Skip to main content

Advertisement

Log in

Nano-sized Ag rather than single-atom Ag determines CO oxidation activity and stability

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Single-atom catalysis recently attracts great attentions, however, whether single atom or their nanoparticle (NP) has the advantage in its intrinsic activity remains under heated debate. Ag/Al2O3 is a widely used catalyst for many catalytic reactions, while the effect of Ag particle size on the activity is seldom investigated due to the great difficulty in synthesizing single atom Ag and Ag clusters/particles with different sizes. Herein, we firstly prepared an atomically dispersed Ag/Al2O3 catalyst using a nano-sized γ-Al2O3 as the support, subsequently obtained a series of Ag0/Al2O3 catalysts with different Ag particle sizes by H2 reducing single-atom Ag/Al2O3 catalyst at various temperatures. The Ag0/Al2O3 treated at 600 °C demonstrated superior CO oxidation performance over single-atom Ag/Al2O3 and the Ag/Al2O3 treated at 400 and 800 °C. Based on experimental data and density functional theory (DFT) calculation results, we reveal that the larger Ag0 particle is beneficial to oxygen activation and improves the valence stability during oxidation reaction, while the aggregation of Ag0 particle also accordingly decreases the concentration of surface active sites, hence, there is an optimum Ag0 particle size. Our findings clearly confirm that Ag0 nanoparticle has the advantage over single-atom Ag species in its intrinsic activity for CO oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, J.; Zhao, Y.; Guo, X.; Chen, C.; Dong, C. L.; Liu, R. S.; Han, C. P.; Li, Y.; Gogotsi, Y.; Wang, G. Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction. Nat. Catal. 2018, 12, 985–992.

    Article  Google Scholar 

  2. Zhang, J.; Zhao, Y.; Guo, X.; Chen, C.; Dong, C. L.; Liu, R. S.; Han, C. P.; Li, Y.; Gogotsi, Y.; Wang, G. Tuning the coordination environment in single-atom catalysts to achieve highly efficient oxygen reduction reactions. J. Am. Chem. Soc. 2019, 141, 20118–20126.

    Article  CAS  Google Scholar 

  3. Zhao, Y.; Zhang, J.; Xie, Y.; Sun, B.; Jiang, J.; Jiang, W. J.; Xi, S.; Yang, H. Y.; Yan, K.; Wang, S.; Guo, X.; Li, P.; Han, Z.; Lu, X.; Liu, H.; Wang, G. Constructing atomic heterometallic sites in ultrathin nickel-incorporated cobalt phosphide nanosheets via a boron-assisted strategy for highly efficient water splitting. Nano Lett. 2021, 21, 823–832.

    Article  CAS  Google Scholar 

  4. Therrien, A. J.; Hensley, A. J. R.; Marcinkowski, M. D.; Zhang, R.; Lucci, F. R.; Coughlin, B.; Schilling, A. C.; McEwen, J.-S.; Sykes, E. C. H. An atomic-scale view of single-site Pt catalysis for low-temperature CO oxidation. Nat. Catal. 2018, 1, 192–198.

    Article  CAS  Google Scholar 

  5. Nie, L.; Mei, D.; Xiong, H.; Peng, B.; Ren, Z.; Hernandez, X. I. P.; DeLaRiva, A.; Wang, M.; Engelhard, M. H.; Kovarik, L. et al. Activation of surface lattice oxygen in single-atom Pt/CeO2 for low-temperature CO oxidation. Science 2017, 358, 1419.

    Article  CAS  Google Scholar 

  6. Qiao, B.; Wang, A.; Yang, X.; Allard, L. F.; Jiang, Z.; Cui, Y.; Liu, J.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641.

    Article  CAS  Google Scholar 

  7. Hülsey, M. J.; Zhang, B.; Ma, Z.; Asakura, H.; Do, D. A.; Chen, W.; Tanaka, T.; Zhang, P.; Wu, Z.; Yan, N. In situ spectroscopy-guided engineering of rhodium single-atom catalysts for CO oxidation. Nat. Commun. 2019, 10, 1330.

