Skip to main content

Advertisement

Log in

Materials and devices for flexible and stretchable photodetectors and light-emitting diodes

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

An Erratum to this article was published on 11 June 2021

This article has been updated

Abstract

Recently, significant efforts have been directed at overcoming the limitations of conventional rigid optoelectronic devices, particularly their poor mechanical stability under bending, folding, and stretching deformations. One of major approaches for rendering optoelectronic devices mechanically deformable is to replace the conventional electronic/optoelectronic materials with functional nanomaterials or organic materials that are intrinsically flexible/stretchable. Further, advanced device designs and unconventional fabrication methods have also contributed to the development of soft optoelectronic devices. Accordingly, new devices such as bio-inspired curved image sensors, wearable light emitting devices, and deformable bio-integrated optoelectronic devices have been developed. In this review, recent progress in the development of soft optoelectronic materials and devices is outlined. First, various materials such as nanomaterials, organic materials, and their hybrids that are suitable for developing deformable photodetectors, are presented. Then, the nanomaterials and organic/polymeric materials that are applicable in deformable light-emitting diodes are described. Finally, representative system-level applications of flexible and stretchable photodetectors and light-emitting diodes are reviewed, and future prospects are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Change history

References

  1. Kim, H. S.; Brueckner, E.; Song, J. Z.; Li, Y. H.; Kim, S.; Lu, C. F.; Sulkin, J.; Choquette, K.; Huang, Y. G.; Nuzzo, R. G. et al. Unusual strategies for using indium gallium nitride grown on silicon (111) for solid-state lighting. Proc. Natl. Acad. Sci. USA 2011, 108, 10072–10077.

    Article  Google Scholar 

  2. Kim, T. I.; Jung, Y. H.; Song, J. Z.; Kim, D.; Li, Y. H.; Kim, H. S.; Song, I. S.; Wierer, J. J.; Pao, H. A.; Huang, Y. G. et al. High-efficiency, microscale GaN light-emitting diodes and their thermal properties on unusual substrates. Small 2012, 8, 1643–1649.

    Article  CAS  Google Scholar 

  3. Kim, R. H.; Kim, D. H.; Xiao, J. L.; Kim, B. H.; Park, S. I.; Panilaitis, B.; Ghaffari, R.; Yao, J. M.; Li, M. et al. Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics. Nat. Mater. 2010, 9, 929–937.

    Article  CAS  Google Scholar 

  4. Khang, D. Y.; Jiang, H. Q.; Huang, Y.; Rogers, J. A. A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science 2006, 311, 208–212.

    Article  CAS  Google Scholar 

  5. Kim, D. H.; Lu, N. S.; Ma, R.; Kim, Y. S.; Kim, R. H.; Wang, S. D.; Wu, J.; Won, S. M.; Tao, H.; Islam, A. et al. Epidermal electronics. Science 2011, 333, 838–843.

    Article  CAS  Google Scholar 

  6. Kim, D. H.; Ahn, J. H.; Choi, W. M.; Kim, H. S.; Kim, T. H.; Song, J. Z.; Huang, Y. Y.; Liu, Z. J.; Rogers, J. A. Stretchable and foldable silicon integrated circuits. Science 2008, 320, 507–511.

    Article  CAS  Google Scholar 

  7. Joo, H.; Jung, D.; Sunwoo, S. H.; Koo, J. H.; Kim, D. H. Material design and fabrication strategies for stretchable metallic nanocomposites. Small 2020, 16, 1906270.

    Article  CAS  Google Scholar 

  8. Lee, H.; Kim, I.; Kim, M.; Lee, H. Moving beyond flexible to stretchable conductive electrodes using metal nanowires and graphenes. Nanoscale 2016, 8, 1789–1822.

    Article  CAS  Google Scholar 

  9. Park, M.; Do, K.; Kim, J.; Son, D.; Koo, J. H.; Park, J.; Song, J. K.; Kim, J. H.; Lee, M.; Hyeon, T. et al. Oxide nanomembrane hybrids with enhanced mechano- and thermo-sensitivity for semitransparent epidermal electronics. Adv. Healthc. Mater. 2015, 4, 992–997.

    Article  CAS  Google Scholar 

  10. Lee, M.; Lee, W.; Choi, S.; Jo, J. W.; Kim, J.; Park, S. K.; Kim, Y. H. Brain-inspired photonic neuromorphic devices using photodynamic amorphous oxide semiconductors and their persistent photoconductivity. Adv. Mater. 2017, 29, 1700951.

    Article  CAS  Google Scholar 

  11. Song, Y. M.; Xie, Y. Z.; Malyarchuk, V.; Xiao, J. L.; Jung, I.; Choi, K. J.; Liu, Z. J.; Park, H.; Lu, C. F.; Kim, R. H. et al. Digital cameras with designs inspired by the arthropod eye. Nature 2013, 497, 95–99.

    Article  CAS  Google Scholar 

  12. Jung, I.; Xiao, J. L.; Malyarchuk, V.; Lu, C. F.; Li, M.; Liu, Z. J.; Yoon, J.; Huang, Y. G.; Rogers, J. A. Dynamically tunable hemispherical electronic eye camera system with adjustable zoom capability. Proc. Natl. Acad. Sci. USA 2011, 108, 1788–1793.

