Towards single molecule switches. Chem. Soc. Rev. 2015, 44, 2998–3022.

    CAS  Google Scholar 

  4. Sun, L. L.; Diaz-Fernandez, Y. A.; Gschneidtner, T. A.; Westerlund, F.; Lara-Avila, S.; Moth-Poulsen, K. Single-molecule electronics: From chemical design to functional devices. Chem. Soc. Rev. 2014, 43, 7378–7411.

    CAS  Google Scholar 

  5. Darwish, N.; Paddon-Row, M. N.; Gooding, J. J. Surface-bound norbornylogous bridges as molecular rulers for investigating interfacial electrochemistry and as single molecule switches. Acc. Chem. Res. 2014, 47, 385–395.

    CAS  Google Scholar 

  6. Chen, H. L.; Zhang, W. N.; Li, M. L.; He, G.; Guo, X. F. Interface engineering in organic field-effect transistors: Principles, applications, and perspectives. Chem. Rev. 2020, 120, 2879–2949.

    CAS  Google Scholar 

  7. Xin, N.; Guan, J. X.; Zhou, C. G.; Chen, X. J. N.; Gu, C. H.; Li, Y.; Ratner, M. A.; Nitzan, A.; Stoddart, J. F.; Guo, X. F. Concepts in the design and engineering of single-molecule electronic devices. Nat. Rev. Phys. 2019, 1, 211–230.

    Google Scholar 

  8. Nozaki, D.; Cuniberti, G. Silicon-based molecular switch junctions. Nano Res. 2009, 2, 648–659.

    CAS  Google Scholar 

  9. Chen, H. L.; Stoddart, J. F. From molecular to supramolecular electronics. Nat. Rev. Mater., in press, DOI: https://doi.org/10.1038/s41578-021-00302-2.

  10. Jia, C. C.; Migliore, A.; Xin, N.; Huang, S. Y.; Wang, J. Y.; Yang, Q.; Wang, S. P.; Chen, H. L.; Wang, D. M.; Feng, B. Y. et al. Covalently bonded single-molecule junctions with stable and reversible photoswitched conductivity. Science 2016, 352, 1443–1445.

    CAS  Google Scholar 

  11. Roldan, D.; Kaliginedi, V.; Cobo, S.; Kolivoska, V.; Bucher, C.; Hong, W. J.; Royal, G.; Wandlowski, T. Charge transport in photoswitchable dimethyldihydropyrene-type single-molecule junctions. J. Am. Chem. Soc. 2013, 135, 5974–5977.

    CAS  Google Scholar 

  12. Tam, E. S.; Parks, J. J.; Shum, W. W.; Zhong, Y. W.; Santiago-Berríos, M. E. B.; Zheng, X.; Yang, W. T.; Chan, G. K. L.; Abruña, H. D.; Ralph, D. C. Single-molecule conductance of pyridine-terminated dithienylethene switch molecules. ACS Nano 2011, 5, 5115–5123.

    CAS  Google Scholar 

  13. Chen, X. P.; Roemer, M.; Yuan, L.; Du, W.; Thompson, D.; del Barco, E.; Nijhuis, C. A. Molecular diodes with rectification ratios exceeding 105 driven by electrostatic interactions. Nat. Nanotechnol. 2017, 12, 797–803.

    CAS  Google Scholar 

  14. Atesci, H.; Kaliginedi, V.; Celis Gil, J. A.; Ozawa, H.; Thijssen, J. M.; Broekmann, P.; Haga, M. A.; van der Molen, S. J. Humidity-controlled rectification switching in ruthenium-complex molecular junctions. Nat. Nanotechnol. 2018, 13, 117–121.

    CAS  Google Scholar 

  15. Kushmerick, J. Molecular transistors scrutinized. Nature 2009, 462, 994–995.

    CAS  Google Scholar 

  16. Jia, C. C.; Famili, M.; Carlotti, M.; Liu, Y.; Wang, P. Q.; Grace, I. M.; Feng, Z. Y.; Wang, Y. L.; Zhao, Z. P.; Ding, M. N. et al. Quantum interference mediated vertical molecular tunneling transistors. Sci. Adv. 2018, 4, eaat8237.

