Skip to main content

Organic ligand mediated evolution from aluminum-based superalkalis to superatomic molecules and one-dimensional nanowires

Abstract

Superatoms are considered as promising building blocks for customizing superatomic molecules and cluster-assembly nanomaterials due to their tunable electronic structures and functionalities. Electron counting rules, which mainly adjust the shell-filling of clusters, are classical strategies in designing superatoms. Here, by employing the density functional theory (DFT) calculations, we proved that the 1,4-phenylene diisocyanide (CNC6H4NC) ligand could dramatically reduce the adiabatic ionization potentials (AIPs) of the aluminum-based clusters, which have 39, 40, and 41 valence electrons, respectively, to give rise to superalkali species without changing their shell-filling. Moreover, the rigid structure of the ligand can be used as a bridge firmly linking the same or different aluminum-based clusters to form superatomic molecules and nanowires. In particular, the bridging process was observed to enhance their nonlinear optical (NLO) responses, which can be further promoted by the oriented external electric field (OEEF). Also, the stable cluster-assembly XAl12(CNC6H4NC) (X = Al, C, and P) nanowires were constructed, which exhibit strong absorption in the visible light region. These findings not only suggest an effective ligand-field strategy in superatom design but also unveil the geometrical and electronic evolution from the CNC6H4NC-based superatoms to superatomic molecules and nanomaterials.

This is a preview of subscription content, access via your institution.

References

  1. Khanna, S. N.; Jena, P. Assembling crystals from clusters. Phys. Rev. Lett. 1993, 69, 1664–1667.

    Article  Google Scholar 

  2. Bergeron, D. E.; Castleman, A. W. Jr.; Morisato, T.; Khanna, S. N. Formation of Al13I: Evidence for the superhalogen character of Al13. Science 2004, 304, 84–87.

    Article  CAS  Google Scholar 

  3. Castleman, A. W. Jr. From elements to clusters: The periodic table revisited. J. Phys. Chem. Lett. 2011, 2, 1062–1069.

    Article  CAS  Google Scholar 

  4. Jena, P. Beyond the periodic table of elements: The role of superatoms. J. Phys. Chem. Lett. 2013, 4, 1432–1442.

    Article  CAS  Google Scholar 

  5. Jena, P.; Sun, Q. Super atomic clusters: Design rules and potential for building blocks of materials. Chem. Rev. 2018, 118, 5755–5870.

    Article  CAS  Google Scholar 

  6. Wu, M. M.; Wang, H. P.; Ko, Y. J.; Wang, Q.; Sun, Q.; Kiran, B.; Kandalam, A. K.; Bowen, K. H.; Jena, P. Manganese-based magnetic superhalogens. Angew. Chem., Int. Ed. 2011, 50, 2568–2572.

    Article  CAS  Google Scholar 

  7. Sikorska, C.; Smuczynska, S.; Skurski, P.; Anusiewicz, I. BX4 and AlX4 superhalogen anions (X = F, Cl, Br): An ab initio study. Inorg. Chem. 2008, 47, 7348–7354.

    Article  CAS  Google Scholar 

  8. Chen, J.; Yang, H.; Wang, J.; Cheng, S. B. Revealing the effect of the oriented external electronic field on the superatom-polymeric Zr3O3 cluster: Superhalogen modulation and spectroscopic characteristics. Spectrochim. Acta Part A 2020, 237, 118400.

    Article  CAS  Google Scholar 

  9. Hou, N.; Wu, D.; Li, Y.; Li, Z. R. Lower the electron affinity by halogenation: An unusual strategy to design superalkali cations. J. Am. Chem. Soc. 2014, 136, 2921–2927.

    Article  CAS  Google Scholar 

  10. Chauhan, V.; Reber, A. C.; Khanna, S. N. Strong Lowering of ionization energy of metallic clusters by organic ligands without changing shell filling. Nat. Commun. 2018, 9, 2357.

    Article  Google Scholar 

  11. Li, J.; Huang, H. C.; Wang, J.; Zhao, Y.; Chen, J.; Bu, Y. X.; Cheng, S. B. Polymeric tungsten carbide nanoclusters: Structural evolution, ligand modulation, and assembled nanomaterials. Nanoscale 2019, 11, 19903–19911.

    Article  CAS  Google Scholar 

  12. Zhao, T. S.; Wang, Q.; Jena, P. Rational design of super-alkalis and their role in CO2 activation. Nanoscale 2017, 9, 4891–4897.