    Article  Google Scholar 

  13. Shin, G.; Jung, I.; Malyarchuk, V.; Song, J. Z.; Wang, S. D.; Ko, H. C.; Huang, Y. G.; Ha, J. S.; Rogers, J. A. Micromechanics and advanced designs for curved photodetector arrays in hemispherical electronic-eye cameras. Small 2010, 6, 851–856.

    Article  CAS  Google Scholar 

  14. Kim, M. S.; Lee, G. J.; Choi, C.; Kim, M. S.; Lee, M.; Liu, S. Y.; Cho, K. W.; Kim, H. M.; Cho, H.; Choi, M. K. et al. An aquatic-vision-inspired camera based on a monocentric lens and a silicon nanorod photodiode array. Nat. Electron. 2020, 3, 546–553.

    Article  Google Scholar 

  15. Choi, M. K.; Yang, J.; Kang, K.; Kim, D. C.; Choi, C.; Park, C.; Kim, S. J.; Chae, S. I.; Kim, T. H.; Kim, J. H. et al. Wearable red-green-blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing. Nat. Commun. 2015, 6, 7149.

    Article  CAS  Google Scholar 

  16. Kim, J.; Shim, H. J.; Yang, J.; Choi, M. K.; Kim, D. C.; Kim, J.; Hyeon, T.; Kim, D. H. Ultrathin quantum dot display integrated with wearable electronics. Adv. Mater. 2017, 29, 1700217.

    Article  CAS  Google Scholar 

  17. Koo, J. H.; Kim, D. C.; Shim, H. J.; Kim, T. H.; Kim, D. H. Flexible and stretchable smart display: Materials, fabrication, device design, and system integration. Adv. Funct. Mater. 2018, 28, 1801834.

    Article  CAS  Google Scholar 

  18. Shin, G.; Gomez, A. M.; Al-Hasani, R.; Jeong, Y. R.; Kim, J.; Xie, Z. Q.; Banks, A.; Lee, S. M.; Han, S. Y.; Yoo, C. J. et al. Flexible near-field wireless optoelectronics as subdermal implants for broad applications in optogenetics. Neuron 2017, 93, 509–521.e3.

    Article  CAS  Google Scholar 

  19. Park, S. I.; Shin, G.; McCall, J. G.; Al-Hasani, R.; Norris, A.; Xia, L.; Brenner, D. S.; Noh, K. N.; Bang, S. Y.; Bhatti, D. L. et al. Stretchable multichannel antennas in soft wireless optoelectronic implants for optogenetics. Proc. Natl. Acad. Sci. USA 2016, 113, E8169–E8177.

    Article  CAS  Google Scholar 

  20. Kim, T. I.; McCall, J. G.; Jung, Y. H.; Huang, X.; Siuda, E. R.; Li, Y. H.; Song, J. Z.; Song, Y. M.; Pao, H. A.; Kim, R. H. et al. Injectable, cellular-scale optoelectronics with applications for wireless optogenetics. Science 2013, 340, 211–216.

    Article  CAS  Google Scholar 

  21. Park, S. I.; Brenner, D. S.; Shin, G.; Morgan, C. D.; Copits, B. A.; Chung, H. U.; Pullen, M. Y.; Noh, K. N.; Davidson, S.; Oh, S. J. et al. Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics. Nat. Biotechnol. 2015, 33, 1280–1286.

    Article  CAS  Google Scholar 

  22. Kim, J.; Salvatore, G. A.; Araki, H.; Chiarelli, A. M.; Xie, Z. Q.; Banks, A.; Sheng, X.; Liu, Y. H.; Lee, J. W.; Jang, K. I. et al. Battery-free, stretchable optoelectronic systems for wireless optical characterization of the skin. Sci. Adv. 2016, 2, e1600418.

    Article  Google Scholar 

  23. Lee, G. H.; Moon, H.; Kim, H.; Lee, G. H.; Kwon, W.; Yoo, S.; Myung, D.; Yun, S. H.; Bao, Z. N.; Hahn, S. K. Multifunctional materials for implantable and wearable photonic healthcare devices. Nat. Rev. Mater. 2020, 5, 149–165.

    Article  Google Scholar 

  24. Joe, D. J.; Kim, S.; Park, J. H.; Park, D. Y.; Lee, H. E.; Im, T. H.; Choi, I.; Ruoff, R. S.; Lee, K. J. Laser-material interactions for flexible applications. Adv. Mater. 2017, 29, 1606586.

    Article  CAS  Google Scholar 

  25. Karl, M.; Glackin, J. M. E.; Schubert, M.; Kronenberg, N. M.; Turnbull, G. A.; Samuel, I. D. W.; Gather, M. C. Flexible and ultra-lightweight polymer membrane lasers. Nat. Commun. 2018, 9, 1525.

    Article  CAS  Google Scholar 

  26. Zhang, H.; Rogers, J. A. Recent advances in flexible inorganic light emitting diodes: From materials design to integrated optoelectronic platforms. Adv. Opt. Mater. 2019, 7, 1800936.

    Article  CAS  Google Scholar 

  27. Choi, C.; Choi, M. K.; Liu, S. Y.; Kim, M. S.; Park, O. K.; Im, C.; Kim, J.; Qin, X. L.; Lee, G. J.; Cho, K. W. et al. Human eye-inspired soft optoelectronic device using high-density MoS2-graphene curved image sensor array. Nat. Commun. 2017, 8, 1664.