  17. Bai, J.; Daaoub, A.; Sangtarash, S.; Li, X. H.; Tang, Y. X.; Zou, Q.; Sadeghi, H.; Liu, S.; Huang, X. J.; Tan, Z. B. et al. Anti-resonance features of destructive quantum interference in single-molecule thiophene junctions achieved by electrochemical gating. Nat. Mater. 2019, 18, 364–369.

    CAS  Google Scholar 

  18. Chen, L. J.; Feng, A. N.; Wang, M. N.; Liu, J. Y.; Hong, W. J.; Guo, X. F.; Xiang, D. Towards single-molecule optoelectronic devices. Sci. China Chem. 2018, 61, 1368–1384.

    CAS  Google Scholar 

  19. Caneva, S.; Gehring, P.; García-Suárez, V. M.; García-Fuente, A.; Stefani, D.; Olavarria-Contreras, I. J.; Ferrer, J.; Dekker, C.; van der Zant, H. S. J. Mechanically controlled quantum interference in graphene break junctions. Nat. Nanotechnol. 2018, 13, 1126–1131.

    CAS  Google Scholar 

  20. Liu, J. Y.; Huang, X. Y.; Wang, F.; Hong, W. J. Quantum interference effects in charge transport through single-molecule junctions: Detection, manipulation, and application. Acc. Chem. Res. 2019, 52, 151–160.

    CAS  Google Scholar 

  21. Tang, C.; Chen, L. J.; Zhang, L. Y.; Chen, Z. X.; Li, G. P.; Yan, Z. W.; Lin, L. C.; Liu, J. Y.; Huang, L. F.; Ye, Y. L. et al. Multicenter-bond-based quantum interference in charge transport through single-molecule carborane junctions. Angew. Chem., Int. Ed. 2019, 58, 10601–10605.

    CAS  Google Scholar 

  22. Chen, Z. X.; Chen, L. J.; Li, G. P.; Chen, Y. R.; Tang, C.; Zhang, L. Y.; Liu, J. P.; Chen, L. N.; Yang, Y.; Shi, J. et al. Control of quantum interference in single-molecule junctions via Jahn-Teller distortion. Cell Rep. Phys. Sci. 2021, 2, 100329.

    CAS  Google Scholar 

  23. Cui, X. M.; Qin, F.; Lai, Y. H.; Wang, H.; Shao, L.; Chen, H. J.; Wang, J. F.; Lin, H. Q. Molecular tunnel junction-controlled high-order charge transfer plasmon and fano resonances. ACS Nano 2018, 12, 12541–12550.

    CAS  Google Scholar 

  24. Wang, K.; Vezzoli, A.; Grace, I. M.; McLaughlin, M.; Nichols, R. J.; Xu, B. Q.; Lambert, C. J.; Higgins, S. J. Charge transfer complexation boosts molecular conductance through Fermi level pinning. Chem. Sci. 2019, 10, 2396–2403.

    CAS  Google Scholar 

  25. Burzurí, E.; Yamamoto, Y.; Warnock, M.; Zhong, X.L.; Park, K.; Cornia, A.; van der Zant, H. S. J. Franck-Condon blockade in a single-molecule transistor. Nano Lett. 2014, 14, 3191–3196.

    Google Scholar 

  26. Lovat, G.; Choi, B.; Paley, D. W.; Steigerwald, M. L.; Venkataraman, L.; Roy, X. Room-temperature current blockade in atomically defined single-cluster junctions. Nat. Nanotechnol. 2017, 12, 1050–1054.

    CAS  Google Scholar 

  27. Zhao, S. Q.; Wu, Q. Q.; Pi, J. C.; Liu, J. Y.; Zheng, J. T.; Hou, S. J.; Wei, J. Y.; Li, R. H.; Sadeghi, H.; Yang, Y. et al. Cross-plane transport in a single-molecule two-dimensional van der Waals heterojunction. Sci. Adv. 2020, 6, eaba6714.

    CAS  Google Scholar 

  28. Huang, C. C.; Jevric, M.; Borges, A.; Olsen, S. T.; Hamill, J. M.; Zheng, J. T.; Yang, Y.; Rudnev, A.; Baghernejad, M.; Broekmann, P. et al. Single-molecule detection of dihydroazulene photo-thermal reaction using break junction technique. Nat. Commun. 2017, 8, 15436.

