Skip to main content

Progress in light-to-frequency conversion circuits based on low dimensional semiconductors

Abstract

As the scaling down of Si devices in the range less than few nm has been expedited up to a physical limit of Si, low dimensional materials have been regarded as one of next generation semiconductors. Among a variety of applications, studies on photodetectors have been actively investigated with their novel optical properties as well as astonishing electrical properties. However, most of research has focused on single device-type photodetector (i.e., photo-diode or photo-transistor). Contrary to common photodetector, light-to-frequency circuits (LFCs) are based on frequency reading with photosensitive ring oscillators, which has better noise immunity and reduced system complexity, thus, can be utilized to novel application even in internet of things (IoT) and bio & medical fields. In this review, low dimensional materials based circuit level photodetectors, which are core elements as the form of either inverters or ring oscillators for demonstration of LFCs, are introduced. Along with the introduction of low dimensional materials and their optical properties for optoelectronics, a fundamental concept for LFCs is specifically described. Thereafter, research progress on low dimensional material based photosensitive inverters is addressed according to the types of devices. Furthermore, as one of practical method for the improvement of photodetector performance, molecular doping technology is presented. Lastly, complete system of LFCs and its digitization for demonstration of production level, and potential application in the respective four aspects, (i) medical SpO2 detection, (ii) biological fluidic system, (iii) auto-lighting in agriculture, and (iv) optical feedback and sensing systems, are presented as systematic way to address the envisioned practical applications for the future displays including virtual reality and augmented reality, and others. As a remark, LFCs based on low dimensional semiconductors are expected to be one of core components in trillion’s sensor area.

References

  1. [1]

    Huang, X.; Zeng, Z. Y.; Zhang, H. Metal dichalcogenide nanosheets: Preparation, properties and applications. Chem. Soc. Rev. 2013, 42, 1934–1946.

    CAS  Article  Google Scholar 

  2. [2]

    Jariwala, D.; Sangwan, V. K.; Lauhon, L. J.; Marks, T. J.; Hersam, M. C. Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano 2014, 8, 1102–1120.

    CAS  Article  Google Scholar 

  3. [3]

    Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263–275.

    Article  Google Scholar 

  4. [4]

    Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.

    CAS  Article  Google Scholar 

  5. [5]

    Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.

    CAS  Google Scholar 

  6. [6]

    Smithe, K. K. H.; English, C. D.; Suryavanshi, S. V.; Pop, E. High-field transport and velocity saturation in synthetic monolayer MoS2. Nano Lett. 2018, 18, 4516–4522.

    CAS  Article  Google Scholar 

  7. [7]

    Huang, Y. Y.; Zhu, L. P.; Zhao, Q. Y.; Guo, Y. H.; Ren, Z. Y.; Bai, J. T.; Xu, X. L. Surface optical rectification from Layered MoS2 crystal by THz time-domain surface emission spectroscopy. ACS Appl. Mater. Interfaces 2017, 9, 4956–4965.

    CAS  Article  Google Scholar 

  8. [8]

    Desai, S. B.; Madhvapathy, S. R.; Sachid, A. B.; Llinas, J. P.; Wang, Q. X.; Ahn, G. H.; Pitner, G.; Kim, M. J.; Bokor, J.; Hu, C. M. et al. MoS2 transistors with 1-nanometer gate lengths. Science 2016, 354, 99–102.

    CAS  Article  Google Scholar 

  9. [9]

    Tans, S. J.; Verschueren, A. R. M.; Dekker, C. Room-temperature transistor based on a single carbon nanotube. Nature 1998, 393, 49–52.

    CAS  Article  Google Scholar 

  10. [10]

    Franklin, A. D.; Luisier, M.; Han, S. J.; Tulevski, G.; Breslin, C. M.; Gignac, L.; Lundstrom, M. S.; Haensch, W. Sub-10 nm carbon nanotube transistor. Nano Lett. 2012, 12, 758–762.

    CAS  Article  Google Scholar 

  11. [11]

    DeHeer, W. A.; Bacsa, W. S.; Châtelain, A.; Gerfin, T.; Humphrey-Baker, R.; Forro, L.; Ugarte, D. Aligned carbon nanotube films: Production and optical and electronic properties. Science 1995, 268, 845–847.

    CAS  Article  Google Scholar 

  12. [12]

    Wong, H. S. P.; Mitra, S.; Akinwande, D.; Beasley, C.; Chai, Y.; Chen, H. Y.; Chen, X. Y.; Close, G.; Deng, J.; Hazeghi, A. et al. Carbon nanotube electronics—Materials, devices, circuits, design, modeling, and performance projection. In Proceedings of 2011 International Electron Devices Meeting, Washington, USA, 2011, pp 23.1.1–23.1.4.

  13. [13]

    Novoselov, K. S.; Fal’ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192–200.

    CAS  Article  Google Scholar 

  14. [14]

    Geim, A. K. Graphene: Status and prospects. Science 2009, 324, 1530–1534.

    CAS  Article  Google Scholar 

  15. [15]

    Stoller, M. D.; Park, S.; Zhu, Y. W.; An, J.; Ruoff, R. S. Graphene-based ultracapacitors. Nano Lett. 2008, 8, 3498–3502.

    CAS  Article  Google Scholar 

  16. [16]

    Zhou, X. J.; Park, J. Y.; Huang, S. M.; Liu, J.; McEuen, P. L. Band structure, phonon scattering, and the performance limit of singlewalled carbon nanotube transistors. Phys. Rev. Lett. 2005, 95, 146805.

    Article  CAS  Google Scholar 

  17. [17]

    Avouris, P.; Appenzeller, J.; Martel, R.; Wind, S. J. Carbon nanotube electronics. Proc. IEEE 2003, 91, 1772–1784.

    CAS  Article  Google Scholar 

  18. [18]

    Bekyarova, E.; Itkis, M. E.; Cabrera, N.; Zhao, B.; Yu, A. P.; Gao, J. B.; Haddon, R. C. Electronic properties of single-walled carbon nanotube networks. J. Am. Chem. Soc. 2005, 127, 5990–5995.

    CAS  Article  Google Scholar 

  19. [19]

    Cao, Q.; Han, S. J.; Tersoff, J.; Franklin, A. D.; Zhu, Y.; Zhang, Z.; Tulevski, G. S.; Tang, J. S.; Haensch, W. End-bonded contacts for carbon nanotube transistors with low, size-independent resistance. Science 2015, 350, 68–72.

    CAS  Article  Google Scholar 

  20. [20]

    Bockrath, M.; Cobden, D. H.; McEuen, P. L.; Chopra, N. G.; Zettl, A.; Thess, A.; Smalley, R. E. Single-electron transport in ropes of carbon nanotubes. Science 1997, 275, 1922–1925.

    CAS  Article  Google Scholar 

  21. [21]

    Fujii, M.; Zhang, X.; Xie, H. Q.; Ago, H.; Takahashi, K.; Ikuta, T.; Abe, H.; Shimizu, T. Measuring the thermal conductivity of a single carbon nanotube. Phys. Rev. Lett. 2005, 95, 065502.

    Article  CAS  Google Scholar 

  22. [22]

    Zhu, Y. W.; Murali, S.; Cai, W. W.; Li, X. S.; Suk, J. W.; Potts, J. R.; Ruoff, R. S. Graphene and graphene oxide: Synthesis, properties, and applications. Adv. Mater. 2010, 22, 3906–3924.

    CAS  Article  Google Scholar 

  23. [23]

    Balandin, A. A. Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 2011, 10, 569–581.

    CAS  Article  Google Scholar 

  24. [24]

    Basov, D. N.; Averitt, R. D.; Hsieh, D. Towards properties on demand in quantum materials. Nat. Mater. 2017, 16, 1077–1088.

    CAS  Article  Google Scholar 

  25. [25]

    Rodenas, T.; Luz, I.; Prieto, G.; Seoane, B.; Miro, H.; Corma, A.; Kapteijn, F.; Xamena, F. X. L. I.; Gascon, J. Metal-organic framework nanosheets in polymer composite materials for gas separation. Nat. Mater. 2015, 14, 48–55.

    CAS  Article  Google Scholar 

  26. [26]

    Wuttig, M.; Yamada, N. Phase-change materials for rewriteable data storage. Nat. Mater. 2007, 6, 824–832.

    CAS  Article  Google Scholar 

  27. [27]

    Low, T.; Chaves, A.; Caldwell, J. D.; Kumar, A.; Fang, N. X.; Avouris, P.; Heinz, T. F.; Guinea, F.; Martin-Moreno, L.; Koppens, F. Polaritons in layered two-dimensional materials. Nat. Mater. 2017, 16, 182–194.

    CAS  Article  Google Scholar 

  28. [28]

    Wang, F. J.; Kozawa, D.; Miyauchi, Y.; Hiraoka, K.; Mouri, S.; Ohno, Y.; Matsuda, K. Considerably improved photovoltaic performance of carbon nanotube-based solar cells using metal oxide layers. Nat. Commun. 2015, 6, 6305.

    CAS  Article  Google Scholar 

  29. [29]

    Liu, Y.; Wei, N.; Zeng, Q. S.; Han, J.; Huang, H. X.; Zhong, D. L.; Wang, F. L.; Ding, L.; Xia, J. Y.; Xu, H. T. et al. Room temperature broadband infrared carbon nanotube photodetector with high detectivity and stability. Adv. Opt. Mater. 2016, 4, 238–245.

    CAS  Article  Google Scholar 

  30. [30]

    Yang, L. J.; Wang, S.; Zeng, Q. S.; Zhang, Z. Y.; Pei, T.; Li, Y.; Peng, L. M. Efficient photovoltage multiplication in carbon nanotubes. Nat. Photonics 2011, 5, 672–676.

