Skip to main content

Emerging 2D magnetic states in a graphene-based monolayer of EuC6

Abstract

Recent discoveries of intrinsic two-dimensional (2D) magnets open up vast opportunities to address fundamental problems in condensed matter physics, giving rise to applications from ultra-compact spintronics to quantum computing. The ever-growing material landscape of 2D magnets lacks, however, carbon-based systems, prominent in other areas of 2D research. Magnetization measurements of the Eu/graphene compound—a monolayer of the EuC6 stoichiometry—reveal the emergence of 2D ferromagnetism but detailed studies of competing magnetic states are still missing. Here, we employ element-selective X-ray absorption spectroscopy (XAS) and magnetic circular dichroism (XMCD) to establish the magnetic structure of monolayer EuC6. The system exhibits the anomalous Hall effect, negative magnetoresistance, and magnetization consistent with a ferromagnetic state but the saturation magnetic moment (about 2.5 µB/Eu) is way too low for the half-filled f-shells of Eu2+ ions. Combined XAS/XMCD studies at the Eu L3 absorption edge probe the EuC6 magnetism in high fields and reveal the nature of the missing magnetic moments. The results are set against XMCD studies in Eu/silicene and Eu/germanene to establish monolayer EuC6 as a prominent member of the family of Eu-based 2D magnets combining the celebrated graphene properties with a strong magnetism of europium.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Cortie, D. L.; Causer, G. L.; Rule, K. C.; Fritzsche, H.; Kreuzpaintner, W.; Klose, F. Two-dimensional magnets: Forgotten history and recent progress towards spintronic applications. Adv. Funct. Mater. 2020, 30, 1901414.

    CAS  Article  Google Scholar 

  2. [2]

    Mermin, N. D.; Wagner, H. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett. 1966, 17, 1133–1136.

    CAS  Article  Google Scholar 

  3. [3]

    Vaz, C. A. F.; Bland, J. A. C.; Lauhoff, G. Magnetism in ultrathin film structures. Rep. Prog. Phys. 2008, 71, 056501.

    Article  CAS  Google Scholar 

  4. [4]

    Huang, B.; Clark, G.; Navarro-Moratalla, E.; Klein, D. R.; Cheng, R.; Seyler, K. L.; Zhong, D.; Schmidgall, E.; McGuire, M. A.; Cobden, D. H. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 2017, 546, 270–273.

    CAS  Article  Google Scholar 

  5. [5]

    Gong, C.; Li, L.; Li, Z. L.; Ji, H. W.; Stern, A.; Xia, Y.; Cao, T.; Bao, W.; Wang, C. Z.; Wang, Y. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 2017, 546, 265–269.

    CAS  Article  Google Scholar 

  6. [6]

    Burch, K. S.; Mandrus, D.; Park, J. G. Magnetism in two-dimensional van der Waals materials. Nature 2018, 563, 47–52.

    CAS  Article  Google Scholar 

  7. [7]

    Gong, C.; Zhang, X. Two-dimensional magnetic crystals and emergent heterostructure devices. Science 2019, 363, eaav4450.

    CAS  Article  Google Scholar 

  8. [8]

    Gibertini, M.; Koperski, M.; Morpurgo, A. F.; Novoselov, K. S. Magnetic 2D materials and heterostructures. Nat. Nanotechnol. 2019, 14, 408–419.

    CAS  Article  Google Scholar 

  9. [9]

    Song, T. C.; Fei, Z. Y.; Yankowitz, M.; Lin, Z.; Jiang, Q. N.; Hwangbo, K.; Zhang, Q.; Sun, B. S.; Taniguchi, T.; Watanabe, K. et al. Switching 2D magnetic states via pressure tuning of layer stacking. Nat. Mater. 2019, 18, 1298–1302.

    CAS  Article  Google Scholar 

  10. [10]

    Huang, B.; Clark, G.; Klein, D. R.; MacNeill, D.; Navarro-Moratalla, E.; Seyler, K. L.; Wilson, N.; McGuire, M. A.; Cobden, D. H.; Xiao, D. et al. Electrical control of 2D magnetism in bilayer CrI3. Nat. Nanotechnol. 2018, 13, 544–548.

    CAS  Article  Google Scholar 

  11. [11]

    Jiang, S. W.; Li, L. Z.; Wang, Z. F.; Mak, K. F.; Shan, J. Controlling magnetism in 2D CrI3 by electrostatic doping. Nat. Nanotechnol. 2018, 13, 549–553.

    CAS  Article  Google Scholar 

  12. [12]

    Klein, D. R.; MacNeill, D.; Lado, J. L.; Soriano, D.; Navarro-Moratalla, E.; Watanabe, K.; Taniguchi, T.; Manni, S.; Canfield, P.; Fernández-Rossier, J. et al. Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling. Science 2018, 360, 1218–1222.

