Skip to main content

Fabrication strategies and supramolecular interactions of polymer-lipid complex nanoparticles as oral delivery systems

Abstract

Oral administration of nutrient/drug is the most common and preferred route. However, a number of barriers are encountered after ingestion, limiting efficient oral nutrient/drug absorption. Both lipid-based (e.g., nanoemulsion, solid lipid nanoparticles) and polymer-based (e.g., protein and polysaccharide nanoparticles) nanoscale delivery systems have demonstrated capability to overcome some of these physiological barriers during transportation and metabolism stages. To better deal with those barriers, polymer-lipid complex nanoparticles are being explored and developed to merge the beneficial features and overcome the respective shortcomings of lipid-based and polymer-based nanoparticles. This paper aims to provide an overview of the various preparation strategies and supramolecular interactions of orally administered polymer-lipid complex nanoparticles by reviewing recent studies. Two types of polymer-lipid complex nanoparticles have been developed, i.e., lipid core with polymer shell nanoparticles and polymer core with lipid shell nanoparticles (lipid-polymer hybrid nanoparticles). Besides, both natural and synthetic polymers used for fabrication are discussed and their advantages and disadvantages are highlighted. Further research work is needed to optimize the fabrication and scaling up processes, so that these versatile polymer-lipid complex nanoparticles could have a significant impact on the oral delivery of nutrient/drug.

This is a preview of subscription content, access via your institution.

References

  1. Choonara, B. F.; Choonara, Y. E.; Kumar, P.; Bijukumar, D.; du Toit, L. C.; Pillay, V. A review of advanced oral drug delivery technologies facilitating the protection and absorption of protein and peptide molecules. Biotechnol. Adv. 2014, 32, 1269–1282.

    CAS  Google Scholar 

  2. Ensign, L. M.; Cone, R.; Hanes, J. Oral drug delivery with polymeric nanoparticles: The gastrointestinal mucus barriers. Adv. Drug Deliv. Rev. 2012, 64, 557–570.

    CAS  Google Scholar 

  3. Dressman, J. B.; Berardi, R. R.; Dermentzoglou, L. C.; Russell, T. L.; Schmaltz, S. P.; Barnett, J. L.; Jarvenpaa, K. M. Upper gastrointestinal (GI) pH in young, healthy men and women. Pharm. Res. 1990, 7, 756–761.

    CAS  Google Scholar 

  4. Rouge, N.; Buri, P.; Doelker, E. Drug absorption sites in the gastrointestinal tract and dosage forms for site-specific delivery. Int. J. Pharm. 1996, 136, 117–139.

    CAS  Google Scholar 

  5. Chivere, V. T.; Kondiah, P. P. D.; Choonara, Y. E.; Pillay, V. Nanotechnology-based biopolymeric oral delivery platforms for advanced cancer treatment. Cancers 2020, 12, 522.

    CAS  Google Scholar 

  6. Luo, Y. C. Perspectives on important considerations in designing nanoparticles for oral delivery applications in food. J. Agric. Food Res. 2020, 2, 100031.

    Google Scholar 

  7. Severino, P.; Pinho, S. C.; Souto, E. B.; Santana, M. H. A. Polymorphism, crystallinity and hydrophilic.lipophilic balance of stearic acid and stearic acid.capric/caprylic triglyceride matrices for production of stable nanoparticles. Colloids Surf. B Biointerf. 2011, 86, 125–130.

    CAS  Google Scholar 

  8. Xie, S. Y.; Zhu, L. Y.; Dong, Z.; Wang, Y.; Wang, X. F.; Zhou, W. Z. Preparation and evaluation of ofloxacin-loaded palmitic acid solid lipid nanoparticles. Int. J. Nanomedicine 2011, 6, 547–555.

    CAS  Google Scholar 

  9. Battaglia, L.; Gallarate, M.; Cavalli, R.; Trotta, M. Solid lipid nanoparticles produced through a coacervation method. J. Microencapsul. 2010, 27, 78–85.

    CAS  Google Scholar 

  10. Wang, T. R.; Bae, M.; Lee, J. Y.; Luo, Y. C. Solid lipid-polymer hybrid nanoparticles prepared with natural biomaterials: A new platform for oral delivery of lipophilic bioactives. Food Hydrocoll. 2018, 84, 581–592.

    CAS  Google Scholar 

  11. Severino, P.; Pinho, S. C.; Souto, E. B.; Santana, M. H. A. Crystallinity of DynasanR 114 and DynasanR 118 matrices for the production of stable MiglyolR-loaded nanoparticles. J. Therm. Anal. Calorim. 2012, 108, 101–108.