    CAS  Article  Google Scholar 

  31. [31]

    Buscema, M.; Island, J. O.; Groenendijk, D. J.; Blanter, S. I.; Steele, G. A.; van der Zant, H. S. J.; Castellanos-Gomez, A. Photocurrent generation with two-dimensional van der Waals semiconductors. Chem. Soc. Rev. 2015, 44, 3691–3718.

    CAS  Article  Google Scholar 

  32. [32]

    Freitag, M.; Low, T.; Avouris, P. Increased responsivity of suspended graphene photodetectors. Nano Lett. 2013, 13, 1644–1648.

    CAS  Article  Google Scholar 

  33. [33]

    Vicarelli, L.; Vitiello, M. S.; Coquillat, D.; Lombardo, A.; Ferrari, A. C.; Knap, W.; Polini, M.; Pellegrini, V.; Tredicucci, A. Graphene field-effect transistors as room-temperature terahertz detectors. Nat. Mater. 2012, 11, 865–871.

    CAS  Article  Google Scholar 

  34. [34]

    Sensale-Rodriguez, B.; Yan, R. S.; Kelly, M. M.; Fang, T.; Tahy, K.; Hwang, W. S.; Jena, D.; Liu, L.; Xing, H. G. Broadband graphene terahertz modulators enabled by intraband transitions. Nat. Commun. 2012, 3, 780.

    Article  CAS  Google Scholar 

  35. [35]

    Mak, K. F.; Ju, L.; Wang, F.; Heinz, T. F. Optical spectroscopy of graphene: From the far infrared to the ultraviolet. Solid State Commun. 2012, 152, 1341–1349.

    CAS  Article  Google Scholar 

  36. [36]

    Zhang, Y. Z.; Liu, T.; Meng, B.; Li, X. H.; Liang, G. Z.; Hu, X. N.; Wang, Q. J. Broadband high photoresponse from pure monolayer graphene photodetector. Nat. Commun. 2013, 4, 1811.

    Article  CAS  Google Scholar 

  37. [37]

    Low, T.; Avouris, P. Graphene plasmonics for terahertz to mid-infrared applications. ACS Nano 2014, 8, 1086–1101.

    CAS  Article  Google Scholar 

  38. [38]

    Long, M. S.; Gao, A. Y.; Wang, P.; Xia, H.; Ott, C.; Pan, C.; Fu, Y. J.; Liu, E. F.; Chen, X. S.; Lu, W. et al. Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus. Sci. Adv. 2017, 3, e1700589.

    Article  CAS  Google Scholar 

  39. [39]

    Wu, J.; Koon, G. K. W.; Xiang, D.; Han, C.; Toh, C. T.; Kulkarni, E. S.; Verzhbitskiy, I.; Carvalho, A.; Rodin, A. S.; Koenig, S. P. et al. Colossal ultraviolet photoresponsivity of few-layer black phosphorus. ACS Nano 2015, 9, 8070–8077.

    CAS  Article  Google Scholar 

  40. [40]

    Guo, Q. S.; Pospischil, A.; Bhuiyan, M.; Jiang, H.; Tian, H.; Farmer, D.; Deng, B. C.; Li, C.; Han, S. J.; Wang, H. et al. Black phosphorus mid-infrared photodetectors with high gain. Nano Lett. 2016, 16, 4648–4655.

    CAS  Article  Google Scholar 

  41. [41]

    Yu, X. C.; Yu, P.; Wu, D.; Singh, B.; Zeng, Q. S.; Lin, H.; Zhou, W.; Lin, J. H.; Suenaga, K.; Liu, Z. et al. Atomically thin noble metal dichalcogenide: A broadband mid-infrared semiconductor. Nat. Commun. 2018, 9, 1545.

    Article  CAS  Google Scholar 

  42. [42]

    Wang, X. D.; Wang, P.; Wang, J. L.; Hu, W. D.; Zhou, X. H.; Guo, N.; Huang, H.; Sun, S.; Shen, H.; Lin, T. et al. Ultrasensitive and broadband MoS2 photodetector driven by ferroelectrics. Adv. Mater. 2015, 27, 6575–6581.

    CAS  Article  Google Scholar 

  43. [43]

    Xia, F. N.; Wang, H.; Jia, Y. C. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 2014, 5, 4458.

    CAS  Article  Google Scholar 

  44. [44]

    Hong, T.; Chamlagain, B.; Lin, W. Z.; Chuang, H. J.; Pan, M. H.; Zhou, Z. X.; Xu, Y. Q. Polarized photocurrent response in black phosphorus field-effect transistors. Nanoscale 2014, 6, 8978–8983.

    CAS  Article  Google Scholar 

  45. [45]

    Hong, T.; Chamlagain, B.; Wang, T. J.; Chuang, H. J.; Zhou, Z. X.; Xu, Y. Q. Anisotropic photocurrent response at black phosphorus-MoS2 p-n heterojunctions. Nanoscale 2015, 7, 18537–18541.

    CAS  Article  Google Scholar 

  46. [46]

    Luo, Z.; Maassen, J.; Deng, Y. X.; Du, Y. C.; Garrelts, R. P.; Lundstrom, M. S.; Ye, P. D.; Xu, X. F. Anisotropic in-plane thermal conductivity observed in few-layer black phosphorus. Nat. Commun. 2015, 6, 8572.

    CAS  Article  Google Scholar 

  47. [47]

    Yuan, H. T.; Liu, X. G.; Afshinmanesh, F.; Li, W.; Xu, G.; Sun, J.; Lian, B.; Curto, A. G.; Ye, G. J.; Hikita, Y. et al. Polarization-sensitive broadband photodetector using a black phosphorus vertical p-n junction. Nat. Nanotechnol. 2015, 10, 707–713.

    CAS  Article  Google Scholar 

  48. [48]

    Zhang, E. Z.; Wang, P.; Li, Z.; Wang, H. F.; Song, C. Y.; Huang, C.; Chen, Z. G.; Yang, L.; Zhang, K. T.; Lu, S. H. et al. Tunable ambipolar polarization-sensitive photodetectors based on high-anisotropy ReSe2 nanosheets. ACS Nano 2016, 10, 8067–8077.

    CAS  Article  Google Scholar 

  49. [49]

    Rivera, M.; Velazquez, R.; Aldalbahi, A.; Zhou, A. F.; Feng, P. High operating temperature and low power consumption boron nitride nanosheets based broadband UV photodetector. Sci. Rep. 2017, 7, 42973.

    Article  Google Scholar 

  50. [50]

    Sajjad, M.; Jadwisienczak, W. M.; Feng, P. Nanoscale structure study of boron nitride nanosheets and development of a deep-UV photo-detector. Nanoscale 2014, 6, 4577–4582.

    CAS  Article  Google Scholar 

  51. [51]

    Aldalbahi, A.; Feng, P. Development of 2-D boron nitride nanosheets UV photoconductive detectors. IEEE Trans. Electron Devices 2015, 62, 1885–1890.

    CAS  Article  Google Scholar 

  52. [52]

    Swan, M. Sensor mania! The internet of things, wearable computing, objective metrics, and the quantified self 2.0. J. Sens. Actuator Netw. 2012, 1, 217–253.

    Article  Google Scholar 

  53. [53]

    Gubbi, J.; Buyya, R.; Marusic, S.; Palaniswami, M. Internet of Things (IoT): A vision, architectural elements, and future directions. Futur. Gener. Comput. Syst. 2013, 29, 1645–1660.

    Article  Google Scholar 

  54. [54]

    Alam, M.; Tehranipoor, M. M.; Guin, U. TSensors vision, infrastructure and security challenges in trillion sensor era: Current trends and future directions. J. Hardw. Syst. Secur. 2017, 1, 311–327.

    Article  Google Scholar 

  55. [55]

    Liu, J. J.; Faulkner, G.; Choubey, B.; Collins, S.; O’Brien, D. C. A tunable passband logarithmic photodetector for IoT smart dusts. IEEE Sens. J. 2018, 18, 5321–5328.

    CAS  Article  Google Scholar 

  56. [56]

    Polat, E. O.; Mercier, G.; Nikitskiy, I.; Puma, E.; Galan, T.; Gupta, S.; Montagut, M.; Piqueras, J. J.; Bouwens, M.; Durduran, T. et al. Flexible graphene photodetectors for wearable fitness monitoring. Sci. Adv. 2019, 5, eaaw7846.

    CAS  Article  Google Scholar 

  57. [57]

    Cai, S.; Xu, X. J.; Yang, W.; Chen, J. X.; Fang, X. S. Materials and designs for wearable photodetectors. Adv. Mater. 2019, 31, 1808138.

    Article  CAS  Google Scholar 

  58. [58]

    Qiu, M. J.; Sun, P.; Liu, Y. J.; Huang, Q. T.; Zhao, C. X.; Li, Z. H.; Mai, W. J. Visualized UV photodetectors based on Prussian blue/TiO2 for smart irradiation monitoring application. Adv. Mater. Technol. 2018, 3, 1700288.

    Article  CAS  Google Scholar 

  59. [59]

    Du, Y.; Guo, S. J. Chemically doped fluorescent carbon and graphene quantum dots for bioimaging, sensor, catalytic and photoelectronic applications. Nanoscale 2016, 8, 2532–2543.

    CAS  Article  Google Scholar 

  60. [60]

    Li, Y.; Luo, X. S.; Liang, G.; Lo, G. Q. Demonstration of Ge/Si avalanche photodetector arrays for lidar application. In Proceedings of Optical Fiber Communication Conference 2019, San Diego, CA, USA, 2019, p Tu3E.3.

  61. [61]

    Nadeev, A. I.; Penner, I. E.; Shevtsov, E. S. Photodetector module for recording lidar signals in the near-infrared region. Atmos. Ocean. Opt. 2020, 33, 400–405.

