Skip to main content

An aqueous 2.1 V pseudocapacitor with MXene and V-MnO2 electrodes

Abstract

MXenes have shown record-breaking redox capacitance in aqueous electrolytes, but in a limited voltage window due to oxidation under anodic potential and hydrogen evolution under high cathodic potential. Coupling Ti3C2Tx MXene negative electrode with RuO2 or carbon-based positive electrodes expanded the voltage window in sulfuric acid electrolyte to about 1.5 V. Here, we present an asymmetric pseudocapacitor using abundant and eco-friendly vanadium doped MnO2 as the positive and Ti3C2Tx MXene as the negative electrode in a neutral 1 M Li2SO4 electrolyte. This all-pseudocapacitive asymmetric device not only uses a safer electrolyte and is a much less expensive counter-electrode than RuO2, but also can operate within a 2.1 V voltage window, leading to a maximum energy density of 46 Wh/kg. This study also demonstrates the possibility of using MXene electrodes to expand the working voltage window of traditional redox-capable materials.

This is a preview of subscription content, access via your institution.

References

  1. Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845–854.

    CAS  Google Scholar 

  2. Gogotsi, Y.; Simon, P. True performance metrics in electrochemical energy storage. Science 2011, 334, 917–918.

    CAS  Google Scholar 

  3. Simon, P.; Gogotsi, Y.; Dunn, B. Where do batteries end and supercapacitors begin? Science 2014, 343, 1210–1211.

    CAS  Google Scholar 

  4. Huang, Y. L.; Zeng, Y. X.; Yu, M. H.; Liu, P.; Tong, Y. X.; Cheng, F. L.; Lu, X. H. Recent smart methods for achieving high-energy asymmetric supercapacitors. Small Methods 2018, 2, 1700230.

    Google Scholar 

  5. Gogotsi, Y. Energy storage wrapped up. Nature 2014, 509, 568–569.

    CAS  Google Scholar 

  6. Li, Q.; Wu, J. B.; Huang, L.; Gao, J. F.; Zhou, H. W.; Shi, Y. J.; Pan, Q. H.; Zhang, G.; Du, Y.; Liang, W. X. Sulfur dioxide gas-sensitive materials based on zeolitic imidazolate framework-derived carbon nanotubes. J. Mater. Chem. A 2018, 6, 12115–12124.

    CAS  Google Scholar 

  7. Liu, P. G.; Gao, Y.; Tan, Y. Y.; Liu, W. F.; Huang, Y. P.; Yan, J.; Liu, K. Y. Rational design of nitrogen doped hierarchical porous carbon for optimized zinc-ion hybrid supercapacitors. Nano Res. 2019, 12, 2835–2841.

    CAS  Google Scholar 

  8. Zhang, H. Z.; Liu, Q. Y.; Fang, Y. B.; Teng, C. L.; Liu, X. Q.; Fang, P. P.; Tong, Y. X.; Lu, X. H. Boosting Zn-ion energy storage capability of hierarchically porous carbon by promoting chemical adsorption. Adv. Mater. 2019, 31, 1904948.

    CAS  Google Scholar 

  9. Augustyn, V.; Simon, P.; Dunn, B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 2014, 7, 1597–1614.

    CAS  Google Scholar 

  10. Wang, S. P.; Zhao, X. L.; Yan, X. J.; Xiao, Z. W.; Liu, C. C.; Zhang, Y. J.; Yang, X. W. Regulating fast anionic redox for high-voltage aqueous hydrogen-ion-based energy storage. Angew. Chem., Int. Ed. 2019, 58, 205–210.

    CAS  Google Scholar 

  11. Li, Z. X.; Ma, C.; Wen, Y. Y.; Wei, Z. T.; Xing, X. F.; Chu, J. M.; Yu, C. C.; Wang K. L.; Wang, Z. K. Highly conductive dodecaborate/MXene composites for high performance supercapacitors. Nano Res. 2020, 13, 196–202.