    Article  Google Scholar 

  8. Zou, X. P.; Wang, L. N.; Li, X. N.; Liu, Q. Y.; Zhao, Y. X.; Ma, T. M.; He, S. G. Noble-metal-free single-atom catalysts CuAl4O7–9—For CO oxidation by O2. Angew. Chem., Int. Ed. 2018, 57, 10989–10993.

    Article  CAS  Google Scholar 

  9. Li, F.; Li, Y.; Zeng, X. C.; Chen, Z. Exploration of high-performance single-atom catalysts on support M1/FeOx for CO oxidation via computational study. ACS Catal. 2015, 5, 544–552.

    Article  CAS  Google Scholar 

  10. Ding, K.; Gulec, A.; Johnson, A. M.; Schweitzer, N. M.; Stucky, G. D.; Marks, L. D.; Stair, P. C. Identification of active sites in CO oxidation and water-gas shift over supported pt catalysts. Science 2015, 350, 189.

    Article  CAS  Google Scholar 

  11. Jones, J.; Xiong, H.; DeLaRiva, A. T.; Peterson, E. J.; Pham, H.; Challa, S. R.; Qi, G.; Oh, S.; Wiebenga, M. H.; Pereira Hernández, X. I. et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 2016, 353, 150.

    Article  CAS  Google Scholar 

  12. Stephens, I. E. L.; Elias, J. S.; Shao-Horn, Y. The importance of being together. Science 2015, 350, 164.

    Article  CAS  Google Scholar 

  13. Lamoth, M.; Plodinec, M.; Scharfenberg, L.; Wrabetz, S.; Girgsdies, F.; Jones, T.; Rosowski, F.; Horn, R.; Schlögl, R.; Frei, E. Supported Ag nanoparticles and clusters for CO oxidation: Size effects and influence of the silver-oxygen interactions. ACS Appl. Mater. Inter. 2019, 2, 2909–2920.

    Article  CAS  Google Scholar 

  14. Cao, X.; Chen, M.; Ma, J.; Yin, B.; Xing, X. CO oxidation by the atomic oxygen on silver clusters: Structurally dependent mechanisms generating free or chemically bonded CO2. Phys. Chem. Chem. Phys. 2017, 19, 196–203.

    Article  CAS  Google Scholar 

  15. Wang, F.; Ma, J.; Xin, S.; Wang, Q.; Xu, J.; Zhang, C.; He, H.; Cheng Zeng, X. Resolving the puzzle of single-atom silver dispersion on nanosized γ-Al2O3 surface for high catalytic performance. Nat. Commun. 2020, 11, 529–537.

    Article  CAS  Google Scholar 

  16. Shibata, J.; Shimizu, K.-i.; Takada, Y.; Shichi, A.; Yoshida, H.; Satokawa, S.; Satsuma, A.; Hattori, T. Structure of active Ag clusters in Ag zeolites for SCR of NO by propane in the presence of hydrogen. J. Catal. 2004, 227, 367–374.

    Article  CAS  Google Scholar 

  17. Kim, P. S.; Kim, M. K.; Cho, B. K.; Nam, I.-S.; Oh, S. H. Effect of H2 on deNOx performance of HC-SCR over Ag/Al2O3: Morphological, chemical, and kinetic changes. J. Catal. 2013, 301, 65–76.

    Article  CAS  Google Scholar 

  18. Hu, C.; Peng, T.; Hu, X.; Nie, Y.; Zhou, X.; Qu, J.; He, H. Plasmon-induced photodegradation of toxic pollutants with Ag-Agi/Al2O3 under visible-light irradiation. J. Am. Chem. Soc. 2009, 9, 857–862.

    Google Scholar 

  19. Kung, K. A. B. a. H. H. Supported Ag catalysts for the lean reduction of NO with C3H6. J. Catal. 1997, 172, 93–102.

    Article  Google Scholar 

  20. Ken-ichi, S.; Hisao, Y.; Atsushi, S.; Tadashi, H. Silver-alumina catalysts for selective reduction of NO by higher hydrocarbons: Structure of active sites and reaction mechanism. Appl. Catal. B. 2001, 26, 151–162.