    CAS  Article  Google Scholar 

  62. [62]

    Yang, W.; Chen, J. X.; Zhang, Y.; Zhang, Y. J.; He, J. H.; Fang, X. S. Silicon-compatible photodetectors: Trends to monolithically integrate photosensors with chip technology. Adv. Funct. Mater. 2019, 29, 1808182.

    Article  CAS  Google Scholar 

  63. [63]

    Chen, H. Y.; Liu, K. W.; Hu, L. F.; Al-Ghamdi, A. A.; Fang, X. S. New concept ultraviolet photodetectors. Mater. Today 2015, 18, 493–502.

    CAS  Article  Google Scholar 

  64. [64]

    Tang, F.; Shu, Z.; Ye, K.; Zhou, X. C.; Hu, S. D.; Lin, Z.; Bermak, A. A linear 126-dB dynamic range light-to-frequency converter with dark current suppression upto 125 °C for blood oxygen concentration detection. IEEE Trans. Electron Devices 2016, 63, 3983–3988.

    Article  Google Scholar 

  65. [65]

    Fakharuddin, A.; Shabbir, U.; Qiu, W. M.; Iqbal, T.; Sultan, M.; Heremans, P.; Schmidt-Mende, L. Inorganic and layered perovskites for optoelectronic devices. Adv. Mater. 2019, 31, 1807095.

    CAS  Article  Google Scholar 

  66. [66]

    Feng, J. G.; Yan, X. X.; Liu, Y. Y.; Gao, H. F.; Wu, Y. C.; Su, B.; Jiang, L. Crystallographically aligned perovskite structures for high-performance polarization-sensitive photodetectors. Adv. Mater. 2017, 29, 1605993.

    Article  CAS  Google Scholar 

  67. [67]

    Wu, J. Y.; Chun, Y. T.; Li, S. P.; Zhang, T.; Wang, J. Z.; Shrestha, P. K.; Chu, D. P. Broadband MoS2 field-effect phototransistors: Ultrasensitive visible-light photoresponse and negative infrared photoresponse. Adv. Mater. 2018, 30, 1705880.

    Article  CAS  Google Scholar 

  68. [68]

    Zhou, H.; Zeng, J. P.; Song, Z. N.; Grice, C. R.; Chen, C.; Song, Z. H.; Zhao, D. W.; Wang, H.; Yan, Y. F. Self-powered all-inorganic perovskite microcrystal photodetectors with high detectivity. J. Phys. Chem. Lett. 2018, 9, 2043–2048.

    CAS  Article  Google Scholar 

  69. [69]

    Qiao, S.; Cong, R. D.; Liu, J. H.; Liang, B. L.; Fu, G. S; Yu, W.; Ren, K. L.; Wang, S. F.; Pan, C. F. A vertically layered MoS2/Si heterojunction for an ultrahigh and ultrafast photoresponse photodetector. J. Mater. Chem. C 2018, 6, 3233–3239.

    CAS  Article  Google Scholar 

  70. [70]

    Barrales-Guadarrama, R.; Mocholí-Salcedo, A.; Vázquez-Cerón, E. R.; Rodríguez-Rodríguez, M. E.; Barrales-Guadarrama, V. R. A technique for adapting a quasi-digital photodetector to a frequency-to-digital converter. In Proceedings of 2012 IEEE Ninth Electronics, Robotics and Automotive Mechanics Conference, Cuernavaca, Mexico, 2012, pp 343–348.

  71. [71]

    Ehsan, A. A.; Shaari, S.; Rahman, M. K. A.; Khan, K. M. Optical transceiver design for POF portable optical access-card system using light-to-frequency converter. In Proceedings of 2008 IEEE International Conference on Semiconductor Electronics, Johor Bahru, Malaysia, 2008, pp 345–349.

  72. [72]

    AMS. Light-to-frequency—programmable light-to-frequency converters—TSL230RD. https://www.mouser.com/ds/2/588/TSL230RDTSL230ARDTSL230BRD-P-519226.pdf (accessed Sep 14, 2016).

  73. [73]

    TSL230RD, TSL230ARD, TSL230BRS programable light-to-frequency converters. http://ams.com/eng/Products/Light-Sensors/Light-to-Frequency (accessed May 17, 2016).

  74. [74]

    AMS. TCS3200, TCS3210, Programmable color light-to-frequency converter. http://ams.com/eng/Products/Light-Sensors/Color-Sensors/TCS3200 (accessed Jul 10, 2015).

  75. [75]

    Tang, F.; Li, Z. P.; Yang, T. B.; Zhang, L.; Zhou, X. C.; Hu, S. D.; Lin, Z.; Li, P.; Wang, B.; Bermak, A. A noise-reduced light-to-frequency converter for Sub-0.1% perfusion index blood SpO2 sensing. IEEE Trans. Biomed. Circuits Syst. 2020, 14, 931–941.

    Article  Google Scholar 

  76. [76]

    Chaves, A.; Azadani, J. G.; Alsalman, H.; da Costa, D. R.; Frisenda, R.; Chaves, A. J.; Song, S. H.; Kim, Y. D.; He, D. W.; Zhou, J. D. et al. Bandgap engineering of two-dimensional semiconductor materials. npj 2D Mater. Appl. 2020, 4, 29.

    CAS  Article  Google Scholar 

  77. [77]

    Xie, C. Y.; Jiang, S. L.; Gao, Y. L.; Hong, M.; Pan, S. Y.; Zhao, J. J.; Zhang, Y. F. Giant thickness-tunable bandgap and robust air stability of 2D palladium diselenide. Small 2020, 16, 2000754.

    CAS  Article  Google Scholar 

  78. [78]

    Desai, S. B.; Seol, G.; Kang, J. S.; Fang, H.; Battaglia, C.; Kapadia, R.; Ager, J. W.; Guo, J.; Javey, A. Strain-induced indirect to direct bandgap transition in multilayer WSe2. Nano Lett. 2014, 14, 4592–4597.

    CAS  Article  Google Scholar 

  79. [79]

    Mudd, G. W.; Molas, M. R.; Chen, X.; Zólyomi, V.; Nogajewski, K.; Kudrynskyi, Z. R.; Kovalyuk, Z. D.; Yusa, G.; Makarovsky, O.; Eaves, L. et al. The direct-to-indirect band gap crossover in two-dimensional van der Waals Indium Selenide crystals. Sci. Rep. 2016, 6, 39619.

    CAS  Article  Google Scholar 

  80. [80]

    Freitag, M.; Martin, Y.; Misewich, J. A.; Martel, R.; Avouris, P. Photoconductivity of single carbon nanotubes. Nano Lett. 2003, 3, 1067–1071.

    CAS  Article  Google Scholar 

  81. [81]

    Jeong, J.; Seo, S. G.; Kim, S. Y.; Jin, S. H. Photosensitive complementary inverters composed of n-channel ReS2 and p-channel single-walled carbon nanotube field-effect transistors. Phys. Status Solidi — Rapid Res. Lett. 2020, 14, 2000420.

    CAS  Article  Google Scholar 

  82. [82]

    Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

    Article  CAS  Google Scholar 

  83. [83]

    Kam, K. K.; Parkinson, B. A. Detailed photocurrent spectroscopy of the semiconducting group VIB transition metal dichalcogenides. J. Phys. Chem. 1982, 86, 463–467.

    CAS  Article  Google Scholar 

  84. [84]

    Zhang, Y.; Chang, T. R.; Zhou, B.; Cui, Y. T.; Yan, H.; Liu, Z. K.; Schmitt, F.; Lee, J.; Moore, R.; Chen, Y. L. et al. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nat. Nanotechnol. 2014, 9, 111–115.

    CAS  Article  Google Scholar 

  85. [85]

    Splendiani, A.; Sun, L.; Zhang, Y. B.; Li, T. S.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271–1275.

    CAS  Article  Google Scholar 

  86. [86]

    Hu, P. A.; Wen, Z. Z.; Wang, L. F.; Tan, P. H.; Xiao, K. Synthesis of few-layer GaSe nanosheets for high performance photodetectors. ACS Nano 2012, 6, 5988–5994.

    CAS  Article  Google Scholar 

  87. [87]

    Mudd, G. W.; Svatek, S. A.; Ren, T. H.; Patanè, A.; Makarovsky, O.; Eaves, L.; Beton, P. H.; Kovalyuk, Z. D.; Lashkarev, G. V.; Kudrynskyi, Z. R. et al. Tuning the bandgap of exfoliated InSe nanosheets by quantum confinement. Adv. Mater. 2013, 25, 5714–5718.

    CAS  Article  Google Scholar 

  88. [88]

    Li, L. K.; Yu, Y. J.; Ye, G. J.; Ge, Q. Q.; Ou, X. D.; Wu, H.; Feng, D. L.; Chen, X. H.; Zhang, Y. B. Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372–377.

    CAS  Article  Google Scholar 

  89. [89]

    Tran, V.; Soklaski, R.; Liang, Y. F.; Yang, L. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B 2014, 89, 235319.

    Article  CAS  Google Scholar 

  90. [90]

    Iqbal, M. W.; Elahi, E.; Amin, A.; Hussain, G.; Aftab, S. Chemical doping of transition metal dichalcogenides (TMDCs) based field effect transistors: A review. Superlatt. Microst. 2020, 137, 106350.

    CAS  Article  Google Scholar 

  91. [91]

    Zhu, J. D.; Yang, Y. C.; Jia, R. D.; Liang, Z. X.; Zhu, W.; Rehman, Z. U.; Bao, L.; Zhang, X. X.; Cai, Y. M.; Song, L. et al. Ion gated synaptic transistors based on 2D van der Waals crystals with tunable diffusive dynamics. Adv. Mater. 2018, 30, 1800195.