    CAS  Google Scholar 

  12. Sun, S.; Rao, D. W.; Zhai, T.; Liu, Q.; Huang, H.; Liu, B.; Zhang, H. S.; Xue, L.; Xia, H. Synergistic interface-assisted electrode-electrolyte coupling toward advanced charge storage. Adv. Mater. 2020, 32, 2005344.

    CAS  Google Scholar 

  13. Sun, S.; Liu, B.; Zhang, H. S.; Guo, Q. B.; Xia, Q. Y.; Zhai, T.; Xia, H. Boosting energy storage via confining soluble redox species onto solid-liquid interface. Adv. Energy Mater. 2021, 11, 2003599.

    CAS  Google Scholar 

  14. Wu, J. B.; Gao, X.; Yu, H. M.; Ding, T. P.; Yan, Y. X.; Yao, B.; Yao, X.; Chen, D. C.; Liu, M. L.; Huang, L. A scalable free-standing V2O5/CNT film electrode for supercapacitors with a wide operation voltage (1.6 V) in an aqueous electrolyte. Adv. Funct. Mater. 2016, 26, 6114–6120.

    CAS  Google Scholar 

  15. Kong, L. P.; Zhang, C. F.; Wang, J. T.; Qiao, W. M.; Ling, L. C.; Long, D. H. Free-standing T-Nb2O5/graphene composite papers with ultrahigh gravimetric/volumetric capacitance for Li-ion intercalation pseudocapacitor. ACS Nano 2015, 9, 11200–11208.

    CAS  Google Scholar 

  16. Jiang, Q.; Kurra, N.; Alhabeb, M.; Gogotsi, Y.; Alshareef, H. N. All pseudocapacitive MXene-RuO2 asymmetric supercapacitors. Adv. Energy Mater. 2018, 8, 1703043.

    Google Scholar 

  17. Zhai, T.; Sun, S.; Liu, X. J.; Liang, C. L.; Wang, G. M.; Xia, H. Achieving insertion-like capacity at ultrahigh rate via tunable surface pseudocapacitance. Adv. Mater. 2018, 30, 1706640.

    Google Scholar 

  18. Sun, S.; Zhai, T.; Liang, C. L.; Savilov, S. V.; Xia, H. Boosted crystalline/amorphous Fe2O3−δ core/shell heterostructure for flexible solid-state pseudocapacitors in large scale. Nano Energy 2018, 45, 390–397.

    CAS  Google Scholar 

  19. Zhang, X. Y.; Liu, X. Q.; Zeng, Y. X.; Tong, Y. X.; Lu, X. H. Oxygen defects in promoting the electrochemical performance of metal oxides for supercapacitors: Recent advances and challenges. Small Methods 2020, 4, 1900823.

    CAS  Google Scholar 

  20. Boota, M.; Gogotsi, Y. MXene-conducting polymer asymmetric pseudocapacitors. Adv. Energy Mater. 2019, 9, 1802917.

    Google Scholar 

  21. Huang, L.; Yao, X.; Yuan, L. Y.; Yao, B.; Gao, X.; Wan, J.; Zhou, P. P.; Xu, M.; Wu, J. B.; Yu, H. M. et al. 4-Butylbenzenesulfonate modified polypyrrole paper for supercapacitor with exceptional cycling stability. Energy Storage Mater. 2018, 12, 191–196.

    Google Scholar 

  22. Huang, L.; Guo, Z. F.; Liu, K. S.; Xiong, L. K.; Huang, L. W.; Gao, X.; Wu, J. B.; Wan, J.; Hu, Z. M.; Zhou, J. Large-scale synthesis of size- and thickness-tunable conducting polymer nanosheets via a salt-templated method. J. Mater. Chem. A 2019, 7, 24929–24936.

    CAS  Google Scholar 

  23. Yang, P. H.; Feng, C. Z.; Liu, Y. P.; Cheng, T.; Yang, X. L.; Liu, H. D.; Liu, K.; Fan, H. J. Thermal self-protection of zinc-ion batteries enabled by smart hygroscopic hydrogel electrolytes. Adv. Energy Mater. 2020, 10, 2002898.