    CAS  Google Scholar 

  12. Vivek, K.; Reddy, H.; Murthy, R. S. R. Investigations of the effect of the lipid matrix on drug entrapment, in vitro release, and physical stability of olanzapine-loaded solid lipid nanoparticles. AAPS PharmSciTech 2007, 8, 16–24.

    Google Scholar 

  13. Wang, T. R.; Hu, Q. B.; Lee, J. Y.; Luo, Y. C. Solid lipid.polymer hybrid nanoparticles by in situ conjugation for oral delivery of astaxanthin. J. Agric. Food Chem. 2018, 66, 9473–9480.

    CAS  Google Scholar 

  14. Zhang, J.; Smith, E. Percutaneous permeation of betamethasone 17-valerate incorporated in lipid nanoparticles. J. Pharm. Sci. 2011, 100, 896–903.

    CAS  Google Scholar 

  15. Montenegro, L.; Campisi, A.; Sarpietro, M. G.; Carbone, C.; Acquaviva, R.; Raciti, G.; Puglisi, G. In vitro evaluation of idebenoneloaded solid lipid nanoparticles for drug delivery to the brain. Drug Dev. Ind. Pharm. 2011, 37, 737–746.

    CAS  Google Scholar 

  16. zur Muhlen, A.; Schwarz, C.; Mehnert, W. Solid lipid nanoparticles (SLN) for controlled drug delivery.drug release and release mechanism. Eur. J. Pharm. Biopharm. 1998, 45, 149–155.

    CAS  Google Scholar 

  17. Correia, M. G. S.; Briuglia, M. L.; Niosi, F.; Lamprou, D. A. Microfluidic manufacturing of phospholipid nanoparticles: Stability, encapsulation efficacy, and drug release. Int. J. Pharm. 2017, 516, 91–99.

    Google Scholar 

  18. Wang, T. R.; Xue, J. Y.; Hu, Q. B.; Zhou, M. Y.; Luo, Y. C. Preparation of lipid nanoparticles with high loading capacity and exceptional gastrointestinal stability for potential oral delivery applications. J. Colloid Interface Sci. 2017, 507, 119–130.

    CAS  Google Scholar 

  19. Tan, A.; Prestidge, C. Improving the performance of lipid formulations: Nanoparticle layers and solid hybrid particles. Ph.D. Dissertation, Ian Wark Research Institute, University of South Australia, Adelaide, 2013.

    Google Scholar 

  20. McClements, D. J. Edible lipid nanoparticles: Digestion, absorption, and potential toxicity. Prog. Lipid Res. 2013, 52, 409–423.

    CAS  Google Scholar 

  21. Wang, T. R.; Luo, Y. C. Biological fate of ingested lipid-based nanoparticles: Current understanding and future directions. Nanoscale 2019, 11, 11048–11063.

    CAS  Google Scholar 

  22. Wang, T. R.; Ma, X. Y.; Lei, Y.; Luo, Y. C. Solid lipid nanoparticles coated with cross-linked polymeric double layer for oral delivery of curcumin. Colloids Surf. B Biointerf. 2016, 148, 1–11.

    CAS  Google Scholar 

  23. Hu, X. W.; Fan, W. F.; Yu, Z.; Lu, Y.; Qi, J. P.; Zhang, J.; Dong, X. C.; Zhao, W. L.; Wu, W. Evidence does not support absorption of intact solid lipid nanoparticles via oral delivery. Nanoscale 2016, 8, 7024–7035.

    CAS  Google Scholar 

  24. Burapapadh, K.; Takeuchi, H.; Sriamornsak, P. Development of pectin nanoparticles through mechanical homogenization for dissolution enhancement of itraconazole. Asian J. Pharm. Sci. 2016, 11, 365–375.

    Google Scholar 

  25. Bowman, K.; Leong, K. W. Chitosan nanoparticles for oral drug and gene delivery. Int. J. Nanomedicine 2006, 1, 117–128.

    CAS  Google Scholar 

  26. Hu, Q. B.; Luo, Y. C. Recent advances of polysaccharide-based nanoparticles for oral insulin delivery. Int. J. Biol. Macromol. 2018, 120, 775–782.

    CAS  Google Scholar 

  27. Hu, Q. B.; Hu, S. Q.; Fleming, E.; Lee, J. Y.; Luo, Y. C. Chitosancaseinate- dextran ternary complex nanoparticles for potential oral delivery of astaxanthin with significantly improved bioactivity. Int. J. Biol. Macromol. 2020, 151, 747–756.

    CAS  Google Scholar 

  28. Jain, A.; Singh, S. K.; Arya, S. K.; Kundu, S. C.; Kapoor, S. Protein nanoparticles: Promising platforms for drug delivery applications. ACS Biomater. Sci. Eng. 2018, 4, 3939–3961.