    Article  CAS  Google Scholar 

  92. [92]

    Choi, Y.; Kang, J. M.; Jariwala, D.; Kang, M. S.; Marks, T. J.; Hersam, M. C.; Cho, J. H. Low-voltage complementary electronics from ion-gel-gated vertical van der Waals heterostructures. Adv. Mater. 2016, 28, 3742–3748.

    CAS  Article  Google Scholar 

  93. [93]

    Ryu, J. H.; Baek, G. W.; Yu, S. J.; Seo, S. G.; Jin, S. H. Photosensitive full-swing multi-layer MoS2 inverters with light shielding layers. IEEE Electron Device Lett. 2017, 38, 67–70.

    CAS  Article  Google Scholar 

  94. [94]

    Seo, S. G.; Han, S. W.; Cha, H. Y.; Yang, S.; Jin, S. H. Light-shield layers free photosensitive inverters comprising GaN-drivers and multi-layered MoS2-loads. IEEE Electron Device Lett. 2019, 40, 107–110.

    CAS  Google Scholar 

  95. [95]

    Seo, S. G.; Jin, S. H. Photosensitive complementary inverters based on n-channel MoS2 and p-channel MoTe2 transistors for light-to-frequency conversion circuits. Phys. Status Solidi — Rapid Res. Lett. 2019, 13, 1900317.

    CAS  Article  Google Scholar 

  96. [96]

    Martínez Ciro, R. A.; López Giraldo, F. E.; Betancur Perez, A. F.; Luna Rivera, M. Characterization of light-to-frequency converter for visible light communication systems. Electronics 2018, 7, 165.

    Article  CAS  Google Scholar 

  97. [97]

    Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

    CAS  Article  Google Scholar 

  98. [98]

    Balasubramanian, K.; Burghard, M. Chemically functionalized carbon nanotubes. Small 2005, 1, 180–192.

    CAS  Article  Google Scholar 

  99. [99]

    He, X. W.; Léonard, F.; Kono, J. Uncooled carbon nanotube photo-detectors. Adv. Opt. Mater. 2015, 3, 989–1011.

    CAS  Article  Google Scholar 

  100. [100]

    Hirsch, A. Functionalization of single-walled carbon nanotubes. Angew. Chem, Int. Ed. 2002, 41, 1853–1859.

    CAS  Article  Google Scholar 

  101. [101]

    Iijima, S. Carbon nanotubes: Past, present, and future. Phys. B Condens. Matter 2002, 323, 1–5.

    CAS  Article  Google Scholar 

  102. [102]

    Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58.

    CAS  Article  Google Scholar 

  103. [103]

    Sun, Y. P.; Fu, K. F.; Lin, Y.; Huang, W. J. Functionalized carbon nanotubes: Properties and applications. Acc. Chem. Res. 2002, 35, 1096–1104.

    CAS  Article  Google Scholar 

  104. [104]

    Dai, H. J. Carbon nanotubes: Synthesis, integration, and properties. Acc. Chem. Res. 2002, 35, 1035–1044.

    CAS  Article  Google Scholar 

  105. [105]

    Zhang, W. D.; Xu, B.; Jiang, L. C. Functional hybrid materials based on carbon nanotubes and metal oxides. J. Mater. Chem. 2010, 20, 6383–6391.

    CAS  Article  Google Scholar 

  106. [106]

    Katz, E.; Willner, I. Biomolecule-functionalized carbon nanotubes: Applications in nanobioelectronics. ChemPhysChem 2004, 5, 1084–1104.

    CAS  Article  Google Scholar 

  107. [107]

    Sgobba, V.; Guldi, D. M. Carbon nanotubes—electronic/electrochemical properties and application for nanoelectronics and photonics. Chem. Soc. Rev. 2009, 38, 165–184.

    CAS  Article  Google Scholar 

  108. [108]

    Prato, M.; Kostarelos, K.; Bianco, A. Functionalized carbon nanotubes in drug design and discovery. Acc. Chem. Res. 2008, 41, 60–68.

    CAS  Article  Google Scholar 

  109. [109]

    Tuncel, D. Non-covalent interactions between carbon nanotubes and conjugated polymers. Nanoscale 2011, 3, 3545–3554.

    CAS  Article  Google Scholar 

  110. [110]

    Liu, Z.; Tabakman, S.; Welsher, K.; Dai, H. J. Carbon nanotubes in biology and medicine: In vitro and in vivo detection, imaging and drug delivery. Nano Res. 2009, 2, 85–120.

    CAS  Article  Google Scholar 

  111. [111]

    Hills, G.; Lau, C.; Wright, A.; Fuller, S.; Bishop, M. D.; Srimani, T.; Kanhaiya, P.; Ho, R.; Amer, A.; Stein, Y. et al. Modern microprocessor built from complementary carbon nanotube transistors. Nature 2019, 572, 595–602.

    CAS  Article  Google Scholar 

  112. [112]

    Lee, J. U. Photovoltaic effect in ideal carbon nanotube diodes. Appl. Phys. Lett. 2005, 87, 073101.

    Article  CAS  Google Scholar 

  113. [113]

    Itkis, M. E.; Borondics, F.; Yu, A. P.; Haddon, R. C. Bolometric infrared photoresponse of suspended single-walled carbon nanotube films. Science 2006, 312, 413–416.

    CAS  Article  Google Scholar 

  114. [114]

    St-Antoine, B. C.; Ménard, D.; Martel, R. Photothermoelectric effects in single-walled carbon nanotube films: Reinterpreting scanning photocurrent experiments. Nano Res. 2012, 5, 73–81.

    CAS  Article  Google Scholar 

  115. [115]

    Barkelid, M.; Zwiller, V. Photocurrent generation in semiconducting and metallic carbon nanotubes. Nat. Photonics 2014, 8, 47–51.

    CAS  Article  Google Scholar 

  116. [116]

    Arnold, M. S.; Blackburn, J. L.; Crochet, J. J.; Doorn, S. K.; Duque, J. G.; Mohite, A.; Telg, H. Recent developments in the photophysics of single-walled carbon nanotubes for their use as active and passive material elements in thin film photovoltaics. Phys. Chem. Chem. Phys. 2013, 15, 14896–14918.

    CAS  Article  Google Scholar 

  117. [117]

    Pradhan, B.; Setyowati, K.; Liu, H. Y.; Waldeck, D. H.; Chen, J. Carbon nanotube-polymer nanocomposite infrared sensor. Nano Lett. 2008, 8, 1142–1146.

    CAS  Article  Google Scholar 

  118. [118]

    Pradhan, B.; Kohlmeyer, R. R.; Setyowati, K.; Owen, H. A.; Chen, J. Advanced carbon nanotube/polymer composite infrared sensors. Carbon 2009, 47, 1686–1692.

    CAS  Article  Google Scholar 

  119. [119]

    Lu, R. T.; Christianson, C.; Kirkeminde, A.; Ren, S. Q.; Wu, J. Extraordinary photocurrent harvesting at type-II heterojunction interfaces: Toward high detectivity carbon nanotube infrared detectors. Nano Lett. 2012, 12, 6244–6249.

    CAS  Article  Google Scholar 

  120. [120]

    Ham, M. H.; Paulus, G. L. C.; Lee, C. Y.; Song, C.; Kalantar-Zadeh, K.; Choi, W.; Han, J. H.; Strano, M. S. Evidence for high-efficiency exciton dissociation at polymer/single-walled carbon nanotube interfaces in planar nano-heterojunction photovoltaics. ACS Nano 2010, 4, 6251–6259.

    CAS  Article  Google Scholar 

  121. [121]

    Long, R.; Prezhdo, O. V. Asymmetry in the electron and hole transfer at a polymer-carbon nanotube heterojunction. Nano Lett. 2014, 14, 3335–3341.

    CAS  Article  Google Scholar 

  122. [122]

    Xie, Y.; Gong, M. G.; Shastry, T. A.; Lohrman, J.; Hersam, M. C.; Ren, S. Q. Broad-spectral-response nanocarbon bulk-heterojunction excitonic photodetectors. Adv. Mater. 2013, 25, 3433–3437.

    CAS  Article  Google Scholar 

  123. [123]

    Lu, R. T.; Li, Z. Z.; Xu, G. W.; Wu, J. Z. Suspending single-wall carbon nanotube thin film infrared bolometers on microchannels. Appl. Phys. Lett. 2009, 94, 163110.

    Article  CAS  Google Scholar 

  124. [124]

    St-Antoine, B. C.; Ménard, D.; Martel, R. Single-walled carbon nanotube thermopile for broadband light detection. Nano Lett. 2011, 11, 609–613.

    CAS  Article  Google Scholar 

  125. [125]

    Wickramaratne, D.; Zahid, F.; Lake, R. K. Electronic and thermoelectric properties of few-layer transition metal dichalcogenides. J. Chem. Phys. 2014, 140, 124710.

    Article  CAS  Google Scholar 

  126. [126]

    Xia, F. N.; Wang, H.; Xiao, D.; Dubey, M.; Ramasubramaniam, A. Two-dimensional material nanophotonics. Nat. Photonics 2014, 8, 899–907.

    CAS  Article  Google Scholar 

  127. [127]

    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197–200.

    CAS  Article  Google Scholar 

  128. [128]

    Zhang, Y. B.; Tan, Y. W.; Stormer, H. L.; Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 2005, 438, 201–204.

    CAS  Article  Google Scholar 

  129. [129]

    Mak, K. F.; Sfeir, M. Y.; Wu, Y.; Lui, C. H.; Misewich, J. A.; Heinz, T. F. Measurement of the optical conductivity of graphene. Phys. Rev. Lett. 2008, 101, 196405.

    Article  CAS  Google Scholar 

  130. [130]

    Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A. C. Graphene photonics and optoelectronics. Nat. Photonics 2010, 4, 611–622.

    CAS  Article  Google Scholar 

  131. [131]

    Dean, C. R.; Young, A. F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K. L. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 2010, 5, 722–726.