    CAS  Google Scholar 

  24. Zhu, S. J.; Li, L.; Liu, J. B.; Wang, H. T.; Wang, T.; Zhang, Y. X.; Zhang, L. L.; Ruoff, R. S.; Dong, F. Structural directed growth of ultrathin parallel birnessite on β-MnO2 for high-performance asymmetric supercapacitors. ACS Nano 2018, 12, 1033–1042.

    CAS  Google Scholar 

  25. Jia, H. A.; Cai, Y. F.; Lin, J. H.; Liang, H. Y.; Qi, J. L.; Cao, J.; Feng, J. C.; Fei, W. D. Heterostructural graphene quantum dot/MnO2 nanosheets toward high-potential window electrodes for highperformance supercapacitors. Adv. Sci. 2018, 5, 1700887.

    Google Scholar 

  26. Hu, Z. M.; Chen, M.; Zhang, H.; Huang, L.; Liu, K. S.; Ling, Y. S.; Zhou, H.; Jiang, Z.; Feng, G.; Zhou, J. Stabilization of layered manganese oxide by substitutional cation doping. J. Mater. Chem. A 2019, 7, 7118–7127.

    CAS  Google Scholar 

  27. Wu, Z. S.; Winter, A.; Chen, L.; Sun, Y.; Turchanin, A.; Feng, X. L.; Müllen, K. Three-dimensional nitrogen and boron co-doped graphene for high-performance all-solid-state supercapacitors. Adv. Mater. 2012, 24, 5130–5135.

    CAS  Google Scholar 

  28. Yu, P. P.; Zhang, Z. M.; Zheng, L. X.; Teng, F.; Hu, L. F.; Fang, X. S. A novel sustainable flour derived hierarchical nitrogen-doped porous carbon/polyaniline electrode for advanced asymmetric supercapacitors. Adv. Energy Mater. 2016, 6, 1601111.

    Google Scholar 

  29. Zhang, X. Y.; Hou, L. L.; Ciesielski, A.; Samorì, P. 2D materials beyond graphene for high-performance energy storage applications. Adv. Energy Mater. 2016, 6, 1600671.

    Google Scholar 

  30. Shao, Y. L.; El-Kady, M. F.; Sun, J. Y.; Li, Y. G.; Zhang, Q. H.; Zhu, M. F.; Wang, H. Z.; Dunn, B.; Kaner, R. B. Design and mechanisms of asymmetric supercapacitors. Chem. Rev. 2018, 118, 9233–9280.

    CAS  Google Scholar 

  31. Song, X. L.; Wang, H.; Jin, S. M.; Lv, M.; Zhang, Y.; Kong, X. D.; Xu, H. M.; Ma, T.; Luo, X. Y.; Tan, H. F. et al. Oligolayered MXene towards high performance lithium/sodium storage. Nano Res. 2020, 13, 1659–1667.

    CAS  Google Scholar 

  32. Xia, Y.; Mathis, T. S.; Zhao, M. Q.; Anasori, B.; Dang, A. L.; Zhou, Z. H.; Cho, H.; Gogotsi, Y.; Yang, S. Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes. Nature 2018, 557, 409–412.

    CAS  Google Scholar 

  33. Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J. J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253.

    CAS  Google Scholar 

  34. Halim, J.; Cook, K. M.; Naguib, M.; Eklund, P.; Gogotsi, Y.; Rosen, J.; Barsoum, M. W. X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes). Appl. Surf. Sci. 2016, 362, 406–417.

    CAS  Google Scholar 

  35. Hu, M. M.; Hu, T.; Li, Z. J.; Yang, Y.; Cheng, R. F.; Yang, J. X.; Cui, C.; Wang, X. H. Surface functional groups and interlayer water determine the electrochemical capacitance of Ti3C2Tx MXene. ACS Nano 2018, 12, 3578–3586.