    Article  CAS  Google Scholar 

  28. Lee, Y.; Kim, J.; Koo, J. H.; Kim, T. H.; Kim, D. H. Nanomaterials for bioelectronics and integrated medical systems. Korean J. Chem. Eng. 2018, 35, 1–11.

    Article  CAS  Google Scholar 

  29. Song, J. K.; Do, K.; Koo, J. H.; Son, D.; Kim, D. H. Nanomaterials-based flexible and stretchable bioelectronics. MRS Bull. 2019, 44, 643–656.

    Article  CAS  Google Scholar 

  30. Choi, S.; Lee, H.; Ghaffari, R.; Hyeon, T.; Kim, D. H. Recent advances in flexible and stretchable bio-electronic devices integrated with nanomaterials. Adv. Mater. 2016, 28, 4203–4218.

    Article  CAS  Google Scholar 

  31. Lochner, C. M.; Khan, Y.; Pierre, A.; Arias, A. C. All-organic optoelectronic sensor for pulse oximetry. Nat. Commun. 2014, 5, 5745.

    Article  CAS  Google Scholar 

  32. Liu, J.; Wang, J. C.; Zhang, Z. T.; Molina-Lopez, F.; Wang, G. J. N.; Schroeder, B. C.; Yan, X. Z.; Zeng, Y. T.; Zhao, O.; Tran, H. et al. Fully stretchable active-matrix organic light-emitting electrochemical cell array. Nat. Commun. 2020, 11, 3362.

    Article  CAS  Google Scholar 

  33. Lee, Y.; Oh, J. Y.; Xu, W. T.; Kim, O.; Kim, T. R.; Kang, J. H.; Kim, Y.; Son, D.; Tok, J. B. H.; Park, M. J. et al. Stretchable organic optoelectronic sensorimotor synapse. Sci. Adv. 2018, 4, eaat7387.

    Article  CAS  Google Scholar 

  34. Chow, P. C. Y.; Someya, T. Organic photodetectors for next-generation wearable electronics. Adv. Mater. 2020, 32, 1902045.

    Article  CAS  Google Scholar 

  35. Ko, H. C.; Stoykovich, M. P.; Song, J. Z.; Malyarchuk, V.; Choi, W. M.; Yu, C. J.; Geddes III, J. B.; Xiao, J. L.; Wang, S. D.; Huang, Y. G. et al. A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature 2008, 454, 748–753.

    Article  CAS  Google Scholar 

  36. Zhang, K.; Jung, Y. H.; Mikael, S.; Seo, J. H.; Kim, M.; Mi, H. Y.; Zhou, H.; Xia, Z. Y.; Zhou, W. D.; Gong, S. Q. et al. Origami silicon optoelectronics for hemispherical electronic eye systems. Nat. Commun. 2017, 8, 1782.

    Article  CAS  Google Scholar 

  37. Sheng, X.; Yu, C. J.; Malyarchuk, V.; Lee, Y. H.; Kim, S.; Kim, T.; Shen, L.; Horng, C.; Lutz, J.; Giebink, N. C. et al. Silicon-based visible-blind ultraviolet detection and imaging using down-shifting luminophores. Adv. Opt. Mater. 2014, 2, 314–319.

    Article  CAS  Google Scholar 

  38. Kim, Y. J.; Yoo, Y. J.; Kang, M. H.; Ko, J. H.; Park, M. R.; Yoo, D. E.; Lee, D. W.; Kim, K.; Kang, I. S.; Song, Y. M. Mechanotunable optical filters based on stretchable silicon nanowire arrays. Nanophotonics 2020, 9, 3287–3293.

    Article  CAS  Google Scholar 

  39. Choi, C.; Leem, J.; Kim, M. S.; Taqieddin, A.; Cho, C.; Cho, K. W.; Lee, G. J.; Seung, H.; Bae, H. J.; Song, Y. M. et al. Curved neuromorphic image sensor array using a MoS2-organic heterostructure inspired by the human visual recognition system. Nat. Commun. 2020, 11, 5934.

    Article  CAS  Google Scholar 

  40. Choi, M.; Bae, S. R.; Hu, L. H.; Hoang, A. T.; Kim, S. Y.; Ahn, J. H. Full-color active-matrix organic light-emitting diode display on human skin based on a large-area MoS2 backplane. Sci. Adv. 2020, 6, eabb5898.

    Article  CAS  Google Scholar 

  41. Kim, T. Y.; Ha, J.; Cho, K.; Park, J.; Seo, J.; Park, J.; Kim, J. K.; Chung, S.; Hong, Y.; Lee, T. Transparent large-area MoS2 phototransistors with inkjet-printed components on flexible platforms. ACS Nano 2017, 11, 10273–10280.

    Article  CAS  Google Scholar 

  42. Lee, W.; Lee, J.; Yun, H.; Kim, J.; Park, J.; Choi, C.; Kim, D. C.; Seo, H.; Lee, H.; Yu, J. W. et al. High-resolution spin-on-patterning of perovskite thin films for a multiplexed image sensor array. Adv. Mater. 2017, 29, 1702902.