    CAS  Google Scholar 

  29. Hashem, L.; Swedrowska, M.; Vllasaliu, D. Intestinal uptake and transport of albumin nanoparticles: Potential for oral delivery. Nanomedicine 2018, 13, 1255–1265.

    CAS  Google Scholar 

  30. Penalva, R.; Esparza, I.; Agueros, M.; Gonzalez-Navarro, C. J.; Gonzalez-Ferrero, C.; Irache, J. M. Casein nanoparticles as carriers for the oral delivery of folic acid. Food Hydrocoll. 2015, 44, 399–406.

    CAS  Google Scholar 

  31. Yadav, H. K. S.; Almokdad, A. A.; Shaluf, S. I. M.; Debe, M. S. Polymer-based nanomaterials for drug-delivery carriers. In Nanocarriers for Drug Delivery: Nanoscience and Nanotechnology in Drug Delivery. Mohapatra, S. S.; Ranjan, S.; Dasgupta, N.; Mishra, R. K.; Thomas, S., Eds.; Elsevier: Amsterdam, 2019; pp 531–556.

    Google Scholar 

  32. Vasile, C. Polymeric nanomaterials: Recent developments, properties and medical applications. In Polymeric Nanomaterials in Nanotherapeutics: A Volume in Micro and Nano Technologies. Vasile, C., Ed.; Elsevier: Amsterdam, 2019; pp 1–66.

    Google Scholar 

  33. des Rieux, A.; Fievez, V.; Garinot, M.; Schneider, Y. J.; Preat, V. Nanoparticles as potential oral delivery systems of proteins and vaccines: A mechanistic approach. J. Control. Release 2006, 116, 1–27.

    CAS  Google Scholar 

  34. Nurunnabi, M.; Revuri, V.; Huh, K. M.; Lee, Y. K. Polysaccharide based nano/microformulation: An effective and versatile oral drug delivery system. In Nanostructures for Oral Medicine: A Volume in Micro and Nano Technologies. Andronescu, E.; Grumezescu, A. M., Eds.; Elsevier: Amsterdam, 2017; pp 409–433.

    Google Scholar 

  35. Liu, Z. H.; Jiao, Y. P.; Wang, Y. F.; Zhou, C. R.; Zhang, Z. Y. Polysaccharides-based nanoparticles as drug delivery systems. Adv. Drug Deliv. Rev. 2008, 60, 1650–1662.

    CAS  Google Scholar 

  36. Hamid Akash, M. S.; Rehman, K.; Chen, S. Q. Natural and synthetic polymers as drug carriers for delivery of therapeutic proteins. Polym. Rev. 2015, 55, 371–406.

    CAS  Google Scholar 

  37. Luo, Y. C. Food colloids binary and ternary nanocomplexes: Innovations and discoveries. Colloids Surf. B Biointerf. 2020, 196, 111309.

    CAS  Google Scholar 

  38. Luo, Y. C.; Wang, Q.; Zhang, Y. Q. Biopolymer-based nanotechnology approaches to deliver bioactive compounds for food applications: A perspective on the past, present, and future. J. Agric. Food Chem. 2020, 68, 12993–13000.

    CAS  Google Scholar 

  39. Akiyoshi, K.; Sunamoto, J. Supramolecular assembly of hydrophobized polysaccharides. Supramol. Sci. 1996, 3, 157–163.

    CAS  Google Scholar 

  40. Diaz-Salmeron, R.; Ponchel, G.; Gallard, J. F.; Bouchemal, K. Hierarchical supramolecular platelets from hydrophobically-modified polysaccharides and α-cyclodextrin: Effect of hydrophobization and α-cyclodextrin concentration on platelet formation. Int. J. Pharm. 2018, 548, 227–236.

    CAS  Google Scholar 

  41. Hu, M.; McClements, D. J.; Decker, E. A. Lipid oxidation in corn oil-in-water emulsions stabilized by casein, whey protein isolate, and soy protein isolate. J. Agric. Food Chem. 2003, 51, 1696–1700.

    CAS  Google Scholar 

  42. Dalgleish, D. G. The sizes and conformations of the proteins in adsorbed layers of individual caseins on latices and in oil-in-water emulsions. Colloids Surf. B Biointerf. 1993, 1, 1–8.

    CAS  Google Scholar 

  43. Galazka, V. B.; Dickinson, E.; Ledward, D. A. Emulsifying properties of ovalbumin in mixtures with sulphated polysaccharides: Effects of pH, ionic strength, heat and high-pressure treatment. J. Sci. Food Agric. 2000, 80, 1219–1229.

    CAS  Google Scholar 

  44. Islam, S.; Bhuiyan, M. A. R.; Islam, M. N. Chitin and chitosan: Structure, properties and applications in biomedical engineering. J. Polym. Environ. 2017, 25, 854–866.