    CAS  Article  Google Scholar 

  132. [132]

    Xu, X. D.; Yao, W.; Xiao, D.; Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 2014, 10, 343–350.

    CAS  Article  Google Scholar 

  133. [133]

    Eda, G.; Maier, S. A. Two-dimensional crystals: Managing light for optoelectronics. ACS Nano 2013, 7, 5660–5665.

    CAS  Article  Google Scholar 

  134. [134]

    Mak, K. F.; He, K. L.; Shan, J.; Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 2012, 7, 494–498.

    CAS  Article  Google Scholar 

  135. [135]

    Cao, T.; Wang, G.; Han, W. P.; Ye, H. Q.; Zhu, C. R.; Shi, J. R.; Niu, Q.; Tan, P. H.; Wang, E. G.; Liu, B. L. et al. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nat. Commun. 2012, 3, 887.

    Article  CAS  Google Scholar 

  136. [136]

    Xiao, D.; Liu, G. B.; Feng, W. X.; Xu, X. D.; Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 2012, 108, 196802.

    Article  CAS  Google Scholar 

  137. [137]

    Wang, J. L.; Fang, H. H.; Wang, X. D.; Chen, X. S.; Lu, W.; Hu, W. D. Recent progress on localized field enhanced two-dimensional material photodetectors from ultraviolet-visible to infrared. Small 2017, 13, 1700894.

    Article  CAS  Google Scholar 

  138. [138]

    Koppens, F. H. L.; Mueller, T.; Avouris, P.; Ferrari, A. C.; Vitiello, M. S.; Polini, M. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 2014, 9, 780–793.

    CAS  Article  Google Scholar 

  139. [139]

    Wang, P.; Liu, S. S.; Luo, W. J.; Fang, H. H.; Gong, F.; Guo, N.; Chen, Z. G.; Zou, J.; Huang, Y.; Zhou, X. H. et al. Arrayed van der Waals broadband detectors for dual-band detection. Adv. Mater. 2017, 29, 1604439.

    Article  CAS  Google Scholar 

  140. [140]

    Perea-Lõpez, N.; Elías, A. L.; Berkdemir, A.; Castro-Beltran, A.; Gutiérrez, H. R.; Feng, S. M.; Lv, R. T.; Hayashi, T.; Lõpez-Urías, F.; Ghosh, S. et al. Photosensor device based on few-layered WS2 films. Adv. Funct. Mater. 2013, 23, 5511–5517.

    Article  CAS  Google Scholar 

  141. [141]

    Soref, R. A. Silicon-based optoelectronics. Proc. IEEE 1993, 81, 1687–1706.

    CAS  Article  Google Scholar 

  142. [142]

    Rogalski, A. HgCdTe infrared detector material: History, status and outlook. Rep. Prog. Phys. 2005, 68, 2267–2336.

    CAS  Article  Google Scholar 

  143. [143]

    Rogalski, A. Infrared detectors: An overview. Infrared Phys. Technol. 2002, 43, 187–210.

    Article  Google Scholar 

  144. [144]

    Rogalski, A. New material systems for third generation infrared photodetectors. Opto-Electronics Rev. 2008, 16, 458–482.

    CAS  Article  Google Scholar 

  145. [145]

    Keller, L. D.; Herter, T. L.; Stacey, G. J.; Gull, G. E.; Pirger, B.; Schoenwald, J.; Bowman, H.; Nikola, T. FORCAST: A facility 5- to 40-µm camera for SOFIA. In Proceedings of SPIE 4014, Airborne Telescope Systems, Munich, Germany, 2000, pp 86–97.

  146. [146]

    Akinwande, D.; Petrone, N.; Hone, J. Two-dimensional flexible nanoelectronics. Nat. Commun. 2014, 5, 5678.

    CAS  Article  Google Scholar 

  147. [147]

    Kim, S. J.; Choi, K.; Lee, B.; Kim, Y.; Hong, B. H. Materials for flexible, stretchable electronics: Graphene and 2D materials. Annu. Rev. Mater. Res. 2015, 45, 63–84.

    CAS  Article  Google Scholar 

  148. [148]

    Yun, W. S.; Han, S. W.; Hong, S. C.; Kim, I. G.; Lee, J. D. Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M = Mo, W; X = S, Se, Te). Phys. Rev. B 2012, 85, 033305.

    Article  CAS  Google Scholar 

  149. [149]

    Castellanos-Gomez, A.; Poot, M.; Steele, G. A.; Van Der Zant, H. S. J.; Agraït, N.; Rubio-Bollinger, G. Elastic properties of freely suspended MoS2 nanosheets. Adv. Mater. 2012, 24, 772–775.

    CAS  Article  Google Scholar 

  150. [150]

    Conley, H. J.; Wang, B.; Ziegler, J. I.; Haglund, R. F. Jr.; Pantelides, S. T.; Bolotin, K. I. Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett. 2013, 13, 3626–3630.

    CAS  Article  Google Scholar 

  151. [151]

    Liu, B. L.; Köpf, M.; Abbas, A. N.; Wang, X. M.; Guo, Q. S.; Jia, Y. C.; Xia, F. N.; Weihrich, R.; Bachhuber, F.; Pielnhofer, F. et al. Black arsenic-phosphorus: Layered anisotropic infrared semiconductors with highly tunable compositions and properties. Adv. Mater. 2015, 27, 4423–4429.

    CAS  Article  Google Scholar 

  152. [152]

    Lan, S. F.; Rodrigues, S.; Kang, L.; Cai, W. S. Visualizing optical phase anisotropy in black phosphorus. ACS Photonics 2016, 3, 1176–1181.

    CAS  Article  Google Scholar 

  153. [153]

    Britnell, L.; Ribeiro, R. M.; Eckmann, A.; Jalil, R.; Belle, B. D.; Mishchenko, A.; Kim, Y. J.; Gorbachev, R. V; Georgiou, T.; Morozov, S. V et al. Strong light-matter interactions in heterostructures of atomically thin films. Science 2013, 340, 1311–1314.

    CAS  Article  Google Scholar 

  154. [154]

    Wang, L.; Meric, I.; Huang, P. Y.; Gao, Q.; Gao, Y.; Tran, H.; Taniguchi, T.; Watanabe, K.; Campos, L. M.; Muller, D. A. et al. One-dimensional electrical contact to a two-dimensional material. Science 2013, 342, 614–617.

    CAS  Article  Google Scholar 

  155. [155]

    Roy, K.; Padmanabhan, M.; Goswami, S.; Sai, T. P.; Ramalingam, G.; Raghavan, S.; Ghosh, A. Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices. Nat. Nanotechnol. 2013, 8, 826–830.

    CAS  Article  Google Scholar 

  156. [156]

    Zhang, W. J.; Chuu, C. P.; Huang, J. K.; Chen, C. H.; Tsai, M. L.; Chang, Y. H.; Liang, C. T.; Chen, Y. Z.; Chueh, Y. L.; He, J. H. et al. Ultrahigh-gain photodetectors based on atomically thin graphene-MoS2 Heterostructures. Sci. Rep. 2015, 4, 3826.

    Article  CAS  Google Scholar 

  157. [157]

    Long, M. S.; Liu, E. F.; Wang, P.; Gao, A. Y.; Xia, H.; Luo, W.; Wang, B. G.; Zeng, J. W.; Fu, Y. J.; Xu, K. et al. Broadband photovoltaic detectors based on an atomically thin heterostructure. Nano Lett. 2016, 16, 2254–2259.

    CAS  Article  Google Scholar 

  158. [158]

    Kim, C. O.; Kim, S.; Shin, D. H.; Kang, S. S.; Kim, J. M.; Jang, C. W.; Joo, S. S.; Lee, J. S.; Kim, J. H.; Choi, S. H. et al. High photo-responsivity in an all-graphene p-n vertical junction photodetector. Nat. Commun. 2014, 5, 3249.

    Article  CAS  Google Scholar 

  159. [159]

    Amani, M.; Regan, E.; Bullock, J.; Ahn, G. H.; Javey, A. Mid-wave infrared photoconductors based on black phosphorus-arsenic alloys. ACS Nano 2017, 11, 11724–11731.

    CAS  Article  Google Scholar 

  160. [160]

    Tan, W. C.; Huang, L.; Ng, R. J.; Wang, L.; Hasan, D. M. N.; Duffin, T. J.; Kumar, K. S.; Nijhuis, C. A.; Lee, C.; Ang, K. W. A black phosphorus carbide infrared phototransistor. Adv. Mater. 2018, 30, 1705039.

    Article  CAS  Google Scholar 

  161. [161]

    Wang, Y. X.; Qiu, G.; Wang, R. X.; Huang, S. Y.; Wang, Q. Q.; Liu, Y. Y.; Du, Y. C.; Goddard III, W. A.; Kim, M. J.; Xu, X. F. et al. Field-effect transistors made from solution-grown two-dimensional tellurene. Nat. Electron. 2018, 1, 228–236.

    Article  Google Scholar 

  162. [162]

    Amani, M.; Tan, C. L.; Zhang, G.; Zhao, C. S.; Bullock, J.; Song, X. H.; Kim, H.; Shrestha, V. R.; Gao, Y.; Crozier, K. B. et al. Solution-synthesized high-mobility tellurium nanoflakes for shortwave infrared photodetectors. ACS Nano 2018, 12, 7253–7263.

    CAS  Article  Google Scholar 

  163. [163]

    Li, L.; Wang, W. K.; Gan, L.; Zhou, N.; Zhu, X. D.; Zhang, Q.; Li, H. Q.; Tian, M. L.; Zhai, T. Y. Ternary Ta2NiSe5 flakes for a highperformance infrared photodetector. Adv. Funct. Mater. 2016, 26, 8281–8289.