    Article  CAS  Google Scholar 

  43. Peng, Z. Y.; Xu, J. L.; Zhang, J. Y.; Gao, X.; Wang, S. D. Solution-processed high-performance hybrid photodetectors enhanced by perovskite/MoS2 bulk heterojunction. Adv. Mater. Interfaces 2018, 5, 1800505.

    Article  CAS  Google Scholar 

  44. Gu, L. L.; Poddar, S.; Lin, Y. J.; Long, Z. H.; Zhang, D. Q.; Zhang, Q. P.; Shu, L.; Qiu, X.; Kam, M.; Javey, A. et al. A biomimetic eye with a hemispherical perovskite nanowire array retina. Nature 2020, 581, 278–282.

    Article  CAS  Google Scholar 

  45. Yang, J.; Choi, M. K.; Yang, U. J.; Kim, S. Y.; Kim, Y. S.; Kim, J. H.; Kim, D. H.; Hyeon, T. Toward full-color electroluminescent quantum dot displays. Nano Lett. 2021, 21, 26–33.

    Article  CAS  Google Scholar 

  46. Konstantatos, G.; Howard, I.; Fischer, A.; Hoogland, S.; Clifford, J.; Klem, E.; Levina, L. Sargent, E. H. Ultrasensitive solution-cast quantum dot photodetectors. Nature 2006, 442, 180–183.

    Article  CAS  Google Scholar 

  47. Kim, J.; Kwon, S. M.; Kang, Y. K.; Kim, Y. H.; Lee, M. J.; Han, K.; Facchetti, A.; Kim, M. G.; Park, S. K. A skin-like two-dimensionally pixelized full-color quantum dot photodetector. Sci. Adv. 2019, 5, eaax8801.

    Article  CAS  Google Scholar 

  48. Kim, B. H.; Onses, M. S.; Lim, J. B.; Nam, S.; Oh, N.; Kim, H.; Yu, K. J.; Lee, J. W.; Kim, J. H.; Kang, S. K. et al. High-resolution patterns of quantum dots formed by electrohydrodynamic jet printing for light-emitting diodes. Nano Lett. 2015, 15, 969–973.

    Article  CAS  Google Scholar 

  49. Kim, Y. H.; Koh, S.; Lee, H.; Kang, S. M.; Lee, D. C.; Bae, B. S. Photo-patternable quantum dots/siloxane composite with long-term stability for quantum dot color filters. ACS Appl. Mater. Interfaces, 2020, 12, 3961–3968.

    Article  CAS  Google Scholar 

  50. Park, S.; Kim, S. J.; Nam, J. H.; Pitner, G.; Lee, T. H.; Ayzner, A. L.; Wang, H.; Fong, S. W.; Vosgueritchian, M.; Park, Y. J. et al. Significant enhancement of infrared photodetector sensitivity using a semiconducting single-walled carbon nanotube/C60 phototransistor. Adv. Mater. 2015, 27, 759–765.

    Article  CAS  Google Scholar 

  51. Koo, J. H.; Jeong, S.; Shim, H. J.; Son, D.; Kim, J.; Kim, D. C.; Choi, S.; Hong, J. I., Kim, D. H. Wearable electrocardiogram monitor using carbon nanotube electronics and color-tunable organic light-emitting diodes. ACS Nano 2017, 11, 10032–10041.

    Article  CAS  Google Scholar 

  52. Han, T. H.; Lee, Y.; Choi, M. R.; Woo, S. H.; Bae, S. H.; Hong, B. H.; Ahn, J. H. Lee, T. W. Extremely efficient flexible organic light-emitting diodes with modified graphene anode. Nat. Photon. 2012, 6, 105–110.

    Article  CAS  Google Scholar 

  53. Choi, M. K.; Park, I.; Kim, D. C.; Joh, E.; Park, O. K.; Kim, J.; Kim, M.; Choi, C.; Yang, J.; Cho, K. W. et al. Thermally controlled, patterned graphene transfer printing for transparent and wearable electronic/optoelectronic system. Adv. Funct. Mater. 2015, 25, 7109–7118.

    Article  CAS  Google Scholar 

  54. Zhao, Y. B.; Wang, V.; Lien, D. H.; Javey, A. A generic electroluminescent device for emission from infrared to ultraviolet wavelengths. Nat. Electron. 2020, 3, 612–621.

    Article  CAS  Google Scholar 

  55. Park, S.; Fukuda, K.; Wang, M.; Lee, C.; Yokota, T.; Jin, H.; Jinno, H.; Kimura, H. Zalar, P.; Matsuhisa, N. et al. Ultraflexible near-infrared organic photodetectors for conformal photoplethysmogram sensors. Adv. Mater. 2018, 30, 1802359.

    Article  CAS  Google Scholar 

  56. Liu, M. L.; Wang, H. T.; Tang, Q. X.; Zhao, X. L.; Tong, Y. H.; Liu, Y. C. Ultrathin air-stable n-type organic phototransistor array for conformal optoelectronics. Sci. Rep. 2018, 8, 16612.

    Article  CAS  Google Scholar 

  57. Ko, K. J.; Lee, H. B.; Kim, H. M.; Lee, G. J.; Shin, S. R.; Kumar, N.; Song, Y. M.; Kang, J. W. High-performance, color-tunable fiber shaped organic light-emitting diodes. Nanoscale 2018, 10, 16184–16192.