    CAS  Article  Google Scholar 

  13. [13]

    Parfenov, O. E.; Tokmachev, A. M.; Averyanov, D. V.; Karateev, I. A.; Sokolov, I. S.; Taldenkov, A. N.; Storchak, V. G. Layer-controlled laws of electron transport in two-dimensional ferromagnets. Mater. Today 2019, 29, 20–25.

    CAS  Article  Google Scholar 

  14. [14]

    Deng, Y. J.; Yu, Y. J.; Song, Y. C.; Zhang, J. Z.; Wang, N. Z.; Sun, Z. Y.; Yi, Y. F.; Wu, Y. Z.; Wu, S. W.; Zhu, J. Y. et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 2018, 563, 94–99.

    CAS  Article  Google Scholar 

  15. [15]

    Yu, W.; Herng, T. S.; Wang, Z. S.; Zhao, X. X.; Chi, X.; Fu, W.; Abdelwahab, I.; Zhou, J.; Dan, J. D.; Chen, Z. X. et al. Chemically exfoliated VSe2 monolayers with room-temperature ferromagnetism. Adv. Mater. 2019, 31, 1903779.

    CAS  Article  Google Scholar 

  16. [16]

    Tokmachev, A. M.; Averyanov, D. V.; Parfenov, O. E.; Taldenkov, A. N.; Karateev, I. A.; Sokolov, I. S.; Kondratev, O. A.; Storchak, V. G. Emerging two-dimensional ferromagnetism in silicene materials. Nat. Commun. 2018, 9, 1672.

    Article  CAS  Google Scholar 

  17. [17]

    Tokmachev, A. M.; Averyanov, D. V.; Taldenkov, A. N.; Parfenov, O. E.; Karateev, I. A.; Sokolov, I. S.; Storchak, V. G. Lanthanide f7 metalloxenes—A class of intrinsic 2D ferromagnets. Mater. Horiz. 2019, 6, 1488–1496.

    CAS  Article  Google Scholar 

  18. [18]

    Tuček, J.; Bloński, P.; Ugolotti, J.; Swain, A. K.; Enoki, T.; Zbořil, R. Emerging chemical strategies for imprinting magnetism in graphene and related 2D materials for spintronic and biomedical applications. Chem. Soc. Rev. 2018, 47, 3899–3990.

    Article  Google Scholar 

  19. [19]

    Mishra, S.; Beyer, D.; Eimre, K.; Kezilebieke, S.; Berger, R.; Gröning, O.; Pignedoli, C. A.; Müllen, K.; Liljeroth, P.; Ruffieux, P. et al. Topological frustration induces unconventional magnetism in a nanographene. Nat. Nanotechnol. 2020, 15, 22–28.

    CAS  Article  Google Scholar 

  20. [20]

    Magda, G. Z.; Jin, X. Z.; Hagymási, I.; Vancsó, P.; Osváth, Z.; Nemes-Incze, P.; Hwang, C.; Biró, L. P.; Tapasztó, L. Room-temperature magnetic order on zigzag edges of narrow graphene nanoribbons. Nature 2014, 514, 608–611.

    CAS  Article  Google Scholar 

  21. [21]

    González-Herrero, H.; Gómez-Rodríguez, J. M.; Mallet, P.; Moaied, M.; Palacios, J. J.; Salgado, C.; Ugeda, M. M.; Veuillen, J. Y.; Yndurain, F.; Brihuega, I. Atomic-scale control of graphene magnetism by using hydrogen atoms. Science 2016, 352, 437–441.

    Article  CAS  Google Scholar 

  22. [22]

    Tuček, J.; Holá, K.; Bourlinos, A. B.; Błoński, P.; Bakandritsos, A.; Ugolotti, J.; Dubecký, M.; Karlický, F.; Ranc, V.; Čépe, K. et al. Room temperature organic magnets derived from sp3 functionalized graphene. Nat. Commun. 2017, 8, 14525.

    Article  CAS  Google Scholar 

  23. [23]

    Yang, H. X.; Chen, G.; Cotta, A. A. C.; N’Diaye, A. T.; Nikolaev, S. A.; Soares, E. A.; Macedo, W. A. A.; Liu, K.; Schmid, A. K.; Fert, A. et al. Significant Dzyaloshinskii-Moriya interaction at graphene-ferromagnet interfaces due to the Rashba effect. Nat. Mater. 2018, 17, 605–609.

    CAS  Article  Google Scholar 

  24. [24]

    Solis, D. A.; Hallal, A.; Waintal, X.; Chshiev, M. Proximity magnetoresistance in graphene induced by magnetic insulators. Phys. Rev. B 2019, 100, 104402.