    CAS  Google Scholar 

  29. Yelin, T.; Korytár, R.; Sukenik, N.; Vardimon, R.; Kumar, B.; Nuckolls, C.; Evers, F.; Tal, O. Conductance saturation in a series of highly transmitting molecular junctions. Nat. Mater. 2016, 15, 444–449.

    CAS  Google Scholar 

  30. Jia, C. C.; Guo, X. F. Molecule-electrode interfaces in molecular electronic devices. Chem. Soc. Rev. 2013, 42, 5642–5660.

    CAS  Google Scholar 

  31. Cubukcu, E.; Aydin, K.; Ozbay, E.; Foteinopoulou, S.; Soukoulis, C. M. Subwavelength resolution in a two-dimensional photonic-crystal-based superlens. Phys. Rev. Lett. 2003, 91, 207401.

    CAS  Google Scholar 

  32. Lörtscher, E. Wiring molecules into circuits. Nat. Nanotechnol. 2013, 8, 381–384.

    Google Scholar 

  33. Prins, F.; Hayashi, T.; de Vos van Steenwijk, B. J. A.; Gao, B.; Osorio, E. A.; Muraki, K.; van der Zant, H. S. J. Room-temperature stability of Pt nanogaps formed by self-breaking. Appl. Phys. Lett. 2009, 94, 123108.

    Google Scholar 

  34. Li, Y.; Yang, C.; Guo, X. F. Single-molecule electrical detection: A promising route toward the fundamental limits of chemistry and life science. Acc. Chem. Res. 2020, 53, 159–169.

    CAS  Google Scholar 

  35. Cao, Y.; Dong, S. H.; Liu, S.; He, L.; Gan, L.; Yu, X. M.; Steigerwald, M. L.; Wu, X. S.; Liu, Z. F.; Guo, X. F. Building high-throughput molecular junctions using indented graphene point contacts. Angew. Chem., Int. Ed. 2012, 51, 12228–12232.

    CAS  Google Scholar 

  36. Prins, F.; Barreiro, A.; Ruitenberg, J. W.; Seldenthuis, J. S.; Aliaga-Alcalde, N.; Vandersypen, L. M. K.; van der Zant, H. S. J. Room-temperature gating of molecular junctions using few-layer graphene nanogap electrodes. Nano Lett. 2011, 11, 4607–4611.

    CAS  Google Scholar 

  37. Guo, X. F.; Small, J. P.; Klare, J. E.; Wang, Y. L.; Purewal, M. S.; Tam, I. W.; Hong, B. H.; Caldwell, R.; Huang, L.; O’Brien, S. et al. Covalently bridging gaps in single-walled carbon nanotubes with conducting molecules. Science 2006, 311, 356–359.

    CAS  Google Scholar 

  38. Gao, L.; Li, L. L.; Wang, X. L.; Wu, P. W.; Cao, Y.; Liang, B.; Li, X.; Lin, Y. W.; Lu, Y.; Guo, X. F. Graphene-DNAzyme junctions: A platform for direct metal ion detection with ultrahigh sensitivity. Chem. Sci. 2015, 6, 2469–2473.

    CAS  Google Scholar 

  39. Xin, N.; Li, X.; Jia, C.; Gong, Y.; Li, M. L.; Wang, S. P.; Zhang, G. Y.; Yang, J. L.; Guo, X. F. Tuning charge transport in aromatic-ring single-molecule junctions via ionic-liquid gating. Angew. Chem., Int. Ed. 2018, 57, 14026–14031.

    CAS  Google Scholar 

  40. Xin, N.; Kong, X. H.; Zhang, Y. P.; Jia, C. C.; Liu, L.; Gong, Y.; Zhang, W. N.; Wang, S. P.; Zhang, G. Y.; Zhang, H. L. et al. Control of unipolar/ambipolar transport in single-molecule transistors through interface engineering. Adv. Electron. Mater. 2020, 6, 1901237.

    CAS  Google Scholar 

  41. Park, H.; Lim, A. K. L.; Alivisatos, A. P.; Park, J.; McEuen, P. L. Fabrication of metallic electrodes with nanometer separation by electromigration. Appl. Phys. Lett. 1999, 75, 301–303.

    CAS  Google Scholar 

  42. Sadeghi, H.; Mol, J. A.; Lau, C. S.; Briggs, G. A. D.; Warner, J.; Lambert, C. J. Conductance enlargement in picoscale electroburnt graphene nanojunctions. Proc. Nat. Acad. Sci. USA 2015, 112, 2658–2663.