    CAS  Article  Google Scholar 

  164. [164]

    Sie, E. J.; McIver, J. W.; Lee, Y. H.; Fu, L.; Kong, J.; Gedik, N. Valley-selective optical Stark effect in monolayer WS2. Nat. Mater. 2015, 14, 290–294.

    CAS  Article  Google Scholar 

  165. [165]

    Schall, D.; Otto, M.; Neumaier, D.; Kurz, H. Integrated ring oscillators based on high-performance graphene inverters. Sci. Rep. 2013, 3, 2592.

    Article  Google Scholar 

  166. [166]

    Zheng, Y.; Hu, Z. H.; Han, C.; Guo, R.; Xiang, D.; Lei, B.; Wang, Y. N.; He, J.; Lai, M.; Chen, W. Black phosphorus inverter devices enabled by in-situ aluminum surface modification. Nano Res. 2019, 12, 531–536.

    CAS  Article  Google Scholar 

  167. [167]

    Song, M. K.; Namgung, S. D.; Sung, T.; Cho, A. J.; Lee, J.; Ju, M. S.; Nam, K. T.; Lee, Y. S.; Kwon, J. Y. Physically transient field-effect transistors based on black phosphorus. ACS Appl. Mater. Interfaces 2018, 10, 42630–42636.

    CAS  Article  Google Scholar 

  168. [168]

    Dileep, K.; Sahu, R.; Sarkar, S.; Peter, S. C.; Datta, R. Layer specific optical band gap measurement at nanoscale in MoS2 and ReS2 van der Waals compounds by high resolution electron energy loss spectroscopy. J. Appl. Phys. 2016, 119, 114309.

    Article  CAS  Google Scholar 

  169. [169]

    Lee, H. S.; Min, S. W.; Chang, Y. G.; Park, M. K.; Nam, T.; Kim, H.; Kim, J. H.; Ryu, S.; Im, S. MoS2 nanosheet phototransistors with thickness-modulated optical energy gap. Nano Lett. 2012, 12, 3695–3700.

    CAS  Article  Google Scholar 

  170. [170]

    Jeong, J.; Seo, S. G.; Yu, S. M.; Kang, Y. H.; Song, J.; Jin, S. H. Flexible light-to-frequency conversion circuits built with Si-based frequency-to- digital converters via complementary photosensitive ring oscillators with p-type SWNT and n-type a-IGZO thin film transistors. Small, in press, DOI: https://doi.org/10.1002/smll.202008131.

  171. [171]

    Jin, S. H.; Park, M. S.; Shur, M. S. Photosensitive inverter and ring oscillator with pseudodepletion mode load for LCD applications. IEEE Electron Device Lett. 2009, 30, 943–945.

    CAS  Article  Google Scholar 

  172. [172]

    Lee, K. C.; Moon, S. H.; Berkeley, B.; Kim, S. S. Optical feedback system with integrated color sensor on LCD. Sens. Actuators A Phys. 2006, 130–131, 214–219.

    Article  CAS  Google Scholar 

  173. [173]

    Seo, S. G.; Ryu, J. H.; Kim, S. Y.; Jeong, J.; Jin, S. H. Enhancement of photodetective properties on multilayered MoS2 thin film transistors via self-assembled poly-L-lysine treatment and their potential application in optical sensors. Nanomaterials 2021, 11, 1586.

    CAS  Article  Google Scholar 

  174. [174]

    Fathipour, S.; Ma, N.; Hwang, W. S.; Protasenko, V.; Vishwanath, S.; Xing, H. G.; Xu, H.; Jena, D.; Appenzeller, J.; Seabaugh, A. Exfoliated multilayer MoTe2 field-effect transistors. Appl. Phys. Lett. 2014, 105, 192101.

    Article  CAS  Google Scholar 

  175. [175]

    Lai, J. W.; Liu, X.; Ma, J. C.; Wang, Q. S.; Zhang, K. N.; Ren, X.; Liu, Y. N.; Gu, Q. Q.; Zhuo, X.; Lu, W. et al. Anisotropic broadband photoresponse of layered type-II weyl semimetal MoTe2. Adv. Mater. 2018, 30, 1707152.

    Article  CAS  Google Scholar 

  176. [176]

    Kuiri, M.; Chakraborty, B.; Paul, A.; Das, S.; Sood, A. K.; Das, A. Enhancing photoresponsivity using MoTe2-graphene vertical heterostructures. Appl. Phys. Lett. 2016, 108, 063506.

    Article  CAS  Google Scholar 

  177. [177]

    Tongay, S.; Sahin, H.; Ko, C.; Luce, A.; Fan, W.; Liu, K.; Zhou, J.; Huang, Y. S.; Ho, C. H.; Yan, J. Y. et al. Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling. Nat. Commun. 2014, 5, 3252.

    Article  CAS  Google Scholar 

  178. [178]

    Yu, Z. G.; Cai, Y. Q.; Zhang, Y. W. Robust direct bandgap characteristics of one-and two-dimensional ReS2. Sci. Rep. 2015, 5, 13783.

    Article  Google Scholar 

  179. [179]

    Rahman, M.; Davey, K.; Qiao, S. Z. Advent of 2D rhenium disulfide (ReS2): Fundamentals to applications. Adv. Funcf. Mater. 2017, 27, 1606129.

    Article  CAS  Google Scholar 

  180. [180]

    Seo, S. G.; Jeong, J.; Kim, S. Y.; Kumar, A.; Jin, S. H. Multiple and reversible counter doping enabled threshold voltage transistors via poly-L-lysine and ODTS charge enhancers. Nano Res., in press, https://doi.org/10.1007/s12274-021-3523-8.

  181. [181]

    Pherson, M. R. M. The adjustment of MOS transistor threshold voltage by ion implantation. Appl. Phys. Lett. 1971, 18, 502–504.

    Article  Google Scholar 

  182. [182]

    Park, Y. J.; Katiyar, A. K.; Hoang, A. T.; Ahn, J. H. Controllable p-and n-type conversion of MoTe2 via oxide interfacial layer for logic circuits. Small 2019, 15, 1901772.

    Article  CAS  Google Scholar 

  183. [183]

    Cho, Y.; Park, J. H.; Kim, M.; Jeong, Y.; Yu, S.; Lim, J. Y.; Yi, Y.; Im, S. Impact of organic molecule-induced charge transfer on operating voltage control of both n-MoS2 and p-MoTe2 transistors. Nano Lett. 2019, 19, 2456–2463.

    CAS  Article  Google Scholar 

  184. [184]

    Roh, J.; Ryu, J. H.; Baek, G. W.; Jung, H.; Seo, S. G.; An, K.; Jeong, B. G.; Lee, D. C.; Hong, B. H.; Bae, W. K. et al. Threshold voltage control of multilayered MoS2 field-effect transistors via octadecyltrichlorosilane and their applications to active matrixed quantum dot displays driven by enhancement-mode logic gates. Small 2019, 15, 1803852.

    Article  CAS  Google Scholar 

  185. [185]

    Park, J.; Kang, D. H.; Kim, J. K.; Park, J. H.; Yu, H. Y. Efficient threshold voltage adjustment technique by dielectric capping effect on MoS2 field-effect transistor. IEEE Electron Device Lett. 2017, 38, 1172–1175.

    CAS  Article  Google Scholar 

  186. [186]

    Li, X. K.; Sun, R. X.; Guo, H. W.; Su, B. W.; Li, D. K.; Yan, X. Q.; Liu, Z. B.; Tian, J. G. Controllable doping of transition-metal dichalcogenides by organic solvents. Adv. Electron. Mater. 2020, 6, 1901230.

    CAS  Article  Google Scholar 

  187. [187]

    Kawanago, T.; Oda, S. Control of threshold voltage by gate metal electrode in molybdenum disulfide field-effect transistors. Appl. Phys. Lett. 2017, 110, 133507.

    Article  CAS  Google Scholar 

  188. [188]

    Jiang, J.; Dhar, S. Tuning the threshold voltage from depletion to enhancement mode in a multilayer MoS2 transistor via oxygen adsorption and desorption. Phys. Chem. Chem. Phys. 2016, 18, 685–689.

    CAS  Article  Google Scholar 

  189. [189]

    Leong, W. S.; Li, Y. D.; Luo, X.; Nai, C. T.; Quek, S. Y.; Thong, J. T. L. Tuning the threshold voltage of MoS2 field-effect transistors via surface treatment. Nanoscale 2015, 7, 10823–10831.

    CAS  Article  Google Scholar 

  190. [190]

    Nakaharai, S.; Yamamoto, M.; Ueno, K.; Lin, Y. F.; Li, S. L.; Tsukagoshi, K. Electrostatically reversible polarity of ambipolar α-MoTe2 transistors. ACS Nano 2015, 9, 5976–5983.

    CAS  Article  Google Scholar 

  191. [191]

    Najmaei, S.; Zou, X. L.; Er, D. Q.; Li, J. W.; Jin, Z. H.; Gao, W. L.; Zhang, Q.; Park, S.; Ge, L. H.; Lei, S. D. et al. Tailoring the physical properties of molybdenum disulfide monolayers by control of interfacial chemistry. Nano Lett. 2014, 14, 1354–1361.

    CAS  Article  Google Scholar 

  192. [192]

    Li, Y.; Xu, C. Y.; Hu, P. A.; Zhen, L. Carrier control of MoS2 nanoflakes by functional self-assembled monolayers. ACS Nano 2013, 7, 7795–7804.

    CAS  Article  Google Scholar 

  193. [193]

    Lin, J. D.; Han, C.; Wang, F.; Wang, R.; Xiang, D.; Qin, S. Q.; Zhang, X. A.; Wang, L.; Zhang, H.; Wee, A. T. S. et al. Electron-doping-enhanced trion formation in monolayer molybdenum disulfide functionalized with cesium carbonate. ACS Nano 2014, 8, 5323–5329.