    CAS  Google Scholar 

  45. Jin, Q.; Yu, H. H.; Wang, X. Q.; Li, K. C.; Li, P. C. Effect of the molecular weight of water-soluble chitosan on its fat-/cholesterolbinding capacities and inhibitory activities to pancreatic lipase. PeerJ 2017, 5, e3279.

    Google Scholar 

  46. Hu, Q. B.; Luo, Y. C. Chitosan-based nanocarriers for encapsulation and delivery of curcumin: A review. Int. J. Biol. Macromol. 2021, 179, 125–135.

    CAS  Google Scholar 

  47. Bravo-Osuna, I.; Vauthier, C.; Farabollini, A.; Palmieri, G. F.; Ponchel, G. Mucoadhesion mechanism of chitosan and thiolated chitosan-poly (isobutyl cyanoacrylate) core-shell nanoparticles. Biomaterials 2007, 28, 2233–2243.

    CAS  Google Scholar 

  48. Luo, Y. C.; Teng, Z.; Li, Y.; Wang, Q. Solid lipid nanoparticles for oral drug delivery: Chitosan coating improves stability, controlled delivery, mucoadhesion and cellular uptake. Carbohydr. Polym. 2015, 122, 221–229.

    CAS  Google Scholar 

  49. Oyarzun-Ampuero, F. A.; Garcia-Fuentes, M.; Torres, D.; Alonso, M. J. Chitosan-coated lipid nanocarriers for therapeutic applications. J. Drug Deliv. Sci. Technol. 2010, 20, 259–265.

    CAS  Google Scholar 

  50. Fonte, P.; Nogueira, T.; Gehm, C.; Ferreira, D.; Sarmento, B. Chitosan-coated solid lipid nanoparticles enhance the oral absorption of insulin. Drug Deliv. Transl. Res. 2011, 1, 299–308.

    CAS  Google Scholar 

  51. Fonte, P.; Andrade, F.; Araújo, F.; Andrade, C.; das Neves, J.; Sarmento, B. Chitosan-coated solid lipid nanoparticles for insulin delivery. Methods Enzymol. 2012, 84, 295–314.

    Google Scholar 

  52. Sarmento, B.; Mazzaglia, D.; Bonferoni, M. C.; Neto, A. P.; do Céu Monteiro, M.; Seabra, V. Effect of chitosan coating in overcoming the phagocytosis of insulin loaded solid lipid nanoparticles by mononuclear phagocyte system. Carbohydr. Polym. 2011, 84, 919–925.

    CAS  Google Scholar 

  53. Hansraj, G. P.; Singh, S. K.; Kumar, P. Sumatriptan succinate loaded chitosan solid lipid nanoparticles for enhanced anti-migraine potential. Int. J. Biol. Macromol. 2015, 81, 467–476.

    CAS  Google Scholar 

  54. Ramalingam, P.; Yoo, S. W.; Ko, Y. T. Nanodelivery systems based on mucoadhesive polymer coated solid lipid nanoparticles to improve the oral intake of food curcumin. Food Res. Int. 2016, 84, 113–119.

    CAS  Google Scholar 

  55. Durán-Lobato, M.; Martín-Banderas, L.; Gonçalves, L. M. D.; Fernández-Arévalo, M.; Almeida, A. J. Comparative study of chitosan- and PEG-coated lipid and PLGA nanoparticles as oral delivery systems for cannabinoids. J. Nanopart. Res. 2015, 17, 61.

    Google Scholar 

  56. Garcia-Fuentes, M.; Torres, D.; Alonso, M. J. New surface-modified lipid nanoparticles as delivery vehicles for salmon calcitonin. Int. J. Pharm. 2005, 296, 122–132.

    CAS  Google Scholar 

  57. Rabelo, R. S.; Oliveira, I. F.; da Silva, V. M.; Prata, A. S.; Hubinger, M. D. Chitosan coated nanostructured lipid carriers (NLCs) for loading Vitamin D: A physical stability study. Int. J. Biol. Macromol. 2018, 119, 902–912.

    CAS  Google Scholar 

  58. Ling, J. T. S.; Roberts, C. J.; Billa, N. Mucoadhesive chitosan-coated nanostructured lipid carriers for oral delivery of amphotericin B. Pharm. Dev. Technol. 2019, 24, 504–512.

    Google Scholar 

  59. Ling, J. T. S.; Roberts, C. J.; Billa, N. Antifungal and mucoadhesive properties of an orally administered chitosan-coated amphotericin B nanostructured lipid carrier (NLC). AAPS PharmSciTech 2019, 20, 136.