    CAS  Google Scholar 

  43. Thomas, J. O.; Limburg, B.; Sowa, J. K.; Willick, K.; Baugh, J.; Briggs, G. A. D.; Gauger, E. M.; Anderson, H. L.; Mol, J. A. Understanding resonant charge transport through weakly coupled single-molecule junctions. Nat. Commun. 2019, 10, 4628.

    Google Scholar 

  44. Puczkarski, P.; Wu, Q. Q.; Sadeghi, H.; Hou, S. J.; Karimi, A.; Sheng, Y. W.; Warner, J. H.; Lambert, C. J.; Briggs, G. A. D.; Mol, J. A. Low-frequency noise in graphene tunnel junctions. ACS Nano 2018, 12, 9451–9460.

    CAS  Google Scholar 

  45. Wang, G.; Zeng, B. F.; Zhao, S. Q.; Qian, Q. Z.; Hong, W. J.; Yang, Y. Application of electrochemistry to single-molecule junctions: From construction to modulation. Sci. China Chem. 2019, 62, 1333–1345.

    CAS  Google Scholar 

  46. Garner, M. H.; Li, H. X.; Chen, Y.; Su, T. A.; Shangguan, Z. C.; Paley, D. W.; Liu, T. F.; Ng, F.; Li, H. X.; Xiao, S. X. et al. Comprehensive suppression of single-molecule conductance using destructive σ-interference. Nature 2018, 558, 415–419.

    CAS  Google Scholar 

  47. Xu, B. Q.; Tao, N. J. Measurement of single-molecule resistance by repeated formation of molecular junctions. Science 2003, 301, 1221–1223.

    CAS  Google Scholar 

  48. Zhan, C.; Wang, G.; Zhang, X. G.; Li, Z. H.; Wei, J. Y.; Si, Y.; Yang, Y.; Hong, W. J.; Tian, Z. Q. Single-molecule measurement of adsorption free energy at the solid-liquid interface. Angew. Chem., Int. Ed. 2019, 58, 14534–14538.

    CAS  Google Scholar 

  49. Chen, Z. X.; Chen, L. J.; Liu, J. P.; Li, R. H.; Tang, C.; Hua, Y. H.; Chen, L. C.; Shi, J.; Yang, Y.; Liu, J.Y. et al. Modularized tuning of charge transport through highly twisted and localized single-molecule junctions. J. Phys. Chem. Lett. 2019, 10, 3453–3458.

    CAS  Google Scholar 

  50. Cai, S. N.; Deng, W. T.; Huang, F. F.; Chen, L. J.; Tang, C.; He, W. X.; Long, S. C.; Li, R. H.; Tan, Z. B.; Liu, J. Y. et al. Light-driven reversible intermolecular proton transfer at single-molecule junctions. Angew. Chem., Int. Ed. 2019, 58, 3829–3833.

    CAS  Google Scholar 

  51. Yang, Y.; Liu, J. Y.; Zheng, J. T.; Lu, M.; Shi, J.; Hong, W. J.; Yang, F. Z.; Tian, Z. Q. Promising electroplating solution for facile fabrication of Cu quantum point contacts. Nano Res. 2017, 10, 3314–3323.

    CAS  Google Scholar 

  52. Zheng, J. T.; Liu, J. Y.; Zhuo, Y. J.; Li, R. H.; Jin, X.; Yang, Y.; Chen, Z. B.; Shi, J.; Xiao, Z. Y.; Hong, W. J. et al. Electrical and SERS detection of disulfide-mediated dimerization in single-molecule benzene-1,4-dithiol junctions. Chem. Sci. 2018, 9, 5033–5038.

    CAS  Google Scholar 

  53. Zhan, C.; Wang, G.; Yi, J.; Wei, J. Y.; Li, Z. H.; Chen, Z. B.; Shi, J.; Yang, Y.; Hong, W. J.; Tian, Z. Q. Single-molecule plasmonic optical trapping. Matter 2020, 3, 1350–1360.

    Google Scholar 

  54. Liu, J. Y.; Zhao, X. T.; Zheng, J. T.; Huang, X. Y.; Tang, Y. X.; Wang, F.; Li, R. H.; Pi, J. C.; Huang, C. C.; Wang, L. et al. Transition from tunneling leakage current to molecular tunneling in single-molecule junctions. Chem 2019, 5, 390–401.