    Article  CAS  Google Scholar 

  58. White, M. S.; Kaltenbrunner, M.; Glowacki, E. D.; Gutnichenko, K.; Kettlgruber, G.; Graz, I.; Aazou, S.; Ulbricht, C.; Egbe, D. A. M.; Miron, M. C. et al. Ultrathin, highly flexible and stretchable PLEDs. Nat. Photon. 2013, 7, 811–816.

    Article  CAS  Google Scholar 

  59. Kee, S.; Kim, N.; Park, B.; Kim, B. S.; Hong, S.; Lee, J. H.; Jeong, S.; Kim, A.; Jang, S. Y.; Lee, K. Highly deformable and see-through polymer light-emitting diodes with all-conducting-polymer electrodes. Adv. Mater. 2018, 30, 1703437.

    Article  CAS  Google Scholar 

  60. Liu, K.; Tran, H.; Feig, V. R.; Bao, Z. N. Biodegradable and stretchable polymeric materials for transient electronic devices. MRS Bull. 2020, 45, 96–102.

    Article  CAS  Google Scholar 

  61. Kim, D. H.; Lu, N. S.; Huang, Y. G.; Rogers, J. A. Materials for stretchable electronics in bioinspired and biointegrated devices. MRS Bull. 2012, 37, 226–235.

    Article  CAS  Google Scholar 

  62. Kim, D. C.; Shim, H. J.; Lee, W.; Koo, J. H.; Kim, D. H. Material-based approaches for the fabrication of stretchable electronics. Adv. Mater. 2020, 32, 1902743.

    Article  CAS  Google Scholar 

  63. Choi, C.; Lee, Y.; Cho, K. W.; Koo, J. H.; Kim, D. H. Wearable and implantable soft bioelectronics using two-dimensional materials. Acc. Chem. Res. 2019, 52, 73–81.

    Article  CAS  Google Scholar 

  64. Song, E. M.; Li, J. H.; Won, S. M.; Bai, W. B.; Rogers, J. A. Materials for flexible bioelectronic systems as chronic neural interfaces. Nat. Mater. 2020, 19, 590–603.

    Article  CAS  Google Scholar 

  65. Kim, R. H.; Tao, H.; Kim, T. I.; Zhang, Y. H.; Kim, S.; Panilaitis, B.; Yang, M. M.; Kim, D. H.; Jung, Y. H.; Kim, B. H.; Li, Y. H. et al. Materials and designs for wirelessly powered implantable light-emitting systems. Small 2012, 8, 2812–2818.

    Article  CAS  Google Scholar 

  66. Fan, J. A.; Yeo, W. H.; Su, Y. W.; Hattori, Y.; Lee, W.; Jung, S. Y.; Zhang, Y. H.; Liu, Z. J.; Cheng, H. Y.; Falgout, L. et al. Fractal design concepts for stretchable electronics. Nat. Commun. 2014, 5, 3266.

    Article  CAS  Google Scholar 

  67. Hong, S.; Lee, S.; Kim, D. H. Materials and design strategies of stretchable electrodes for electronic skin and its applications. Proc. IEEE 2019, 107, 2185–2197.

    Article  CAS  Google Scholar 

  68. Lee, H. C.; Hsieh, E. Y.; Yong, K.; Nam, S. Multiaxially-stretchable kirigami-patterned mesh design for graphene sensor devices. Nano Res. 2020, 13, 1406–1412.

    Article  CAS  Google Scholar 

  69. Koo, J. H.; Song, J. K.; Yoo, S.; Sunwoo, S. H.; Son, D.; Kim, D. H. Unconventional device and material approaches for monolithic biointegration of implantable sensors and wearable electronics. Adv. Mater. Technol. 2020, 5, 2000407.

    Article  CAS  Google Scholar 

  70. Choi, S.; Han, S. I.; Kim, D.; Hyeon, T.; Kim, D. H. Highperformance stretchable conductive nanocomposites: Materials, processes, and device applications. Chem. Soc. Rev. 2019, 6, 1566–1595.

    Article  Google Scholar 

  71. Song, E. M.; Chiang, C. H.; Li, R.; Jin, X.; Zhao, J. N.; Hill, M.; Xia, Y.; Li, L. Z.; Huang, Y. M.; Won, S. M. et al. Flexible electronic/optoelectronic microsystems with scalable designs for chronic biointegration. Proc. Natl. Acad. Sci. USA 2019, 116, 15398–15406.

    Article  CAS  Google Scholar 

  72. Xu, S.; Yan, Z.; Jang, K. I.; Huang, W.; Fu, H. R.; Kim, J.; Wei, Z. J.; Flavin, M.; McCracken, J.; Wang, R. H. et al. Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling. Science 2015, 347, 154–159.

    Article  CAS  Google Scholar 

  73. McCall, J. G.; Kim, T. I.; Shin, G.; Huang, X.; Jung, Y. H.; Al-Hasani, R.; Omenetto, F. G.; Bruchas, M. R.; Rogers, J. A. Fabrication and application of flexible, multimodal light-emitting devices for wireless optogenetics. Nat. Protoc. 2013, 8, 2413–2428.