    Google Scholar 

  21. Hu, P.; Huang, Z.; Amghouz, Z.; Makkee, M.; Xu, F.; Kapteijn, F.; Dikhtiarenko, A.; Chen, Y.; Gu, X.; Tang, X. Electronic metal-support interactions in single-atom catalysts. Angew. Chem., Int. Ed. 2014, 53, 3418–3421.

    Article  CAS  Google Scholar 

  22. Huang, Z.; Gu, X.; Cao, Q.; Hu, P.; Hao, J.; Li, J.; Tang, X. Catalytically active single-atom sites fabricated from silver particles. Angew. Chem., Int. Ed. 2012, 124, 4274–4279.

    Article  Google Scholar 

  23. Wang, F.; He, G.; Zhang, B.; Chen, M.; Chen, X.; Zhang, C.; He, H. Insights into the activation effect of H2 pretreatment on Ag/Al2O3 catalyst for the selective oxidation of ammonia. ACS Catal. 2019, 9, 1437–1445.

    Article  CAS  Google Scholar 

  24. Sandoval, A.; Aguilar, A.; Louis, C.; Traverse, A.; Zanella, R. Bimetallic Au-Ag/TiO2 catalyst prepared by deposition-precipitation: High activity and stability in co oxidation. J. Catal. 2011, 281, 40–49.

    Article  CAS  Google Scholar 

  25. Nagai, Y.; Hirabayashi, T.; Dohmae, K.; Takagi, N.; Minami, T.; Shinjoh, H.; Matsumoto, S. Sintering inhibition mechanism of platinum supported on ceria-based oxide and Pt-oxide-support interaction. J. Catal. 2006, 242, 103–109.

    Article  CAS  Google Scholar 

  26. Verma, P.; Yuan, K.; Kuwahara, Y.; Mori, K.; Yamashita, H. Enhancement of plasmonic activity by Pt/Ag bimetallic nanocatalyst supported on mesoporous silica in the hydrogen production from hydrogen storage material. Appl. Catal. B 2018, 223, 10–15.

    Article  CAS  Google Scholar 

  27. Zhou, W.; Li, T.; Wang, J.; Qu, Y.; Pan, K.; Xie, Y.; Tian, G.; Wang, L.; Ren, Z.; Jiang, B. et al. Composites of small ag clusters confined in the channels of well-ordered mesoporous anatase TiO2 and their excellent solar-light-driven photocatalytic performance. Nano Res. 2014, 7, 731–742.

    Article  CAS  Google Scholar 

  28. Wang, F.; Ma, J.; He, G.; Chen, M.; Zhang, C.; He, H. Nanosize effect of al2o3 in Ag/Al2O3 catalyst for the selective catalytic oxidation of ammonia. ACS Catal. 2018, 8, 2670–2682.

    Article  CAS  Google Scholar 

  29. Freund, H.-J.; Meijer, G.; Scheffler, M.; Schlögl, R.; Wolf, M. CO oxidation as a prototypical reaction for heterogeneous processes. Angew. Chem., Int. Ed. 2011, 50, 10064–10094.

    Article  CAS  Google Scholar 

  30. Woodham, A. P.; Meijer, G.; Fielicke, A. Activation of molecular oxygen by anionic gold clusters. Angew. Chem., Int. Ed. 2012, 51, 4444–4447.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 52000093), the Chinese Post-doctoral Science Foundation (Nos. 2020T130271 and 2019M663911XB) and National Engineering Laboratory for Mobile Source Emission Control Technology (No. NELMS2019B03).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Changbin Zhang or Hong He.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Li, Z., Wang, H. et al. Nano-sized Ag rather than single-atom Ag determines CO oxidation activity and stability. Nano Res. 15, 452–456 (2022). https://doi.org/10.1007/s12274-021-3501-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3501-1

Keywords

Navigation