    CAS  Article  Google Scholar 

  194. [194]

    Mak, K. F.; He, K. L.; Lee, C.; Lee, G. H.; Hone, J.; Heinz, T. F.; Shan, J. Tightly bound trions in monolayer MoS2. Nat. Mater. 2013, 12, 207–211.

    CAS  Article  Google Scholar 

  195. [195]

    Jo, S. H.; Kang, D. H.; Shim, J.; Jeon, J.; Jeon, M. H.; Yoo, G.; Kim, J.; Lee, J.; Yeom, G. Y.; Lee, S. et al. A high-performance WSe2/h-BN photodetector using a triphenylphosphine (PPh3)-based n-doping technique. Adv. Mater. 2016, 28, 4824–4831.

    CAS  Article  Google Scholar 

  196. [196]

    Jo, S. H.; Park, H. Y.; Kang, D. H.; Shim, J.; Jeon, J.; Choi, S.; Kim, M.; Park, Y.; Lee, J.; Song, Y. J. et al. Broad detection range rhenium diselenide photodetector enhanced by (3-aminopropyl)triethoxysilane and triphenylphosphine treatment. Adv. Mater. 2016, 28, 6711–6718.

    CAS  Article  Google Scholar 

  197. [197]

    Choi, M.; Park, Y. J.; Sharma, B. K.; Bae, S. R.; Kim, S. Y.; Ahn, J. H. Flexible active-matrix organic light-emitting diode display enabled by MoS2 thin-film transistor. Sci. Adv. 2018, 4, eaas8721.

    Article  CAS  Google Scholar 

  198. [198]

    Hsieh, H. H.; Tsai, T. T.; Chang, C. Y.; Wang, H. H.; Huang, J. Y.; Hsu, S. F.; Wu, Y. C.; Tsai, T. C.; Chuang, C. S.; Chang, L. H. et al. 11.2: A 2.4in. AMOLED with IGZO TFTs and inverted OLED devices. SID Symp. Dig. Tech. Pap. 2010, 41, 140–143.

    CAS  Article  Google Scholar 

  199. [199]

    Hosono, H.; Kim, J.; Toda, Y.; Kamiya, T.; Watanabe, S. Transparent amorphous oxide semiconductors for organic electronics: Application to inverted OLEDs. Proc. Natl. Acad. Sci. USA 2017, 114, 233–238.

    CAS  Article  Google Scholar 

  200. [200]

    Yao, J. K.; Xu, N. S.; Deng, S. Z.; Chen, J.; She, J. C.; Shieh, H. P. D.; Liu, P. T.; Huang, Y. P. Electrical and photosensitive characteristics of a-IGZO TFTs related to oxygen vacancy. IEEE Trans. Electron Devices 2011, 58, 1121–1126.

    CAS  Article  Google Scholar 

  201. [201]

    Jang, J. T.; Park, J.; Ahn, B. D.; Kim, D. M.; Choi, S. J.; Kim, H. S.; Kim, D. H. Study on the photoresponse of amorphous In-Ga-Zn-O and Zinc oxynitride semiconductor devices by the extraction of sub-gap-state distribution and device simulation. ACS Appl. Mater. Interfaces 2015, 7, 15570–15577.

    CAS  Article  Google Scholar 

  202. [202]

    Janotti, A.; van de Walle, C. G. Oxygen vacancies in ZnO. Appl. Phys. Lett. 2005, 87, 122102.

    Article  CAS  Google Scholar 

  203. [203]

    Nathan, A.; Lee, S.; Jeon, S.; Song, I.; Chung, U. I. Transparent oxide semiconductors for advanced display applications. Inf. Disp. 2013, 29, 6–11.

    Google Scholar 

  204. [204]

    Minas, G.; Ribeiro, J. C.; Wolffenbuttel, R. F.; Correia, J. H. On-chip integrated CMOS optical detection microsystem for spectrophotometric analyses in biological microfluidic systems. In Proceedings of IEEE International Symposium on Industrial Electronics, Dubrovnik, Croatia, 2005, pp 1133–1138.

  205. [205]

    Kuo, W. C.; Chiang, C. T.; Huang, Y. C. An automatic light monitoring system with light-to-frequency converter for flower planting. In Proceedings of 2008 IEEE Instrumentation and Measurement Technology Conference, Victoria, Canada, 2008, pp 1146–1149.

  206. [206]

    Sinchai, S.; Kainan, P.; Wardkein, P.; Koseeyaporn, J. A photo-plethysmographic signal isolated from an additive motion artifact by frequency translation. IEEE Trans. Biomed. Circuits Syst. 2018, 12, 904–917.

    Article  Google Scholar 

  207. [207]

    Gubbi, S. V.; Amrutur, B. Adaptive pulse width control and sampling for low power pulse oximetry. IEEE Trans. Biomed. Circuits Syst. 2015, 9, 272–283.

    Article  Google Scholar 

  208. [208]

    Patterson, J. A. C.; Yang, G. Z. Ratiometric artifact reduction in low power reflective photoplethysmography. IEEE Trans. Biomed. Circuits Syst. 2011, 5, 330–338.

    CAS  Article  Google Scholar 

  209. [209]

    Correia, R. G.; Pimenta, S.; Minas, G. CMOS integrated photo-detectors and light-to-frequency converters for spectrophotometric measurements. IEEE Sens. J. 2017, 17, 3438–3445.

    CAS  Article  Google Scholar 

  210. [210]

    Dürkop, T.; Getty, S. A.; Cobas, E.; Fuhrer, M. S. Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett. 2004, 4, 35–39.

    Article  CAS  Google Scholar 

  211. [211]

    Marulanda, J. M.; Srivastava, A. Carrier density and effective mass calculations in carbon nanotubes. Phys. Status Solidi B 2008, 245, 2558–2562.

    CAS  Article  Google Scholar 

  212. [212]

    Zhou, X. J.; Zifer, T.; Wong, B. M.; Krafcik, K. L.; Léonard, F.; Vance, A. L. Color detection using chromophore-nanotube hybrid devices. Nano Lett. 2009, 9, 1028–1033.

    Article  CAS  Google Scholar 

  213. [213]

    Park, S.; Kim, S. J.; Nam, J. H.; Pitner, G.; Lee, T. H.; Ayzner, A. L.; Wang, H. L.; Fong, S. W.; Vosgueritchian, M.; Park, Y. J. et al. Significant enhancement of infrared photodetector sensitivity using a semiconducting single-walled carbon nanotube/C60 phototransistor. Adv. Mater. 2015, 27, 759–765.

    CAS  Article  Google Scholar 

  214. [214]

    Schuler, S.; Schall, D.; Neumaier, D.; Dobusch, L.; Bethge, O.; Schwarz, B.; Krall, M.; Mueller, T. Controlled generation of a p-n junction in a waveguide integrated graphene photodetector. Nano Lett. 2016, 16, 7107–7112.

    CAS  Article  Google Scholar 

  215. [215]

    Mueller, T.; Xia, F. N.; Avouris, P. Graphene photodetectors for high-speed optical communications. Nat. Photonics 2010, 4, 297–301.

    CAS  Article  Google Scholar 

  216. [216]

    Xia, F. N.; Perebeinos, V.; Lin, Y. M.; Wu, Y. Q.; Avouris, P. The origins and limits of metal-graphene junction resistance. Nat. Nanotechnol. 2011, 6, 179–184.

    CAS  Article  Google Scholar 

  217. [217]

    Boyd, D. A.; Lin, W. H.; Hsu, C. C.; Teague, M. L.; Chen, C. C.; Lo, Y. Y.; Chan, W. Y.; Su, W. B.; Cheng, T. C.; Chang, C. S. et al. Single-step deposition of high-mobility graphene at reduced temperatures. Nat. Commun. 2015, 6, 6620.

    CAS  Article  Google Scholar 

  218. [218]

    Schwierz, F. Performance of graphene and beyond graphene 2D semiconductor devices. ECS Trans. 2015, 69, 231–240.

    CAS  Article  Google Scholar 

  219. [219]

    Wang, W. Y.; Klots, A.; Prasai, D.; Yang, Y. M.; Bolotin, K. I.; Valentine, J. Hot electron-based near-infrared photodetection using bilayer MoS2. Nano Lett. 2015, 15, 7440–7444.

    CAS  Article  Google Scholar 

  220. [220]

    Lee, Y.; Yang, J.; Lee, D.; Kim, Y. H.; Park, J. H.; Kim, H.; Cho, J. H. Trap-induced photoresponse of solution-synthesized MoS2. Nanoscale 2016, 8, 9193–9200.

    CAS  Article  Google Scholar 

  221. [221]

    Fang, H.; Chuang, S.; Chang, T. C.; Takei, K.; Takahashi, T.; Javey, A. High-performance single layered WSe2 p-FETs with chemically doped contacts. Nano Lett. 2012, 12, 3788–3792.

    CAS  Article  Google Scholar 

  222. [222]

    Jin, Z. H.; Li, X. D.; Mullen, J. T.; Kim, K. W. Intrinsic transport properties of electrons and holes in monolayer transition-metal dichalcogenides. Phys. Rev. B 2014, 90, 045422.

    CAS  Article  Google Scholar 

  223. [223]

    Zhao, W. J.; Ghorannevis, Z.; Chu, L. Q.; Toh, M.; Kloc, C.; Tan, P. H.; Eda, G. Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. ACS Nano 2013, 7, 791–797.

    CAS  Article  Google Scholar 

  224. [224]

    Pradhan, N. R.; Rhodes, D.; Memaran, S.; Poumirol, J. M.; Smirnov, D.; Talapatra, S.; Feng, S.; Perea-Lopez, N.; Elias, A. L.; Terrones, M. et al. Hall and field-effect mobilities in few layered p-WSe2 field-effect transistors. Sci. Rep. 2015, 5, 8979.