    CAS  Google Scholar 

  60. Lee, S. A.; Joung, H. J.; Park, H. J.; Shin, G. H. Preparation of chitosan-coated nanostructured lipid carriers (CH-NLCs) to control iron delivery and their potential application to food beverage system. J. Food Sci. 2017, 82, 904–912.

    CAS  Google Scholar 

  61. Li, J. L.; Hwang, I. C.; Chen, X. G.; Park, H. J. Effects of chitosan coating on curcumin loaded nano-emulsion: Study on stability and in vitro digestibility. Food Hydrocoll. 2016, 60, 138–147.

    CAS  Google Scholar 

  62. Li, X. Y.; Qi, J. P.; Xie, Y. C.; Zhang, X.; Hu, S. W.; Xu, Y.; Lu, Y.; Wu, W. Nanoemulsions coated with alginate/chitosan as oral insulin delivery systems: Preparation, characterization, and hypoglycemic effect in rats. Int. J. Nanomedicine 2013, 8, 23–32.

    Google Scholar 

  63. Karami, Z.; Saghatchi Zanjani, M. R.; Nasihatsheno, N.; Hamidi, M. Improved oral bioavailability of repaglinide, a typical BCS Class II drug, with a chitosan-coated nanoemulsion. J. Biomed. Mater. Res. B Appl. Biomater. 2020, 108, 717–728.

    CAS  Google Scholar 

  64. Channarong, S.; Chaicumpa, W.; Sinchaipanid, N.; Mitrevej, A. Development and evaluation of chitosan-coated liposomes for oral DNA vaccine: The improvement of Peyer’s patch targeting using a polyplex-loaded liposomes. AAPS PharmScitech 2011, 12, 192–200.

    CAS  Google Scholar 

  65. Zhou, F.; Xu, T.; Zhao, Y. J.; Song, H. X.; Zhang, L. Q.; Wu, X. D.; Lu, B. Y. Chitosan-coated liposomes as delivery systems for improving the stability and oral bioavailability of acteoside. Food Hydrocoll. 2018, 83, 17–24.

    CAS  Google Scholar 

  66. Sugihara, H.; Yamamoto, H.; Kawashima, Y.; Takeuchi, H. Effectiveness of submicronized chitosan-coated liposomes in oral absorption of indomethacin. J. Liposome Res. 2012, 22, 72–79.

    CAS  Google Scholar 

  67. Thongborisute, J.; Takeuchi, H.; Yamamoto, H.; Kawashima, Y. Visualization of the penetrative and mucoadhesive properties of chitosan and chitosan-coated liposomes through the rat intestine. J. Liposome Res. 2006, 16, 127–141.

    CAS  Google Scholar 

  68. Takeuchi, H.; Matsui, Y.; Sugihara, H.; Yamamoto, H.; Kawashima, Y. Effectiveness of submicron-sized, chitosan-coated liposomes in oral administration of peptide drugs. Int. J. Pharm. 2005, 303, 160–170.

    CAS  Google Scholar 

  69. Takeuchi, H.; Matsui, Y.; Yamamoto, H.; Kawashima, Y. Mucoadhesive properties of carbopol or chitosan-coated liposomes and their effectiveness in the oral administration of calcitonin to rats. J. Control. Release 2003, 86, 235–242.

    CAS  Google Scholar 

  70. Ways, T. M. M.; Lau, W. M.; Khutoryanskiy, V. V. Chitosan and its derivatives for application in mucoadhesive drug delivery systems. Polymers 2018, 10, 267.

    Google Scholar 

  71. Ruiz, G. A. M.; Corrales, H. F. Z. Chitosan, chitosan derivatives and their biomedical applications. In Biological Activities and Application of Marine Polysaccharides. Shalaby, E. A., Ed.; IntechOpen: Rijeka, Croatia, 2017; pp 87.

    Google Scholar 

  72. Chen, H. L.; Wu, J.; Sun, M.; Guo, C. Y.; Yu, A. H.; Cao, F. L.; Zhao, L. Y.; Tan, Q.; Zhai, G. X. N-trimethyl chitosan chloride-coated liposomes for the oral delivery of curcumin. J. Liposome Res. 2012, 22, 100–109.

    CAS  Google Scholar 

  73. Huang, A. W.; Makhlof, A.; Ping, Q. E.; Tozuka, Y.; Takeuchi, H. N-trimethyl chitosan-modified liposomes as carriers for oral delivery of salmon calcitonin. Drug Deliv. 2011, 18, 562–569.

    CAS  Google Scholar 

  74. Gradauer, K.; Barthelmes, J.; Vonach, C.; Almer, G.; Mangge, H.; Teubl, B.; Roblegg, E.; Dünnhaupt, S.; Fröhlich, E.; Bernkop-Schnürch, A. et al. Liposomes coated with thiolated chitosan enhance oral peptide delivery to rats. J. Control. Release 2013, 172, 872–878.