    CAS  Google Scholar 

  55. Zeng, B. F.; Wang, G.; Qian, Q. Z.; Chen, Z. X.; Zhang, X. G.; Lu, Z. X.; Zhao, S. Q.; Feng, A. N.; Shi, J.; Yang, Y. et al. Selective fabrication of single-molecule junctions by interface engineering. Small 2020, 16, 2004720.

    CAS  Google Scholar 

  56. Kim, T.; Liu, Z. F.; Lee, C.; Neaton, J. B.; Venkataraman, L. Charge transport and rectification in molecular junctions formed with carbon-based electrodes. Proc. Nat. Acad. Sci. USA 2014, 111, 10928–10932.

    CAS  Google Scholar 

  57. Rudnev, A. V.; Kaliginedi, V.; Droghetti, A.; Ozawa, H.; Kuzume, A.; Haga, M. A.; Broekmann, P.; Rungger, I. Stable anchoring chemistry for room temperature charge transport through graphite-molecule contacts. Sci. Adv. 2017, 3, e1602297.

  58. Zhang, Q.; Liu, L. L.; Tao, S. H.; Wang, C. Y.; Zhao, C. Z.; González, C.; Dappe, Y. J.; Nichols, R. J.; Yang, L. Graphene as a promising electrode for low-current attenuation in nonsymmetric molecular junctions. Nano Lett. 2016, 16, 6534–6540.

    CAS  Google Scholar 

  59. Zhang, Q.; Tao, S. H.; Yi, R. W.; He, C. H.; Zhao, C. Z.; Su, W. T.; Smogunov, A.; Dappe, Y. J.; Nichols, R. J.; Yang, L. Symmetry effects on attenuation factors in graphene-based molecular junctions. J. Phys. Chem. Lett. 2017, 8, 5987–5992.

    CAS  Google Scholar 

  60. Jia, C. C.; Wang, J. Y.; Yao, C. J.; Cao, Y.; Zhong, Y. W.; Liu, Z. R.; Liu, Z. F.; Guo, X. F. Conductance switching and mechanisms in single-molecule junctions. Angew. Chem., Int. Ed. 2013, 52, 8666–8670.

    CAS  Google Scholar 

  61. Ullmann, K.; Coto, P. B.; Leitherer, S.; Molina-Ontoria, A.; Martín, N.; Thoss, M.; Weber, H. B. Single-molecule junctions with epitaxial graphene nanoelectrodes. Nano Lett. 2015, 15, 3512–3518.

    CAS  Google Scholar 

  62. Leitherer, S.; Coto, P. B.; Ullmann, K.; Weber, H. B.; Thoss, M. Charge transport in C60-based single-molecule junctions with graphene electrodes. Nanoscale 2017, 9, 7217–7226.

    CAS  Google Scholar 

  63. Limburg, B.; Thomas, J. O.; Holloway, G.; Sadeghi, H.; Sangtarash, S.; Hou, I. C. Y.; Cremers, J.; Narita, A.; Müllen, K.; Lambert, C. J. et al. Anchor groups for graphene-porphyrin single-molecule transistors. Adv. Funct. Mater. 2018, 28, 1803629.

    Google Scholar 

  64. Jeong, H.; Kim, D.; Xiang, D.; Lee, T. High-yield functional molecular electronic devices. ACS Nano 2017, 11, 6511–6548.

    CAS  Google Scholar 

  65. Xie, Z. T.; Bâldea, I.; Haugstad, G.; Frisbie, C. D. Mechanical deformation distinguishes tunneling pathways in molecular junctions. J. Am. Chem. Soc. 2019, 141, 497–504.

    CAS  Google Scholar 

  66. Qiu, X. K.; Ivasyshyn, V.; Qiu, L.; Enache, M.; Dong, J. J.; Rousseva, S.; Portale, G.; Stöhr, M.; Hummelen, J. C.; Chiechi, R. C. Thiol-free self-assembled oligoethylene glycols enable robust air-stable molecular electronics. Nat. Mater. 2020, 19, 330–337.