    CAS  Google Scholar 

  36. Zhang, C. F.; Kremer, M. P.; Seral-Ascaso, A.; Park, S. H.; McEvoy, N.; Anasori, B.; Gogotsi, Y.; Nicolosi, V. Stamping of flexible, coplanar micro-supercapacitors using MXene inks. Adv. Funct. Mater. 2018, 28, 1705506.

    Google Scholar 

  37. Lukatskaya, M. R.; Mashtalir, O.; Ren, C. E.; Dall’Agnese, Y.; Rozier, P.; Taberna, P. L.; Naguib, M.; Simon, P.; Barsoum, M. W.; Gogotsi, Y. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 2013, 341, 1502–1505.

    CAS  Google Scholar 

  38. Anasori, B.; Lukatskaya, M. R.; Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2017, 2, 16098.

    CAS  Google Scholar 

  39. Luo, J. M.; Tao, X. Y.; Zhang, J.; Xia, Y.; Huang, H.; Zhang, L. Y.; Gan, Y. P.; Liang, C.; Zhang, W. K. Sn4+ ion decorated highly conductive Ti3C2 MXene: Promising lithium-ion anodes with enhanced volumetric capacity and cyclic performance. ACS Nano 2016, 10, 2491–2499.

    CAS  Google Scholar 

  40. Huang, P. F.; Zhang, S. L.; Ying, H. J.; Yang, W. T.; Wang, J. L.; Guo, R. N.; Han, W. Q. Fabrication of Fe nanocomplex pillared few-layered Ti3C2Tx MXene with enhanced rate performance for lithium-ion batteries. Nano Res. 2021, 14, 1218–1227.

    CAS  Google Scholar 

  41. Ahmed, B.; Anjum, D. H.; Gogotsi, Y.; Alshareef, H. N. Atomic layer deposition of SnO2 on MXene for Li-ion battery anodes. Nano Energy 2017, 34, 249–256.

    CAS  Google Scholar 

  42. Xiong, D. B.; Li, X. F.; Bai, Z. M.; Lu, S. G. Recent advances in layered Ti3C2Tx MXene for electrochemical energy storage. Small 2018, 14, 1703419.

    Google Scholar 

  43. Bao, W. Z.; Shuck, C. E.; Zhang, W. X.; Guo, X.; Gogotsi, Y.; Wang, G. X. Boosting performance of Na-S batteries using sulfur-doped Ti3C2Tx MXene nanosheets with a strong affinity to sodium polysulfides. ACS Nano 2019, 13, 11500–11509.

    CAS  Google Scholar 

  44. Li, C.; Kota, S.; Hu, C.; Barsoum, M. W. On the synthesis of low-cost, titanium-based MXenes. J. Ceram. Sci. Technol. 2016, 7, 301–306.

    Google Scholar 

  45. Shuck, C. E.; Sarycheva, A.; Anayee, M.; Levitt, A.; Zhu, Y. Z.; Uzun, S.; Balitskiy, V.; Zahorodna, V.; Gogotsi, O.; Gogotsi, Y. Scalable synthesis of Ti3C2Tx MXene. Adv. Eng. Mater. 2020, 22, 1901241.

    CAS  Google Scholar 

  46. Alhabeb, M.; Maleski, K.; Anasori, B.; Lelyukh, P.; Clark, L.; Sin, S.; Gogotsi, Y. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 2017, 29, 7633–7644.

    CAS  Google Scholar 

  47. Lukatskaya, M. R.; Kota, S.; Lin, Z. F.; Zhao, M. Q.; Shpigel, N.; Levi, M. D.; Halim, J.; Taberna, P. L.; Barsoum, M. W.; Simon, P. et al. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat. Energy 2017, 6, 17105.

    Google Scholar 

  48. Li, J. M.; Levitt, A.; Kurra, N.; Juan, K.; Noriega, N.; Xiao, X.; Wang, X. H.; Wang, H. Z.; Alshareef, H. N.; Gogotsi, Y. MXene-conducting polymer electrochromic microsupercapacitors. Energy Storage Mater. 2019, 20, 455–461.