    Article  CAS  Google Scholar 

  74. Oh, N.; Kim, B. H.; Cho, S. Y.; Nam, S.; Rogers, S. P.; Jiang, Y. R.; Flanagan, J. C.; Zhai, Y.; Kim, J. H.; Lee. J. et al. Double-heterojunction nanorod light-responsive LEDs for display applications. Science 2017, 355, 616–619.

    Article  CAS  Google Scholar 

  75. Lu, D.; Liu, T. L.; Chang, J. K.; Peng, D. S.; Zhang, Y.; Shin, J.; Hang, T.; Bai, W. B.; Yang, Q. S.; Rogers, J. A. Transient light-emitting diodes constructed from semiconductors and transparent conductors that biodegrade under physiological conditions. Adv. Mater. 2019, 31, 1902739.

    Article  CAS  Google Scholar 

  76. Lee, B.; Oh, J. Y.; Cho, H.; Joo, C. W.; Yoon, H.; Jeong, S.; Oh, E.; Byun, J.; Kim, H.; Lee, S. et al. Ultraflexible and transparent electroluminescent skin for real-time and super-resolution imaging of pressure distribution. Nat. Commun. 2020, 11, 663.

    Article  CAS  Google Scholar 

  77. Zhou, Y. L.; Zhao, C. S.; Wang, J. C.; Li, Y. Z.; Li, C. X.; Zhu, H. Y.; Feng, S. X.; Cao, S. T.; Kong, D. S. Stretchable high-permittivity nanocomposites for epidermal alternating-current electroluminescent displays. ACS Mater. Lett. 2019, 1, 511–518.

    Article  CAS  Google Scholar 

  78. Yang, J. C.; Mun, J.; Kwon, S. Y.; Park, S.; Bao, Z. N.; Park, S. Electronic skin: Recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics. Adv. Mater. 2019, 31, 1904765.

    Article  CAS  Google Scholar 

  79. Kim, J.; Gutruf, P.; Chiarelli, A. M.; Heo, S. Y.; Cho, K.; Xie, Z. Q.; Banks, A.; Han, S.; Jang, K. I.; Lee, J. W. et al. Miniaturized battery-free wireless systems for wearable pulse oximetry. Adv. Funct. Mater. 2017, 27, 1604373.

    Article  CAS  Google Scholar 

  80. Shin, J.; Liu, Z. H.; Bai, W. B.; Liu, Y. H.; Yan, Y.; Xue, Y. G.; Kandela, I.; Pezhouh, M.; MacEwan, M. R.; Huang, Y. G. et al. Bioresorbable optical sensor systems for monitoring of intracranial pressure and temperature. Sci. Adv. 2019, 5, eaaw1899.

    Article  CAS  Google Scholar 

  81. Yokota, T.; Zalar, P.; Kaltenbrunner, M.; Jinno, H.; Matsuhisa, N.; Kitanosako, H.; Tachibana, Y.; Yukita, W.; Koizumi, M.; Someya, T. Ultraflexible organic photonic skin. Sci. Adv. 2016, 2, e1501856.

    Article  CAS  Google Scholar 

  82. Zhang, H.; Gutruf, P.; Meacham, K.; Montana, M. C.; Zhao, X. Y.; Chiarelli, A. M.; Vazquez-Guardado, A.; Norris, A.; Lu, L. Y.; Guo, Q. L. et al. Wireless, battery-free optoelectronic systems as subdermal implants for local tissue oximetry. Sci. Adv. 2019, 5, eaaw0873.

    Article  CAS  Google Scholar 

  83. Zhang, Y.; Castro, D. C.; Han, Y.; Wu, Y. X.; Guo, H. X.; Weng, Z. Y.; Xue, Y. G.; Ausra, J.; Wang, X. J.; Li, R. et al. Battery-free, lightweight, injectable microsystem for in vivo wireless pharmacology and optogenetics. Proc. Natl. Acad. Sci. USA 2019, 116, 21427–21437.

    Article  CAS  Google Scholar 

  84. Gutruf, P.; Krishnamurthi, V.; Vázquez-Guardado, A.; Xie, Z. Q.; Banks, A.; Su, C. J.; Xu, Y. H.; Haney, C. R.; Waters, E. A.; Kandela, I. et al. Fully implantable optoelectronic systems for battery-free, multimodal operation in neuroscience research. Nat. Electron. 2018, 1, 652–660.

    Article  Google Scholar 

  85. Zhang, Y.; Mickle, A. D.; Gutruf, P.; McIlvried, L. A.; Guo, H. X.; Wu, Y. X.; Golden, J. P.; Xue, Y. G.; Grajales-Reyes, J. G.; Wang, X. J. et al. Battery-free, fully implantable optofluidic cuff system for wireless optogenetic and pharmacological neuromodulation of peripheral nerves. Sci. Adv. 2019, 5, eaaw5296.

    Article  CAS  Google Scholar 

  86. Lee, W. Y.; Ha, S.; Lee, H.; Bae, J. H.; Jang, B.; Kwon, H. J.; Yun, Y.; Lee, S.; Jang, J. High-detectivity flexible near-infrared photodetector based on chalcogenide Ag2Se nanoparticles. Adv. Opt. Mater. 2019, 7, 1900812.

    Article  CAS  Google Scholar 

  87. Seo, J. H.; Zhang, K.; Kim, M.; Zhao, D. Y.; Yang, H. J.; Zhou, W. D.; Ma, Z. Q. Flexible phototransistors based on single-crystalline silicon nanomembranes. Adv. Opt. Mater. 2016, 4, 120–125.