    CAS  Google Scholar 

  67. Han, B.; Li, Y.; Ji, X.; Song, X.; Ding, S.; Li, B.; Khalid, H.; Zhang, Y.; Xu, X.; Tian, L. et al. Systematic modulation of charge transport in molecular devices through facile control of molecule-electrode coupling using a double self-assembled monolayer nanowire junction. J. Am. Chem. Soc. 2020, 142, 9708–9717.

    CAS  Google Scholar 

  68. Xie, Z. T.; Bâldea, I.; Oram, S.; Smith, C. E.; Frisbie, C. D. Effect of heteroatom substitution on transport in alkanedithiol-based molecular tunnel junctions: Evidence for universal behavior. ACS Nano 2017, 11, 569–578.

    CAS  Google Scholar 

  69. O’Driscoll, L. J.; Wang, X. T.; Jay, M.; Batsanov, A. S.; Sadeghi, H.; Lambert, C. J.; Robinson, B. J.; Bryce, M. R. Carbazole-based tetrapodal anchor groups for gold surfaces: Synthesis and conductance properties. Angew. Chem., Int. Ed. 2020, 59, 882–889.

    Google Scholar 

  70. Long, B.; Manning, M.; Burke, M.; Szafranek, B. N.; Visimberga, G.; Thompson, D.; Greer, J. C.; Povey, I. M.; MacHale, J.; Lejosne, G. et al. Non-covalent functionalization of graphene using self-assembly of alkane-amines. Adv. Funct. Mater. 2012, 22, 717–725.

    CAS  Google Scholar 

  71. Wang, G.; Kim, Y.; Choe, M.; Kim, T. W.; Lee, T. A new approach for molecular electronic junctions with a multilayer graphene electrode. Adv. Mater. 2011, 23, 755–760.

    CAS  Google Scholar 

  72. Li, T.; Hauptmann, J. R.; Wei, Z. M.; Petersen, S.; Bovet, N.; Vosch, T.; Nygård, J.; Hu, W. P.; Liu, Y. Q.; Bjørnholm, T. et al. Solution-processed ultrathin chemically derived graphene films as soft top contacts for solid-state molecular electronic junctions. Adv. Mater. 2012, 24, 1333–1339.

    CAS  Google Scholar 

  73. Kühnel, M.; Petersen, S. V.; Hviid, R.; Overgaard, M. H.; Laursen, B. W.; Nørgaard, K. Monolayered graphene oxide as a low contact resistance protection layer in alkanethiol solid-state devices. J. Phys. Chem. C 2018, 122, 9731–9737.

    Google Scholar 

  74. Nerngchamnong, N.; Yuan, L.; Qi, D. C.; Li, J.; Thompson, D.; Nijhuis, C. A. The role of van der Waals forces in the performance of molecular diodes. Nat. Nanotechnol. 2013, 8, 113–118.

    CAS  Google Scholar 

  75. Baghbanzadeh, M.; Belding, L.; Yuan, L.; Park, J.; Al-Sayah, M. H.; Bowers, C. M.; Whitesides, G. M. Dipole-induced rectification across AgTS/SAM//Ga2O3/EGaIn junctions. J. Am. Chem. Soc. 2019, 141, 8969–8980.

    CAS  Google Scholar 

  76. Baghbanzadeh, M.; Pieters, P. F.; Yuan, L.; Collison, D.; Whitesides, G. M. The rate of charge tunneling in EGaIn junctions is not sensitive to halogen substituents at the self-assembled monolayer//Ga2O3 interface. ACS Nano 2018, 12, 10221–10230.

    CAS  Google Scholar 

  77. Kumar, S.; van Herpt, J. T.; Gengler, R. Y. N.; Feringa, B. L.; Rudolf, P.; Chiechi, R. C. Mixed monolayers of spiropyrans maximize tunneling conductance switching by photoisomerization at the molecule-electrode interface in EGaIn junctions. J. Am. Chem. Soc. 2016, 138, 12519–12526.

    CAS  Google Scholar 

  78. Zhang, X.; Li, T. Molecular-scale electronics: From device fabrication to functionality. Chin. Chem. Lett. 2017, 28, 2058–2064.

    CAS  Google Scholar 

  79. Kong, G. D.; Byeon, S. E.; Park, S.; Song, H.; Kim, S. Y.; Yoon, H. J. Mixed molecular electronics: Tunneling behaviors and applications of mixed self-assembled monolayers. Adv. Electron. Mater. 2020, 6, 1901157.