    CAS  Article  Google Scholar 

  225. [225]

    Massicotte, M.; Schmidt, P.; Vialla, F.; Schädler, K. G.; Reserbat-Plantey, A.; Watanabe, K.; Taniguchi, T.; Tielrooij, K. J.; Koppens, F. H. L. Picosecond photoresponse in van der Waals heterostructures. Nat. Nanotechnol. 2016, 11, 42–46.

    CAS  Article  Google Scholar 

  226. [226]

    Zhang, W. J.; Chiu, M. H.; Chen, C. H.; Chen, W.; Li, L. J.; Wee, A. T. S. Role of metal contacts in high-performance phototransistors based on WSe2 monolayers. ACS Nano 2014, 8, 8653–8661.

    CAS  Article  Google Scholar 

  227. [227]

    Kang, D. H.; Kim, M. S.; Shim, J.; Jeon, J.; Park, H. Y.; Jung, W. S.; Yu, H. Y.; Pang, C. H.; Lee, S.; Park, J. H. High-performance transition metal dichalcogenide photodetectors enhanced by self-assembled monolayer doping. Adv. Funct. Mater. 2015, 25, 4219–4227.

    CAS  Article  Google Scholar 

  228. [228]

    Li, S. L.; Tsukagoshi, K.; Orgiu, E.; Samorì, P. Charge transport and mobility engineering in two-dimensional transition metal chalcogenide semiconductors. Chem. Soc. Rev. 2016, 45, 118–151.

    CAS  Article  Google Scholar 

  229. [229]

    Yang, L. M.; Majumdar, K.; Liu, H.; Du, Y. C.; Wu, H.; Hatzistergos, M.; Hung, P. Y.; Tieckelmann, R.; Tsai, W.; Hobbs, C. et al. Chloride molecular doping technique on 2D materials: WS2 and MoS2. Nano Lett. 2014, 14, 6275–6280.

    CAS  Article  Google Scholar 

  230. [230]

    Liu, X.; Hu, J.; Yue, C. L.; Della Fera, N.; Ling, Y.; Mao, Z. Q.; Wei, J. High performance field-effect transistor based on multilayer tungsten disulfide. ACS Nano 2014, 8, 10396–10402.

    CAS  Article  Google Scholar 

  231. [231]

    Gong, F.; Luo, W. J.; Wang, J. L.; Wang, P.; Fang, H. H.; Zheng, D. S.; Guo, N.; Wang, J. L.; Luo, M.; Ho, J. C. et al. High-sensitivity floating-gate phototransistors based on WS2 and MoS2. Adv. Funct. Mater. 2016, 26, 6084–6090.

    CAS  Article  Google Scholar 

  232. [232]

    Yao, J. D.; Zheng, Z. Q.; Shao, J. M.; Yang, G. W. Stable, highly-responsive and broadband photodetection based on large-area multilayered WS2 films grown by pulsed-laser deposition. Nanoscale 2015, 7, 14974–14981.

    CAS  Article  Google Scholar 

  233. [233]

    Zeng, L. H.; Tao, L. L.; Tang, C. Y.; Zhou, B.; Long, H.; Chai, Y.; Lau, S. P.; Tsang, Y. H. High-responsivity UV-Vis photodetector based on transferable WS2 film deposited by magnetron sputtering. Sci. Rep. 2016, 6, 20343.

    CAS  Article  Google Scholar 

  234. [234]

    Xu, X.; Guo, Y. H.; Zhao, Q. Y.; Si, K. Y.; Zhou, Y. X.; Ma, J. Y.; Bai, J. T.; Xu, X. L. Green and efficient exfoliation of ReS2 and its photoelectric response based on electrophoretic deposited photoelectrodes. Mater. Des. 2018, 159, 11–19.

    CAS  Article  Google Scholar 

  235. [235]

    Li, X. B.; Cui, F. F.; Feng, Q. L.; Wang, G.; Xu, X. S.; Wu, J. X.; Mao, N. N.; Liang, X.; Zhang, Z. Y.; Zhang, J. et al. Controlled growth of large-area anisotropic ReS2 atomic layer and its photodetector application. Nanoscale 2016, 8, 18956–18962.

    CAS  Article  Google Scholar 

  236. [236]

    Liu, F. C.; Zheng, S. J.; He, X. X.; Chaturvedi, A.; He, J. F.; Chow, W. L.; Mion, T. R.; Wang, X. L.; Zhou, J. D.; Fu, Q. D. et al. Highly sensitive detection of polarized light using anisotropic 2D ReS2. Adv. Funct. Mater. 2016, 26, 1169–1177.

    CAS  Article  Google Scholar 

  237. [237]

    Shim, J.; Oh, A.; Kang, D. H.; Oh, S.; Jang, S. K.; Jeon, J.; Jeon, M. H.; Kim, M.; Choi, C.; Lee, J. et al. High-performance 2D rhenium disulfide (ReS2) transistors and photodetectors by oxygen plasma treatment. Adv. Mater. 2016, 28, 6985–6992.

    CAS  Article  Google Scholar 

  238. [238]

    Grant, A. J.; Griffiths, T. M.; Pitt, G. D.; Yoffe, A. D. The electrical properties and the magnitude of the indirect gap in the semiconducting transition metal dichalcogenide layer crystals. J. Phys. C Solid State Phys. 1975, 8, L17–L23.

    CAS  Article  Google Scholar 

  239. [239]

    Huang, H.; Wang, X. D.; Wang, P.; Wu, G. J.; Chen, Y.; Meng, C. M.; Liao, L.; Wang, J. L.; Hu, W. D.; Shen, H. et al. Ferroelectric polymer tuned two dimensional layered MoTe2 photodetector. RSC Adv. 2016, 6, 87416–87421.

    CAS  Article  Google Scholar 

  240. [240]

    Keum, D. H.; Cho, S.; Kim, J. H.; Choe, D. H.; Sung, H. J.; Kan, M.; Kang, H.; Hwang, J. Y.; Kim, S. W.; Yang, H. et al. Bandgap opening in few-layered monoclinic MoTe2. Nat. Phys. 2015, 11, 482–486.

    CAS  Article  Google Scholar 

  241. [241]

    Huang, H.; Wang, J. L.; Hu, W. D.; Liao, L.; Wang, P.; Wang, X. D.; Gong, F.; Chen, Y.; Wu, G. J.; Luo, W. J. et al. Highly sensitive visible to infrared MoTe2 photodetectors enhanced by the photo-gating effect. Nanotechnology 2016, 27, 445201.

    Article  CAS  Google Scholar 

  242. [242]

    Zhang, K.; Fang, X.; Wang, Y. L.; Wan, Y.; Song, Q. J.; Zhai, W. H.; Li, Y. P.; Ran, G. Z.; Ye, Y.; Dai, L. Ultrasensitive near-infrared photodetectors based on a graphene-MoTe2-graphene vertical van der waals heterostructure. ACS Appl. Mater. Interfaces 2017, 9, 5392–5398.

    CAS  Article  Google Scholar 

  243. [243]

    Liu, H.; Neal, A. T.; Zhu, Z.; Luo, Z.; Xu, X. F.; Tománek, D.; Ye, P. D. Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS Nano 2014, 8, 4033–4041.

    CAS  Article  Google Scholar 

  244. [244]

    Yang, L. M.; Qiu, G.; Si, M. W.; Charnas, A. R.; Milligan, C. A.; Zemlyanov, D. Y.; Zhou, H.; Du, Y. C.; Lin, Y. M.; Tsai, W. et al. Few-layer black phosporous PMOSFETs with BN/AI2O3 bilayer gate dielectric: Achieving Ion = 850 µA/µm, gm = 340 µS/µm, and Rc = 0.58 kΩ·µm. In Proceedings of 2016 IEEE International Electron Devices Meeting, San Francisco, USA, 2016, pp 127–130.

  245. [245]

    Wang, H.; Wang, X. M.; Xia, F. N.; Wang, L. H.; Jiang, H.; Xia, Q. F.; Chin, M. L.; Dubey, M.; Han, S. J. Black phosphorus radio-frequency transistors. Nano Lett. 2014, 14, 6424–6429.

    CAS  Article  Google Scholar 

  246. [246]

    Huang, M. Q.; Wang, M. L.; Chen, C.; Ma, Z. W.; Li, X. F.; Han, J. B.; Wu, Y. Q. Broadband black-phosphorus photodetectors with high responsivity. Adv. Mater. 2016, 28, 3481–3485.

    CAS  Article  Google Scholar 

  247. [247]

    Ludwig, G. W.; Watters, R. L. Drift and conductivity mobility in silicon. Phys. Rev. 1956, 101, 1699–1701.

    CAS  Article  Google Scholar 

  248. [248]

    HAMAMATSU. Si photodiode, S16008-33. Available online: https://www.hamamatsu.com/resources/pdf/ssd/s16008-33_kspd1091e.pdf (accessed Mar, 2021).

  249. [249]

    HAMAMATSU. Si photodiode, S12698, Available online: https://www.hamamatsu.com/resources/pdf/ssd/s12698_series_kspd1084e.pdf (accessed Jan, 2020).

Download references

Acknowledgements

This research was supported by the Incheon National University Research Grant (2018-0100) in 2018, Incheon, Republic of Korea.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sung Hun Jin.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Seo, S.G., Kim, S.Y., Jeong, J. et al. Progress in light-to-frequency conversion circuits based on low dimensional semiconductors. Nano Res. 14, 2938–2964 (2021). https://doi.org/10.1007/s12274-021-3586-6

Download citation

Keywords

  • photodetector
  • light-to-frequency conversion circuit
  • transition metal dichalcogenide
  • carbon nanotube