    Article  CAS  Google Scholar 

  88. Yoon, J.; Bae, G. Y.; Yoo, S.; Yoo, J. I.; You, N. H.; Hong, W. K.; Ko, H. C. Deep-ultraviolet sensing characteristics of transparent and flexible IGZO thin film transistors. J. Alloys Compd. 2020, 817, 152788.

    Article  CAS  Google Scholar 

  89. Liu, J. Y.; Shabbir, B.; Wang, C. J.; Wan, T.; Ou, Q. D.; Yu, P.; Tadich, A.; Jiao, X. C.; Chu, D. W.; Qi, D. C. et al. Flexible, printable soft-X-ray detectors based on all-inorganic perovskite quantum dots. Adv. Mater. 2019, 31, 1901644.

    Article  CAS  Google Scholar 

  90. Yakunin, S.; Dirin, D. N.; Shynkarenko, Y.; Morad, V.; Cherniukh, I.; Nazarenko, O.; Kreil, D.; Nauser, T.; Kovalenko, M. V. Detection of gamma photons using solution-grown single crystals of hybrid lead halide perovskites. Nat. Photon. 2016, 10, 585–589.

    Article  CAS  Google Scholar 

  91. Tong, S. C.; Yuan, J.; Zhang, C. J.; Wang, C. H.; Liu, B. X.; Shen, J. Q.; Xia, H. Y.; Zou, Y. P.; Xie, H. P.; Sun, J. et al. Large-scale roll-to-roll printed, flexible and stable organic bulk heterojunction photodetector. npj Flex. Electron. 2018, 2, 7.

    Article  CAS  Google Scholar 

  92. Krishna, A.; Kim, J. M.; Leem, J.; Wang, M. C.; Nam, S.; Lee, J. Ultraviolet to mid-infrared emissivity control by mechanically reconfigurable graphene. Nano Lett. 2019, 19, 5086–5092.

    Article  CAS  Google Scholar 

  93. Kim, M.; Kang, P.; Leem, J.; Nam, S. A stretchable crumpled graphene photodetector with plasmonically enhanced photoresponsivity. Nanoscale 2017, 9, 4058–4065.

    Article  CAS  Google Scholar 

  94. Suzuki, D.; Oda, S.; Kawano, Y. A flexible and wearable terahertz scanner. Nat. Photon. 2016, 10, 809–813.

    Article  CAS  Google Scholar 

  95. Kim, R. H.; Kim, S.; Song, Y. M.; Jeong, H.; Kim, T. I.; Lee, J.; Li, X. L.; Choquette, K. D.; Rogers, J. A. Flexible vertical light emitting diodes. Small 2012, 8, 3123–3128.

    Article  CAS  Google Scholar 

  96. Kim, B. H.; Nam, S.; Oh, N.; Cho, S. Y.; Yu, K. J.; Lee, C. H.; Zhang, J. Q.; Deshpande, K.; Trefonas, P.; Kim, J. H. et al. Multilayer transfer printing for pixelated, multicolor quantum dot light-emitting diodes. ACS Nano 2016, 10, 4920–4925.

    Article  CAS  Google Scholar 

  97. Kim, R. H.; Bae, M. H.; Kim, D. G.; Cheng, H. Y.; Kim, B. H.; Kim, D. H.; Li, M.; Wu, J.; Du, F.; Kim, H. S. et al. Stretchable, transparent graphene interconnects for arrays of microscale inorganic light emitting diodes on rubber substrates. Nano Lett. 2011, 11, 3881–3886.

    Article  CAS  Google Scholar 

  98. Park, S. I.; Le, A. P.; Wu, J.; Huang, Y. G.; Li, X. L.; Rogers, J. A. Light emission characteristics and mechanics of foldable inorganic light-emitting diodes. Adv. Mater. 2010, 22, 3062–3066.

    Article  CAS  Google Scholar 

  99. Choi, M. K.; Yang, J.; Kim, D. C.; Dai, Z. H.; Kim, J.; Seung, H.; Kale, V. S.; Sung, S. J.; Park, C. R.; Lu, N. S. et al. Extremely vivid, highly transparent, and ultrathin quantum dot light-emitting diodes. Adv. Mater. 2018, 30, 1703279.

    Article  CAS  Google Scholar 

  100. Kim, J.; Campbell, A. S.; Esteban-Fernández de Ávila, B.; Wang, J. Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 2019, 37, 389–406.

    Article  CAS  Google Scholar 

  101. Park, J.; Kim, J.; Kim, S. Y.; Cheong, W. H.; Jang, J.; Park, Y. G.; Na, K.; Kim, Y. T.; Heo, J. H.; Lee, C. Y. et al. Soft, smart contact lenses with integrations of wireless circuits, glucose sensors, and displays. Sci. Adv. 2018, 4, eaap9841.

    Article  CAS  Google Scholar 

  102. Hong, Y. J.; Lee, H.; Kim, J.; Lee, M.; Choi, H. J.; Hyeon, T.; Kim, D. H. Multifunctional wearable system that integrates sweat-based sensing and vital-sign monitoring to estimate pre-/post-exercise glucose levels. Adv. Funct. Mater. 2018, 28, 1805754.