    CAS  Google Scholar 

  80. Seo, S.; Min, M.; Lee, S. M.; Lee, H. Photo-switchable molecular monolayer anchored between highly transparent and flexible graphene electrodes. Nat. Commun. 2013, 4, 1920.

    Google Scholar 

  81. Li, B.; Famili, M.; Pensa, E.; Grace, I.; Long, N. J.; Lambert, C.; Albrecht, T.; Cohen, L. F. Cross-plane conductance through a graphene/molecular monolayer/Au sandwich. Nanoscale 2018, 10, 19791–19798.

    CAS  Google Scholar 

  82. Chiechi, R. C.; Weiss, E. A.; Dickey, M. D.; Whitesides, G. M. Eutectic gallium-indium (EGaIn): A moldable liquid metal for electrical characterization of self-assembled monolayers. Angew. Chem., Int. Ed. 2007, 47, 142–144.

    Google Scholar 

  83. Dickey, M. D.; Chiechi, R. C.; Larsen, R. J.; Weiss, E. A.; Weitz, D. A.; Whitesides, G. M. Eutectic gallium-indium (EGaIn): A liquid metal alloy for the formation of stable structures in microchannels at room temperature. Adv. Funct. Mater. 2008, 18, 1097–1104.

    CAS  Google Scholar 

  84. Kong, G. D.; Song, H.; Yoon, S.; Kang, H. G.; Chang, R.; Yoon, H. J. Interstitially mixed self-assembled monolayers enhance electrical stability of molecular junctions. Nano Lett. 2021, 21, 3162–3169.

    CAS  Google Scholar 

  85. Song, P.; Sangeeth, C. S. S.; Thompson, D.; Du, W.; Loh, K. P.; Nijhuis, C. A. Noncovalent self-assembled monolayers on graphene as a highly stable platform for molecular tunnel junctions. Adv. Mater. 2016, 28, 631–639.

    CAS  Google Scholar 

  86. El Abbassi, M.; Sangtarash, S.; Liu, X. S.; Perrin, M. L.; Braun, O.; Lambert, C.; van der Zant, H. S. J.; Yitzchaik, S.; Decurtins, S.; Liu, S. X. et al. Robust graphene-based molecular devices. Nat. Nanotechnol. 2019, 14, 957–961.

    CAS  Google Scholar 

  87. Song, P.; Guerin, S.; Tan, S. J. R.; Annadata, H. V.; Yu, X. J.; Scully, M.; Han, Y. M.; Roemer, M.; Loh, K. P.; Thompson, D. et al. Stable molecular diodes based on π-π interactions of the molecular frontier orbitals with graphene electrodes. Adv. Mater. 2018, 30, 1706322.

    Google Scholar 

  88. Ai, Y.; Kovalchuk, A.; Qiu, X. K.; Zhang, Y. X.; Kumar, S.; Wang, X. T.; Kühnel, M.; Nørgaard, K.; Chiechi, R. C. In-place modulation of rectification in tunneling junctions comprising self-assembled monolayers. Nano Lett. 2018, 18, 7552–7559.

    CAS  Google Scholar 

  89. Wu, Q. Q.; Hou, S. J.; Sadeghi, H.; Lambert, C. J. A single-molecule porphyrin-based switch for graphene nano-gaps. Nanoscale 2018, 10, 6524–6530.

    CAS  Google Scholar 

  90. Famili, M.; Jia, C. C.; Liu, X. S.; Wang, P. Q.; Grace, I. M.; Guo, J.; Liu, Y.; Feng, Z. Y.; Wang, Y. L.; Zhao, Z. P. et al. Self-assembled molecular-electronic films controlled by room temperature quantum interference. Chem 2019, 5, 474–484.

    CAS  Google Scholar 

  91. Jia, C. C.; Grace, I. M.; Wang, P. Q.; Almeshal, A.; Huang, Z. H.; Wang, Y. L.; Chen, P.; Wang, L. Y.; Zhou, J. Y.; Feng, Z. Y. et al. Redox control of charge transport in vertical ferrocene molecular tunnel junctions. Chem 2020, 6, 1172–1182.