    Article  CAS  Google Scholar 

  13. Peppernick, S. J.; Gunaratne, K. D. D.; Castleman, A. W. Jr. Superatom spectroscopy and the electronic state correlation between elements and isoelectronic molecular counterparts. Proc. Natl. Acad. Sci. USA 2010, 107, 975–980.

    Article  CAS  Google Scholar 

  14. Reveles, J. U.; Clayborne, P. A.; Reber, A. C.; Khanna, S. N.; Pradhan, K.; Sen, P.; Pederson, M. R. Designer magnetic superatoms. Nat. Chem. 2009, 1, 310–315.

    Article  CAS  Google Scholar 

  15. Cheng, S. B.; Berkdemir, C.; Castleman, A. W. Jr. Mimicking the magnetic properties of rare earth elements using superatoms. Proc. Natl. Acad. Sci. USA 2015, 112, 4941–4945.

    Article  CAS  Google Scholar 

  16. Gutsev, G L.; Boldyrev, A. I. DVM Xa calculations on the electronic structure of “superalkali” cations. Chem. Phys. Lett. 1982, 92, 262–266.

    Article  CAS  Google Scholar 

  17. Ding, L. P.; Yang, L. T.; Shao, P.; Tiandong, Y. H.; Zhang, F. H.; Lu, C. Structures, mobilities, and electronic properties of functionalized silicene: Superhalogen BO2 adsorption. Inorg. Chem. 2020, 59, 5041–5049.

    Article  CAS  Google Scholar 

  18. Chen, J.; Wei, Q.; Yang, H.; Cheng, S. B. On the structures, electronic properties, and superhalogen regulation of the MnB6 cluster: A density functional theory investigation. Chem. Phys. Lett. 2020, 754, 137723.

    Article  CAS  Google Scholar 

  19. Li, J.; Zhao, Y.; Bu, Y. F.; Chen, J.; Wei, Q; Cheng, S. B. On the theoretical construction of Nb2N2-based superatoms by external field strategies. Chem. Phys. Lett. 2020, 754, 137709.

    Article  CAS  Google Scholar 

  20. Knight, W. D.; Clemenger, K.; De Heer, W. A.; Saunders, W. A.; Chou, M. Y.; Cohen, M. L. Electronic shell structure and abundances of sodium clusters. Phys. Rev. Lett. 1984, 52, 2141–2143.

    Article  CAS  Google Scholar 

  21. Mingos, D. M. P. A general theory for cluster and ring compounds of the main group and transition elements. Nat. Phys. Sci. 1972, 236, 99–102.

    Article  CAS  Google Scholar 

  22. Gin, S.; Child, B. Z.; Jena, P. Organic superhalogens. ChemPhysChem 2014, 15, 2903–2908.

    Article  Google Scholar 

  23. Han, Z.; Zhao, X. L.; Peng, P.; Li, S.; Zhang, C.; Cao, M.; Li, K.; Wang, Z. Y.; Zang, S. Q. Intercluster aurophilicity-driven aggregation lighting circularly polarized luminescence of chiral gold clusters. Nano Res. 2020, 13, 3248–3252.

    Article  CAS  Google Scholar 

  24. Shen, H.; Xiang, S. J.; Xu, Z.; Liu, C.; Li, X. H.; Sun, C. F.; Lin, S. C.; Teo, B. K.; Zheng, N. F. Superatomic Au13 clusters ligated by different N-heterocyclic carbenes and their ligand-dependent catalysis, photoluminescence, and proton sensitivity. Nano Res. 2020, 13, 1908–1911.

    Article  CAS  Google Scholar 

  25. Luo, X. M.; Gong, C. H.; Dong, X. Y.; Zhang, L.; Zang, S. Q. Evolution of all-carboxylate-protected superatomic Ag clusters confined in Ti-organic cages. Nano Res., in press, DOI: https://doi.org/10.1007/s12274-020-3227-5.

  26. Chen, J.; Yang, H.; Wang, J.; Cheng, S. B. Theoretical investigations on the d-p hybridized aromaticity, photoelectron spectroscopy and neutral salts of the LaX2− (X = Al, Ga, In) clusters. Spectrochim. Acta Part A 2018, 203, 132–138.

    Article  CAS  Google Scholar 

  27. Cheng, S. B.; Harmon, C. L.; Yang, H.; Castleman, A. W. Jr. Electronic structure of the diatomic VO anion: A combined photoelectron-imaging spectroscopic and theoretical investigation. Phys. Rev. A 2016, 94, 062506.