    CAS  Article  Google Scholar 

  25. [25]

    Song, Y.; Liu, Y.; Feng, X. L.; Yan, F.; Zhang, W. Z. Spin-selectable, region-tunable negative differential resistance in graphene double ferromagnetic barriers. Phys. Chem. Chem. Phys. 2018, 20, 1560–1567.

    CAS  Article  Google Scholar 

  26. [26]

    Averyanov, D. V.; Sokolov, I. S.; Tokmachev, A. M.; Parfenov, O. E.; Karateev, I. A.; Taldenkov, A. N.; Storchak, V. G. High-temperature magnetism in graphene induced by proximity to EuO. ACS Appl. Mater. Interfaces 2018, 10, 20767–20774.

    CAS  Article  Google Scholar 

  27. [27]

    Wei, P.; Lee, S.; Lemaitre, F.; Pinel, L.; Cutaia, D.; Cha, W.; Katmis, F.; Zhu, Y.; Heiman, D.; Hone, J. et al. Strong interfacial exchange field in the graphene/EuS heterostructure. Nat. Mater. 2016, 15, 711–716.

    CAS  Article  Google Scholar 

  28. [28]

    Cahen, S.; Lagrange, P.; Marêché, J. F.; Hérold, C. Analogies and differences between calcium-based and europium-based graphite intercalation compounds. C. R. Chimie 2013, 16, 385–390.

    CAS  Article  Google Scholar 

  29. [29]

    Sokolov, I. S.; Averyanov, D. V.; Parfenov, O. E.; Karateev, I. A.; Taldenkov, A. N.; Tokmachev, A. M.; Storchak, V. G. 2D ferromagnetism in europium/graphene bilayers. Mater. Horiz. 2020, 7, 1372–1378.

    CAS  Article  Google Scholar 

  30. [30]

    Suematsu, H.; Ohmatsu, K.; Sugiyama, K.; Sakakibara, T.; Motokawa, M.; Date, M. High field magnetization of europium-graphite intercalation compound C6Eu. Solid State Commun. 1981, 40, 241–243.

    CAS  Article  Google Scholar 

  31. [31]

    Molle, A.; Goldberger, J.; Houssa, M.; Xu, Y.; Zhang, S. C.; Akinwande, D. Buckled two-dimensional Xene sheets. Nat. Mater. 2017, 16, 163–169.

    CAS  Article  Google Scholar 

  32. [32]

    Molle, A.; Grazianetti, C.; Tao, L.; Taneja, D.; Alam M. H.; Akinwande, D. Silicene, silicene derivatives, and their device applications. Chem. Soc. Rev. 2018, 47, 6370–6387.

    CAS  Article  Google Scholar 

  33. [33]

    Tokmachev, A. M.; Averyanov, D. V.; Karateev, I. A.; Parfenov, O. E.; Kondratev, O. A.; Taldenkov, A. N.; Storchak, V. G. Engineering of magnetically intercalated silicene compound: An overlooked polymorph of EuSi2. Adv. Funct. Mater. 2017, 27, 1606603.

    Article  CAS  Google Scholar 

  34. [34]

    Parfenov, O. E.; Averyanov, D. V.; Tokmachev, A. M.; Sokolov, I. S.; Karateev, I. A.; Taldenkov, A. N.; Storchak, V. G. High-mobility carriers in germanene derivatives. Adv. Funct. Mater. 2020, 30, 1910643.

    CAS  Article  Google Scholar 

  35. [35]

    Averyanov, D. V.; Sokolov, I. S.; Platunov, M. S.; Wilhelm, F.; Rogalev, A.; Gargiani, P.; Valvidares, M.; Jaouen, N.; Parfenov, O. E.; Taldenkov, A. N. et al. Competing magnetic states in silicene and germanene 2D ferromagnets. Nano Res. 2020, 13, 3396–3402.

    CAS  Article  Google Scholar 

  36. [36]

    Wong, P. K. J.; Zhang, W.; Bussolotti, F.; Yin, X. M.; Herng, T. S.; Zhang, L.; Huang, Y. L.; Vinai, G.; Krishnamurthi, S.; Bukhvalov, D. W. et al. Evidence of spin frustration in a vanadium diselenide monolayer magnet. Adv. Mater. 2019, 31, 1901185.

    Article  CAS  Google Scholar 

  37. [37]

    Kim, M.; Hupalo, M.; Tringides, M. C.; Schrunk, B.; Kaminski, A.; Ho, K. M.; Wang, C. Z. Electronic structure of double-layer epitaxial graphene on SiC(0001) modified by Gd intercalation. J. Phys. Chem. C 2020, 124, 28132–28138.

    CAS  Article  Google Scholar 

  38. [38]

    Schumacher, S.; Huttmann, F.; Petrović, M.; Witt, C.; Förster, D. F.; Vo-Van, C.; Coraux, J.; Martínez-Galera, A. J.; Sessi, V.; Vergara, I. et al. Europium underneath graphene on Ir(111): Intercalation mechanism, magnetism, and band structure. Phys. Rev. B 2014, 90, 235437.