    CAS  Google Scholar 

  92. Meng, L. N.; Xin, N.; Hu, C.; Wang, J. Y.; Gui, B.; Shi, J. J.; Wang, C.; Shen, C.; Zhang, G. Y.; Guo, H. et al. Side-group chemical gating via reversible optical and electric control in a single molecule transistor. Nat. Commun. 2019, 10, 1450.

    Google Scholar 

  93. Iwane, M.; Tada, T.; Osuga, T.; Murase, T.; Fujita, M.; Nishino, T.; Kiguchi, M.; Fujii, S. Controlling stacking order and charge transport in π-stacks of aromatic molecules based on surface assembly. Chem. Commun. 2018, 54, 12443–12446.

    CAS  Google Scholar 

  94. Huang, X. Y.; Tang, C.; Li, J. Q.; Chen, L. C.; Zheng, J. T.; Zhang, P.; Le, J. B.; Li, R. H.; Li, X. H.; Liu, J. Y. et al. Electric field-induced selective catalysis of single-molecule reaction. Sci. Adv. 2019, 5, eaaw3072.

  95. Aragonès, A. C.; Haworth, N. L.; Darwish, N.; Ciampi, S.; Bloomfield, N. J.; Wallace, G. G.; Diez-Perez, I.; Coote, M. L. Electrostatic catalysis of a Diels-Alder reaction. Nature 2016, 531, 88–91.

    Google Scholar 

  96. Tang, C.; Zheng, J. T.; Ye, Y. L.; Liu, J. Y.; Chen, L. J.; Yan, Z. W.; Chen, Z. X.; Chen, L. C.; Huang, X. Y.; Bai, J. et al. Electric-field-induced connectivity switching in single-molecule junctions. iScience 2020, 23, 100770.

    CAS  Google Scholar 

  97. Dappe, Y. J.; González, C.; Cuevas, J. C. Carbon tips for all-carbon single-molecule electronics. Nanoscale 2014, 6, 6953–6958.

    CAS  Google Scholar 

  98. Tan, Z. B.; Zhang, D.; Tian, H. R.; Wu, Q. Q.; Hou, S. J.; Pi, J. C.; Sadeghi, H.; Tang, Z.; Yang, Y.; Liu, J. Y. et al. Atomically defined angstrom-scale all-carbon junctions. Nat. Commun. 2019, 10, 1748.

    Google Scholar 

  99. Novoselov, K. S.; Mishchenko, A.; Carvalho, A.; Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 2016, 353, aac9439.

  100. Tan, C. L.; Cao, X. H.; Wu, X. J.; He, Q. Y.; Yang, J.; Zhang, X.; Chen, J. Z.; Zhao, W.; Han, S. K.; Nam, G. H. et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 2017, 117, 6225–6331.

    CAS  Google Scholar 

  101. Margapoti, E.; Li, J.; Ceylan, Ö.; Seifert, M.; Nisic, F.; Anh, T. L.; Meggendorfer, F.; Dragonetti, C.; Palma, C. A.; Barth, J. V. et al. A 2D semiconductor-self-assembled monolayer photoswitchable diode. Adv. Mater. 2015, 27, 1426–1431.

    CAS  Google Scholar 

  102. Zheng, Y. B.; Payton, J. L.; Chung, C. H.; Liu, R.; Cheunkar, S.; Pathem, B. K.; Yang, Y.; Jensen, L.; Weiss, P. S. Surface-enhanced raman spectroscopy to probe reversibly photoswitchable azobenzene in controlled nanoscale environments. Nano Lett. 2011, 11, 3447–3452.

    CAS  Google Scholar 

  103. Shin, J.; Yang, S.; Jang, Y.; Eo, J. S.; Kim, T. W.; Lee, T.; Lee, C. H.; Wang, G. Tunable rectification in a molecular heterojunction with two-dimensional semiconductors. Nat. Commun. 2020, 11, 1412.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support from the National Natural Science Foundation of China (Nos. 21973079 and 22032004), the National Key R&D Program of China (No. 2017YFA0204902), and the Fundamental Research Funds for the Central Universities (Xiamen University: No. 20720190002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Yang or Wenjing Hong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, S., Chen, H., Qian, Q. et al. Non-covalent interaction-based molecular electronics with graphene electrodes. Nano Res. 16, 5436–5446 (2023). https://doi.org/10.1007/s12274-021-3687-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3687-2

Keywords

Navigation