    Article  Google Scholar 

  28. Zhao, Y.; Wang, J.; Huang, H. C.; Li, J.; Dong, X. X.; Chen, J.; Bu, Y. X.; Cheng, S. B. Tuning the electronic properties and performance of low-temperature CO oxidation of the gold cluster by oriented external electronic field. J. Phys. Chem. Lett. 2020, 11, 1093–1099.

    Article  CAS  Google Scholar 

  29. Li, J.; Wang, J.; Chen, J.; Bu, Y. X.; Cheng, S. B. Observation of “outlaw” dual aromaticity in unexpectedly stable open-shell metal clusters caused by near-degenerate molecular orbital coupling. CCS Chem. 2020, 2, 1913–1920.

    Google Scholar 

  30. Cheng, S. B.; Berkdemir, C.; Melko, J. J.; Castleman, A. W. Jr. S-P coupling induced unusual open-shell metal clusters. J. Am. Chem. Soc. 2014, 136, 4821–4824.

    Article  CAS  Google Scholar 

  31. Cheng, S. B.; Berkdemir, C.; Castleman, A. W. Jr. Observation of d-p hybridized aromaticity in lanthanum-doped boron clusters. Phys. Chem. Chem. Phys. 2014, 16, 533–539.

    Article  CAS  Google Scholar 

  32. Reber, A. C.; Khanna S. N.; Castleman, A. W. Jr. Superatom compounds, clusters, and assemblies: Ultra alkali motifs and architectures. J. Am. Chem. Soc. 2007, 129, 10189–10194.

    Article  CAS  Google Scholar 

  33. Sun, W. M.; Li, C. Y.; Kang, J.; Wu, D.; Li, Y.; Ni, B. L.; Li, X. H.; Li, Z. R. Superatom compounds under oriented external electric fields: Simultaneously enhanced bond energies and nonlinear optical responses. J. Phys. Chem. C 2018, 122, 7867–7876.

    Article  CAS  Google Scholar 

  34. Sun, W. M.; Ni, B. L.; Wu, D.; Lan, J. M.; Li, C. Y.; Li, Y.; Li, Z. R. Designing alkalides with considerable nonlinear optical responses and high stability based on the facially polarized janus all-cis-1, 2, 3, 4, 5, 6-hexafluorocyclohexane. Organometallics 2017, 36, 3352–3359.

    Article  CAS  Google Scholar 

  35. Wang, J. J.; Zhou, Z. J.; Bai, Y.; Liu, Z. B.; Li, Y.; Wu, D.; Chen, W.; Li, Z. R.; Sun, C. C. The interaction between superalkalis (M3O, M = Na, K) and a C20F20 cage forming superalkali electride salt molecules with excess electrons inside the C20F20 cage: Dramatic superalkali effect on the nonlinear optical property. J. Mater. Chem. 2012, 22, 9652–9657.

    Article  CAS  Google Scholar 

  36. Liu, Q. M.; Xu, C.; Wu, X.; Cheng, L. J. Electronic shells of a tubular Au26 cluster: A cage-cage superatomic molecule based on spherical aromaticity. Nanoscale 2019, 11, 13227–13232.

    Article  CAS  Google Scholar 

  37. Reber, A. C.; Chauhan, V.; Bista, D.; Khanna, S. N. Superatomic molecules with internal electric fields for light harvesting. Nanoscale 2020, 12, 4736–4742.

    Article  CAS  Google Scholar 

  38. Zheng, K.; Zhang, J. W.; Zhao, D.; Yang, Y.; Li, Z. M.; Li, G. Motif-mediated Au25(SPh)5(PPh3)10X2 nanorods with conjugated electron delocalization. Nano Res. 2019, 12, 501–507.

    Article  CAS  Google Scholar 

  39. Song, Y. B.; Jin, S.; Kang, X.; Xiang, J.; Deng, H. J.; Yu, H. Z.; Zhu, M. Z. How a single electron affects the properties of the “non-superatom” Au25 nanoclusters. Chem. Mater. 2016, 28, 2609–2617.

    Article  CAS  Google Scholar 

  40. Gan, Z. B.; Chen, J. S.; Wang, J.; Wang, C. M.; Li, M. B.; Yao, C. H.; Zhuang, S. L.; Xu, A.; Li, L. L.; Wu, Z. K. The fourth crystallographic closest packing unveiled in the gold nanocluster crystal. Nat. Commun. 2017, 8, 14739.