    CAS  Google Scholar 

  75. Qu, B.; Luo, Y. C. Chitosan-based hydrogel beads: Preparations, modifications and applications in food and agriculture sectors-a review. Int. J. Biol. Macromol. 2020, 152, 437–448.

    CAS  Google Scholar 

  76. Sayın, B.; Somavarapu, S.; Li, X. W.; Thanou, M.; Sesardic, D.; Alpar, H. O.; Şenel, S. Mono-N-carboxymethyl chitosan (MCC) and N-trimethyl chitosan (TMC) nanoparticles for non-invasive vaccine delivery. Int. J. Pharm. 2008, 363, 139–148.

    Google Scholar 

  77. Ramalingam, P.; Ko, Y. T. Enhanced oral delivery of curcumin from N-trimethyl chitosan surface-modified solid lipid nanoparticles: Pharmacokinetic and brain distribution evaluations. Pharm. Res. 2015, 32, 389–402.

    CAS  Google Scholar 

  78. Ramalingam, P.; Ko, Y. T. Improved oral delivery of resveratrol from N-trimethyl chitosan-g-palmitic acid surface-modified solid lipid nanoparticles. Colloids Surf. B Biointerf. 2016, 139, 52–61.

    CAS  Google Scholar 

  79. Bukzem, A. L.; Signini, R.; dos Santos, D. M.; Lião, L. M.; Ascheri, D. P. R. Optimization of carboxymethyl chitosan synthesis using response surface methodology and desirability function. Int. J. Biol. Macromol. 2016, 85, 615–624.

    CAS  Google Scholar 

  80. Thanou, M.; Nihot, M. T.; Jansen, M.; Verhoef, J. C.; Junginger, H. E. Mono-N-carboxymethyl chitosan (MCC), a polyampholytic chitosan derivative, enhances the intestinal absorption of low molecular weight heparin across intestinal epithelia in vitro and in vivo. J. Pharm. Sci. 2001, 90, 38–46.

    CAS  Google Scholar 

  81. Baek, J. S.; Cho, C. W. Surface modification of solid lipid nanoparticles for oral delivery of curcumin: Improvement of bioavailability through enhanced cellular uptake, and lymphatic uptake. Eur. J. Pharm. Biopharm. 2017, 117, 132–140.

    CAS  Google Scholar 

  82. Venishetty, V. K.; Chede, R.; Komuravelli, R.; Adepu, L.; Sistla, R.; Diwan, P. V. Design and evaluation of polymer coated carvedilol loaded solid lipid nanoparticles to improve the oral bioavailability: A novel strategy to avoid intraduodenal administration. Colloids Surf. B Biointerf. 2012, 95, 1–9.

    CAS  Google Scholar 

  83. Wang, T. R.; Xue, J. Y.; Hu, Q. B.; Zhou, M. Y.; Chang, C.; Luo, Y. C. Synthetic surfactant- and cross-linker-free preparation of highly stable lipid-polymer hybrid nanoparticles as potential oral delivery vehicles. Sci. Rep. 2017, 7, 2750.

    Google Scholar 

  84. Wang, T. R.; Hu, Q. B.; Zhou, M. Y.; Xia, Y.; Nieh, M. P.; Luo, Y. C. Development of “all natural” layer-by-layer redispersible solid lipid nanoparticles by nano spray drying technology. Eur. J. Pharm. Biopharm. 2016, 107, 273–285.

    Google Scholar 

  85. Xue, J. Y.; Wang, T. R.; Hu, Q. B.; Zhou, M. Y.; Luo, Y. C. Insight into natural biopolymer-emulsified solid lipid nanoparticles for encapsulation of curcumin: Effect of loading methods. Food Hydrocoll. 2018, 79, 110–116.

    CAS  Google Scholar 

  86. Bostanudin, M. F.; Arafat, M.; Sarfraz, M.; Górecki, D. C.; Barbu, E. Butylglyceryl pectin nanoparticles: Synthesis, formulation and characterization. Polymers 2019, 11, 789.

    CAS  Google Scholar 

  87. Rediguieri, C. F.; de Freitas, O.; Lettinga, M. P.; Tuinier, R. Thermodynamic incompatibility and complex formation in pectin/caseinate mixtures. Biomacromolecules 2007, 8, 3345–3354.

    CAS  Google Scholar 

  88. Luo, Y. C.; Pan, K.; Zhong, Q. X. Casein/pectin nanocomplexes as potential oral delivery vehicles. Int. J. Pharm. 2015, 486, 59–68.

    CAS  Google Scholar 

  89. Wusigale; Liang, L.; Luo, Y. C. Casein and pectin: Structures, interactions, and applications. Trends Food Sci. Technol. 2020, 97, 391–403.