    Article  CAS  Google Scholar 

  39. [39]

    Huttmann, F.; Klar, D.; Atodiresei, N.; Schmitz-Antoniak, C.; Smekhova, A.; Martínez-Galera, A. J.; Caciuc, V.; Bihlmayer, G.; Blügel, S.; Michely, T. et al. Magnetism in a graphene-4f-3d hybrid system. Phys. Rev. B 2017, 95, 075427.

    Article  Google Scholar 

  40. [40]

    Anderson, N. A.; Hupalo, M.; Keavney, D.; Tringides, M. C.; Vaknin, D. Intercalated europium metal in epitaxial graphene on SiC. Phys. Rev. Mater. 2017, 1, 054005.

    Article  Google Scholar 

  41. [41]

    Förster, D. F. EuO and Eu on Metal Crystals and Graphene: Interface Effects and Epitaxial Films. Ph.D. Dissertation, Universität zu Köln, Köln, 2011.

  42. [42]

    Liu, X. J.; Wang, C. Z.; Hupalo, M.; Yao, Y. X.; Tringides, M. C.; Lu, W. C.; Ho, K. M. Adsorption and growth morphology of rare-earth metals on graphene studied by ab initio calculations and scanning tunneling microscopy. Phys. Rev. B 2010, 82, 245408.

    Article  CAS  Google Scholar 

  43. [43]

    Bedoya-Pinto, A.; Ji, J. R.; Pandeya, A.; Gargiani, P.; Valvidares, M.; Sessi, P.; Radu, F.; Chang, K.; Parkin, S. Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. arXiv:2006.07605v2, 2021.

  44. [43]

    Bedoya-Pinto, A.; Ji, J.-R.; Pandeya, A.; Gargiani, P.; Valvidares, M.; Sessi, P.; Radu, F.; Chang, K.; Parkin, S. Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. 2021, arXiv:2006.07605v2. arXiv.org e-Print archive. https://arxiv.org/abs/2006.07605v1 (accessed Jan 12, 2021).

  45. [44]

    Averyanov, D. V.; Parfenov, O. E.; Tokmachev, A. M.; Karateev, I. A.; Kondratev, O. A.; Taldenkov, A. N.; Platunov, M. S.; Wilhelm, F.; Rogalev, A.; Storchak, V. G. Fine structure of metal-insulator transition in EuO resolved by doping engineering. Nanotechnology 2018, 29, 195706.

    Article  CAS  Google Scholar 

  46. [45]

    Torelli, D.; Thygesen, K. S.; Olsen, T. Corrigendum: High throughput computational screening for 2D ferromagnetic materials: the critical role of anisotropy and local correlations (2D Mater. 6 045018). 2D Mater. 2020, 7, 049501.

    Article  Google Scholar 

  47. [46]

    Balan, A. P.; Radhakrishnan, S.; Woellner, C. F.; Sinha, S. K.; Deng, L.; de los Reyes, C.; Rao, B. M.; Paulose, M.; Neupane, R.; Apte, A. et al. Exfoliation of a non-van der Waals material from iron ore hematite. Nat. Nanotechnol. 2018, 13, 602–609.

    Article  CAS  Google Scholar 

  48. [47]

    Sharpe, A. L.; Fox, E. J.; Barnard, A. W.; Finney, J.; Watanabe, K.; Taniguchi, T.; Kastner, M. A.; Goldhaber-Gordon, D. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 2019, 365, 605–608.

    CAS  Article  Google Scholar 

  49. [48]

    Spree, L.; Popov, A. A. Recent advances in single molecule magnetism of dysprosium-metallofullerenes. Dalton Trans. 2019, 48, 2861–2871.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work is supported by NRC “Kurchatov Institute” (No. 1055 (characterization)), the Russian Foundation for Basic Research (grant 19-07-00249 (transport measurements)), and the Russian Science Foundation (grants 19-19-00009 (synthesis) and 20-79-10028 (magnetization measurements)). D. V. A. acknowledges support from the President’s scholarship (SP 1398.2019.5). The measurements have been carried out using equipment of the resource centers of electrophysical and electron microscopy techniques at NRC “Kurchatov Institute”.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Vyacheslav G. Storchak.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sokolov, I.S., Averyanov, D.V., Wilhelm, F. et al. Emerging 2D magnetic states in a graphene-based monolayer of EuC6. Nano Res. (2021). https://doi.org/10.1007/s12274-021-3494-9

Download citation

Keywords

  • two-dimensional (2D) ferromagnetism
  • graphene
  • EuC6
  • X-ray magnetic circular dichroism (XMCD)
  • monolayer