    Article  CAS  Google Scholar 

  41. Champsaur, A. M.; Mézière, C.; Allain, M.; Paley, D. W.; Steigerwald, M. L.; Nuckolls, C.; Batail, P. Weaving nanoscale cloth through electrostatic templating. J. Am. Chem. Soc. 2017, 139, 11718–11721.

    Article  CAS  Google Scholar 

  42. Bear, J. L.; Han, B.; Wu, Z.; Van Caemelbecke, E.; Kadish, K. M. Synthesis, electrochemistry, and spectroscopic characterization of bis-dirhodium complexes linked by axial ligands. Inorg. Chem. 2001, 40, 2275–2281.

    Article  CAS  Google Scholar 

  43. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A. et al. Gaussian 09, Revision E. 01; Gaussian, Inc.: Wallingford, CT, 2009.

    Google Scholar 

  44. Adamo, C.; Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999, 110, 6158–6170.

    Article  CAS  Google Scholar 

  45. Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305.

    Article  CAS  Google Scholar 

  46. Li, X.; Wang, L. S. Experimental search and characterization of icosahedral clusters: Al12X (X = C, Ge, Sn, Pb). Phys. Rev. B 2002, 65, 153404.

    Article  Google Scholar 

  47. Akutsu, M.; Koyasu, K.; Atobe, J.; Hosoya, N.; Miyajima, K.; Mitsui, M.; Nakajima, A. Experimental and theoretical characterization of aluminum-based binary superatoms of Al12X and their cluster salts. J. Phys. Chem. A 2006, 110, 12073–12076.

    Article  CAS  Google Scholar 

  48. Chauhan, V.; Reber, A. C.; Khanna, S. N. Metal chalcogenide clusters with closed electronic shells and the electronic properties of alkalis and halogens. J. Am. Chem. Soc. 2017, 139, 1871–1877.

    Article  CAS  Google Scholar 

  49. Buckingham, A. D.; Orr, B. J. Molecular hyperpolarisabilities. Q. Rev., Chem. Soc. 1967, 21, 195–212.

    Article  CAS  Google Scholar 

  50. Mclean, A. D.; Yoshimine, M. Theory of molecular polarizabilities. J. Chem. Phys. 1967, 47, 1927–1935.

    Article  CAS  Google Scholar 

  51. Lu, T.; Chen, F. W. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592.

    Article  Google Scholar 

  52. Kresse, G. Ab initio molecular dynamics for liquid metals. J. Non-Cryst. Solids 1995, 193, 222–229.

    Article  Google Scholar 

  53. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

    Article  CAS  Google Scholar 

  54. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  CAS  Google Scholar 

  55. Li, P.; Zhang, C. W.; Lian, J.; Ren, M. J.; Wang, P. J.; Yu, X. H.; Gao, S. First-principle study of optical properties of Cu-doped CdS. Opt. Commun. 2013, 295, 45–52.

    Article  CAS  Google Scholar 

  56. Wang, J.; Zhao, Y.; Li, J.; Huang, H. C.; Chen, J.; Cheng, S. B. Unveiling the electronic structures and ligation effect of the superatom-polymeric zirconium oxide clusters: A computational study. Phys. Chem. Chem. Phys. 2019, 21, 14865–14872.

    Article  CAS  Google Scholar 

  57. Bauer, S.; Hunger, C.; Bodensteiner, M.; Ojo, W. S.; Cros-Gagneux, A.; Chaudret, B.; Nayral, C.; Delpech, F.; Scheer, M. Transition-metal complexes containing parent phosphine or phosphinyl ligands and their use as precursors for phosphide nanoparticles. Inorg. Chem. 2014, 53, 11438–11446.

    Article  CAS  Google Scholar 

  58. Karimova, N. V.; Aikens, C. M. Optical properties of small gold clusters Au8L82+ (L = PH3, PPh3): Magnetic circular dichroism spectra. J. Phys. Chem. C 2017, 121, 19478–19489.

    Article  CAS  Google Scholar 

  59. Omidvar, A. Design of a novel series of donor-acceptor frameworks via superalkali-superhalogen assemblage to improve the nonlinear optical responses. Inorg. Chem. 2018, 57, 9335–9347.

    Article  CAS  Google Scholar 

  60. Huang, S. Y.; Liao, K. T.; Peng, B.; Luo, Q. On the potential of using the Al7 superatom as an excess electron acceptor to construct materials with excellent nonlinear optical properties. Inorg. Chem. 2016, 55, 4421–4427.