    CAS  Google Scholar 

  90. Gao, X.; Zhang, J.; Xu, Q.; Huang, Z.; Wang, Y. Y.; Shen, Q. Hyaluronic acid-coated cationic nanostructured lipid carriers for oral vincristine sulfate delivery. Drug Dev. Ind. Pharm. 2017, 43, 661–667.

    CAS  Google Scholar 

  91. Yu, J. C.; Zhang, Y. Q.; Wang, J. Q.; Wen, D.; Kahkoska, A. R.; Buse, J. B.; Gu, Z. Glucose-responsive oral insulin delivery for postprandial glycemic regulation. Nano Res. 2019, 12, 1539–1545.

    CAS  Google Scholar 

  92. Shuddhodana; Judeh, Z. Alginate-coating of artemisinin-loaded cochleates results in better control over gastro-intestinal release for effective oral delivery. J. Drug Deliv. Sci. Technol. 2019, 52, 27–36.

    CAS  Google Scholar 

  93. Jain, S.; Valvi, P. U.; Swarnakar, N. K.; Thanki, K. Gelatin coated hybrid lipid nanoparticles for oral delivery of amphotericin B. Mol. Pharm. 2012, 9, 2542–2553.

    CAS  Google Scholar 

  94. Joshi, N.; Saha, R.; Shanmugam, T.; Balakrishnan, B.; More, P.; Banerjee, R. Carboxymethyl-chitosan-tethered lipid vesicles: Hybrid nanoblanket for oral delivery of paclitaxel. Biomacromolecules 2013, 14, 2272–2282.

    CAS  Google Scholar 

  95. Venkatesan, N.; Vyas, S. P. Polysaccharide coated liposomes for oral immunization—development and characterization. Int. J. Pharm. 2000, 203, 169–177.

    CAS  Google Scholar 

  96. García-Fuentes, M.; Torres, D.; Alonso, M. J. Design of lipid nanoparticles for the oral delivery of hydrophilic macromolecules. Colloids Surf. B Biointerf. 2003, 27, 159–168.

    Google Scholar 

  97. Feeney, O. M.; Williams, H. D.; Pouton, C. W.; Porter, C. J. H. “Stealth’ lipid-based formulations: Poly (ethylene glycol)-mediated digestion inhibition improves oral bioavailability of a model poorly water soluble drug. J. Control. Release 2014, 192, 219–227.

    CAS  Google Scholar 

  98. Suk, J. S.; Xu, Q. G.; Kim, N.; Hanes, J.; Ensign, L. M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev. 2016, 99, 28–51.

    CAS  Google Scholar 

  99. Zhang, X. W.; Chen, G. J.; Zhang, T. P.; Ma, Z. G.; Wu, B. J. Effects of PEGylated lipid nanoparticles on the oral absorption of one BCS II drug: A mechanistic investigation. Int. J. Nanomedicine 2014, 9, 5503–5514.

    CAS  Google Scholar 

  100. Li, H. P.; Guissi, N. E. I.; Su, Z. G.; Ping, Q. E.; Sun, M. J. Effects of surface hydrophilic properties of PEG-based mucus-penetrating nanostructured lipid carriers on oral drug delivery. RSC Adv. 2016, 6, 84164–84176.

    CAS  Google Scholar 

  101. Kashanian, S.; Rostami, E. PEG-stearate coated solid lipid nanoparticles as levothyroxine carriers for oral administration. J. Nanopart. Res. 2014, 16, 2293.

    Google Scholar 

  102. Eldridge, J. H.; Hammond, C. J.; Meulbroek, J. A.; Staas, J. K.; Gilley, R. M.; Tice, T. R. Controlled vaccine release in the gutassociated lymphoid tissues. I. Orally administered biodegradable microspheres target the Peyer’s patches. J. Control. Release 1990, 11, 205–214.

    CAS  Google Scholar 

  103. Yuan, H.; Chen, C. Y.; Chai, G. H.; Du, Y. Z.; Hu, F. Q. Improved transport and absorption through gastrointestinal tract by PEGylated solid lipid nanoparticles. Mol. Pharm. 2013, 10, 1865–1873.

    CAS  Google Scholar 

  104. Wang, Y. Y.; Lai, S. K.; Suk, J. S.; Pace, A.; Cone, R.; Hanes, J. Addressing the PEG mucoadhesivity paradox to engineer nanoparticles that “slip” through the human mucus barrier. Angew. Chem., Int. Ed. 2008, 47, 9726–9729.

    CAS  Google Scholar 

  105. Hattori, Y.; Maitani, Y. Enhanced in vitro DNA transfection efficiency by novel folate-linked nanoparticles in human prostate cancer and oral cancer. J. Control. Release 2004, 97, 173–183.