    Google Scholar 

  49. Levitt, A. S.; Alhabeb, M.; Hatter, C. B.; Sarycheva, A.; Dion, G.; Gogotsi, Y. Electrospun MXene/carbon nanofibers as supercapacitor electrodes. J. Mater. Chem. A 2019, 7, 269–277.

    CAS  Google Scholar 

  50. Hu, Z. M.; Xiao, X.; Huang, L.; Chen, C.; Li, T. Q.; Su, T. C.; Cheng, X. F.; Miao, L.; Zhang, Y. R.; Zhou, J. 2D vanadium doped manganese dioxides nanosheets for pseudocapacitive energy storage. Nanoscale 2015, 7, 16094–16099.

    CAS  Google Scholar 

  51. Zhao, D. Y.; Zhao, R. Z.; Dong, S. H.; Miao, X. G.; Zhang, Z. W.; Wang, C. X.; Yin, L. W. Alkali-induced 3D crinkled porous Ti3C2 MXene architectures coupled with NiCoP bimetallic phosphide nanoparticles as anodes for high-performance sodium-ion batteries. Energy Environ. Sci. 2019, 12, 2422–2432.

    CAS  Google Scholar 

  52. Natu, V.; Benchakar, M.; Canaff, C.; Habrioux, A.; Célérier S.; Barsoum, M.W. A critical analysis of the X-ray photoelectron spectra of Ti3C2Tz MXenes. Matter 2021, 4, 1224–1251.

    CAS  Google Scholar 

  53. Lukatskaya, M. R.; Dunn, B.; Gogotsi, Y. Multidimensional materials and device architectures for future hybrid energy storage. Nat. Commun. 2016, 7, 12647.

    Google Scholar 

  54. Wang, J.; Polleux, J.; Lim, J.; Dunn, B. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (Anatase) nanoparticles. J. Phys. Chem. C 2007, 111, 14925–14931.

    CAS  Google Scholar 

  55. Shen, J. L.; Yang, C. Y.; Li, X. W.; Wang, G. C. High-performance asymmetric supercapacitor based on nanoarchitectured polyaniline/graphene/carbon nanotube and activated graphene electrodes. ACS Appl. Mater. Interfaces 2013, 5, 8467–8476.

    CAS  Google Scholar 

  56. Su, F. H.; Miao, M. H. Asymmetric carbon nanotube-MnO2 two-ply yarn supercapacitors for wearable electronics. Nanotechnology 2014, 25, 135401.

    Google Scholar 

  57. Jiang, H.; Li, C. Z.; Sun, T.; Ma, J. A green and high energy density asymmetric supercapacitor based on ultrathin MnO2 nanostructures and functional mesoporous carbon nanotube electrodes. Nanoscale 2012, 4, 807–812.

    CAS  Google Scholar 

  58. Cheng, Y. W.; Zhang, H. B.; Lu, S. T.; Varanasi, C. V.; Liu, J. Flexible asymmetric supercapacitors with high energy and high power density in aqueous electrolytes. Nanoscale 2013, 5, 1067–1073.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51972124, 51902115, and 51872101). Research reported in this publication was also supported by King Abdullah University of Science and Technology (KAUST) under the KAUST-Drexel Competitive Research Grant (No. OSR-CRG2016-2963 sub 11206). The authors express their gratitude to late Prof. J. Zhou for valuable discussions. The authors thank to the facility support of the Center for Nanoscale Characterization & Devices, WNLO-HUST and the Analysis and Testing Center, HUST.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yury Gogotsi or Liang Huang.

Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Li, Q., Shuck, C.E. et al. An aqueous 2.1 V pseudocapacitor with MXene and V-MnO2 electrodes. Nano Res. 15, 535–541 (2022). https://doi.org/10.1007/s12274-021-3513-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3513-x

Keywords

  • MXene
  • pseudocapacitors
  • metal oxides
  • supercapacitors
  • manganese oxide