    Article  CAS  Google Scholar 

  61. Shen, L.; Yang, S. W.; Ng, M. F.; Ligatchev, V.; Zhou, L. P.; Feng, Y. P. Charge-transfer-based mechanism for half-metallicity and ferromagnetism in one-dimensional organometallic sandwich molecular wires. J. Am. Chem. Soc. 2008, 130, 13956–13960.

    Article  CAS  Google Scholar 

  62. Wu, X. J.; Zeng, X. C. Double metallocene nanowires. J. Am. Chem. Soc. 2009, 131, 14246–14248.

    Article  CAS  Google Scholar 

  63. Li, X. L.; Lv, H. F.; Da, J.; Ma, L.; Zeng, X. C.; Wu, X. J.; Yang, J. L. Half-metallicity in one-dimensional metal trihydride molecular nanowires. J. Am. Chem. Soc. 2017, 139, 6290–6293.

    Article  CAS  Google Scholar 

  64. Guo, Z. P.; Chen, Q.; Yuan, J. N.; Xia, K.; Wang, X. M.; Sun, J. Ferromagnetic semiconducting VI3 single-chain nanowire. J. Phys. Chem. C 2020, 124, 2096–2103.

    Article  CAS  Google Scholar 

  65. Mu, Z. Q.; Yu, H. C.; Zhang, M.; Wu, A. M.; Qi, G. M.; Chu, P. K.; An, Z. H.; Di, Z. F.; Wang, X. Multiband hot photoluminescence from nanocavity-embedded silicon nanowire arrays with tunable wavelength. Nano Lett. 2017, 17, 1552–1558.

    Article  CAS  Google Scholar 

  66. Standing, A.; Assali, S.; Gao, L.; Verheijen, M. A.; van Dam, D.; Cui, Y. C.; Notten, P. H. L.; Haverkort, J. E. M.; Bakkers, E. P. A. M. Efficient water reduction with gallium phosphide nanowires. Nat. Commun. 2015, 6, 7824.

    Article  CAS  Google Scholar 

  67. Wang, Y. P.; Qu, Y.; Pan, K.; Wang, G. F.; Li, Y. D. Enhanced photoelectric conversion efficiency of dye sensitized solar cells via the incorporation of one dimensional luminescent BaWO4: Eu3+ nanowires. Chem. Commun. 2016, 52, 11124–11126.

    Article  CAS  Google Scholar 

  68. Lalitha, S.; Karazhanov, S. Z.; Ravindran, P.; Senthilarasu, S.; Sathyamoorthy, R.; Janabergenov, J. Electronic structure, structural and optical properties of thermally evaporated CdTe thin films. Phys. B 2007, 387, 227–238.

    Article  CAS  Google Scholar 

  69. Li, X. X.; Li, Z. Y.; Yang, J. L. Proposed photosynthesis method for producing hydrogen from dissociated water molecules using incident near-infrared light. Phys. Rev. Lett. 2014, 112, 018301.

    Article  Google Scholar 

  70. Li, J. J.; Li, B.; Li, J. J.; Liu, J. L.; Wang, L.; Zhang, H. W.; Zhang, Z. H.; Zhao, B. Visible-light-driven photocatalyst of La-N-codoped TiO2 nano-photocatalyst: Fabrication and its enhanced photocatalytic performance and mechanism. J. Ind. Eng. Chem. 2015, 25, 16–21.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Taishan Scholars Project of Shandong Province (No. ts201712011), the National Natural Science Foundation of China (NSFC) (Nos. 21603119 and 21705093), the Natural Science Foundation of Jiangsu Province (No. BK20170396), the Natural Science Foundation of Shandong Province (No. ZR2020ZD35), the Young Scholars Program of Shandong University (YSPSDU) (No. 2018WLJH48), and the Qilu Youth Scholar Funding of Shandong University. The scientific calculations in this paper were performed on the HPC Cloud Platform of Shandong University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shibo Cheng.

Electronic Supplementary Material

12274_2021_3619_MOESM1_ESM.pdf

Organic ligand mediated evolution from aluminum-based superalkalis to superatomic molecules and one-dimensional nanowires

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Huang, H., Chen, J. et al. Organic ligand mediated evolution from aluminum-based superalkalis to superatomic molecules and one-dimensional nanowires. Nano Res. 15, 1162–1170 (2022). https://doi.org/10.1007/s12274-021-3619-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3619-1

Keywords