    CAS  Google Scholar 

  106. Fan, T. T.; Chen, C. H.; Guo, H.; Xu, J.; Zhang, J.; Zhu, X.; Yang, Y.; Zhou, Z.; Li, L.; Huang, Y. Design and evaluation of solid lipid nanoparticles modified with peptide ligand for oral delivery of protein drugs. Eur. J. Pharm. Biopharm. 2014, 88, 518–528.

    CAS  Google Scholar 

  107. Chen, D.; Xia, D. N.; Li, X. Y.; Zhu, Q. L.; Yu, H. Z.; Zhu, C. L.; Gan, Y. Comparative study of Pluronic® F127-modified liposomes and chitosan-modified liposomes for mucus penetration and oral absorption of cyclosporine A in rats. Int. J. Pharm. 2013, 449, 1–9.

    CAS  Google Scholar 

  108. Ling, G. X.; Zhang, P.; Zhang, W. P.; Sun, J.; Meng, X. X.; Qin, Y. M.; Deng, Y. H.; He, Z. G. Development of novel self-assembled DS-PLGA hybrid nanoparticles for improving oral bioavailability of vincristine sulfate by P-gp inhibition. J. Control. Release 2010, 148, 241–248.

    CAS  Google Scholar 

  109. Yu, F.; Ao, M. T.; Zheng, X.; Li, N. N.; Xia, J. J.; Li, Y.; Li, D. H.; Hou, Z. Q.; Qi, Z. Q.; Chen, X. D. PEG-lipid-PLGA hybrid nanoparticles loaded with berberine-phospholipid complex to facilitate the oral delivery efficiency. Drug Deliv. 2017, 24, 825–833.

    CAS  Google Scholar 

  110. Yin, J. T.; Hou, Y. T.; Song, X. Y.; Wang, P. Q.; Li, Y. Cholate-modified polymer-lipid hybrid nanoparticles for oral delivery of quercetin to potentiate the antileukemic effect. Int. J. Nanomedicine 2019, 14, 4045–4057.

    CAS  Google Scholar 

  111. Liu, Y.; Jiang, Z. F.; Hou, X. F.; Xie, X. M.; Shi, J. P.; Shen, J. Y.; He, Y. Z.; Wang, Z.; Feng, N. P. Functional lipid polymeric nanoparticles for oral drug delivery: Rapid mucus penetration and improved cell entry and cellular transport. Nanomedicine Nanotechnol. Biol. Med. 2019, 21, 102075.

    CAS  Google Scholar 

  112. Li, X. Y.; Guo, S. Y.; Zhu, C. L.; Zhu, Q. L.; Gan, Y.; Rantanen, J.; Rahbek, U. L.; Hovgaard, L.; Yang, M. S. Intestinal mucosa permeability following oral insulin delivery using core shell corona nanolipoparticles. Biomaterials 2013, 34, 9678–9687.

    CAS  Google Scholar 

  113. Ma, T. T.; Wang, L. Y.; Yang, T. Y.; Ma, G. H.; Wang, S. L. M-cell targeted polymeric lipid nanoparticles containing a toll-like receptor agonist to boost oral immunity. Int. J. Pharm. 2014, 473, 296–303.

    CAS  Google Scholar 

  114. Beltrán-Gracia, E.; López-Camacho, A.; Higuera-Ciapara, I.; Velázquez-Fernández, J. B.; Vallejo-Cardona, A. A. Nanomedicine review: Clinical developments in liposomal applications. Cancer Nanotechnol. 2019, 10, 11.

    Google Scholar 

  115. Bulbake, U.; Doppalapudi, S.; Kommineni, N.; Khan, W. Liposomal formulations in clinical use: An updated review. Pharmaceutics 2017, 9, 12.

    Google Scholar 

  116. Anselmo, A. C.; Mitragotri, S. Nanoparticles in the clinic: An update. Bioeng. Transl. Med. 2019, 4, e10143.

    Google Scholar 

  117. Jain, A.; Sharma, G.; Kushwah, V.; Garg, N. K.; Kesharwani, P.; Ghoshal, G.; Singh, B.; Shivhare, U. S.; Jain, S.; Katare, O. P. Methotrexate and beta-carotene loaded-lipid polymer hybrid nanoparticles: A preclinical study for breast cancer. Nanomedicine 2017, 12, 1851–1872.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yangchao Luo.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Luo, Y. Fabrication strategies and supramolecular interactions of polymer-lipid complex nanoparticles as oral delivery systems. Nano Res. 14, 4487–4501 (2021). https://doi.org/10.1007/s12274-021-3450-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3450-8

Keywords

  • oral delivery
  • nanoparticles
  • polymer-lipid complex
  • core-shell
  • interactions