    Article  CAS  Google Scholar 

  103. Jung, S.; Lee, J.; Hyeon, T.; Lee, M.; Kim, D. H. Fabric-based integrated energy devices for wearable activity monitors. Adv. Mater. 2014, 26, 6329–6334.

    Article  CAS  Google Scholar 

  104. Yokota, T.; Nakamura, T.; Kato, H.; Mochizuki, M.; Tada, M.; Uchida, M.; Lee, S.; Koizumi, M.; Yukita, W.; Takimoto, A. et al. A conformable imager for biometric authentication and vital sign measurement. Nat. Electron. 2020, 3, 113–121.

    Article  Google Scholar 

  105. Wang, C.; Hwang, D.; Yu, Z. B.; Takei, K.; Park, J.; Chen, T.; Ma, B. W.; Javey, A. User-interactive electronic skin for instantaneous pressure visualization. Nat. Mater. 2013, 12, 899–904.

    Article  CAS  Google Scholar 

  106. Song, J. K.; Son, D.; Kim, J.; Yoo, Y. J.; Lee, G. J.; Wang, L.; Choi, M. K.; Yang, J.; Lee, M.; Do, K. et al. Wearable force touch sensor array using a flexible and transparent electrode. Adv. Funct. Mater. 2017, 27, 1605286.

    Article  CAS  Google Scholar 

  107. Lim, S.; Son, D.; Kim, J.; Lee, Y. B.; Song, J. K.; Choi, S.; Lee, D. J.; Kim, J. H.; Lee, M.; Hyeon, T. et al. Transparent and stretchable interactive human machine interface based on patterned graphene heterostructures. Adv. Funct. Mater. 2015, 25, 375–383.

    Article  CAS  Google Scholar 

  108. Kim, E. H.; Cho, S. H.; Lee, J. H.; Jeong, B.; Kim, R. H.; Yu, S.; Lee, T. W.; Shim, W.; Park, C. Organic light emitting board for dynamic interactive display. Nat. Commun. 2017, 8, 14964.

    Article  CAS  Google Scholar 

  109. Choi, S.; Han, S. I.; Jung, D.; Hwang, H. J.; Lim, C.; Bae, S.; Park, O. K.; Tschabrunn, C. M.; Lee, M.; Bae, S. Y. et al. Highly conductive, stretchable and biocompatible Ag-Au core-sheath nanowire composite for wearable and implantable bioelectronics. Nat. Nanotechnol. 2018, 13, 1048–1056.

    Article  CAS  Google Scholar 

  110. Kim, J.; Lee, M.; Shim, H. J.; Ghaffari, R.; Cho, H. R.; Son, D.; Jung, Y. H.; Soh, M.; Choi, C.; Jung, S. et al. Stretchable silicon nanoribbon electronics for skin prosthesis. Nat. Commun. 2014, 5, 5747.

    Article  CAS  Google Scholar 

  111. Son, D.; Lee, J.; Qiao, S. T.; Ghaffari, R.; Kim, J.; Lee, J. E.; Song, C.; Kim, S. J.; Lee, D. J.; Jun, S. W. et al. Multifunctional wearable devices for diagnosis and therapy of movement disorders. Nat. Nanotechnol. 2014, 9, 397–404.

    Article  CAS  Google Scholar 

  112. Choi, M. K.; Park, O. K.; Choi, C.; Qiao, S. T.; Ghaffari, R.; Kim, J.; Lee, D. J.; Kim, M.; Hyun, W.; Kim, S. J. et al. Cephalopod-inspired miniaturized suction cups for smart medical skin. Adv. Healthc. Mater. 2016, 5, 80–87.

    Article  CAS  Google Scholar 

  113. Lee, H.; Lee, Y.; Song, C.; Cho, H. R.; Ghaffari, R.; Choi, T. K.; Kim, K. H.; Lee, Y. B.; Ling, D. S.; Lee, H. et al. An endoscope with integrated transparent bioelectronics and theranostic nanoparticles for colon cancer treatment. Nat. Commun. 2015, 6, 10059.

    Article  CAS  Google Scholar 

  114. Yang, J.; Choi, M. K.; Kim, D. H.; Hyeon, T. Designed assembly and integration of colloidal nanocrystals for device applications. Adv. Mater. 2016, 28, 1176–1207.

    Article  CAS  Google Scholar 

  115. Bae, W. K.; Park, Y. S.; Lim, J.; Lee, D.; Padilha, L. A.; McDaniel, H.; Robel, I.; Lee, C.; Pietryga, J. M.; Klimov, V. I. Controlling the influence of Auger recombination on the performance of quantum-dot light-emitting diodes. Nat. Commun. 2013, 4, 2661.

    Article  CAS  Google Scholar 

  116. Park, S. I.; Xiong, Y. J.; Kim, R. H.; Elvikis, P.; Meitl, M.; Kim, D. H.; Wu, J.; Yoon, J.; Yu, C. J.; Liu, Z. J. et al. Printed assemblies of inorganic light-emitting diodes for deformable and semitransparent displays. Science 2009, 325, 977–981.

    Article  CAS  Google Scholar 

  117. Pimputkar, S.; Speck, J. S.; DenBaars, S. P.; Nakamura, S. Prospects for LED lighting. Nat. Photon. 2009, 3, 180–182.

    Article  CAS  Google Scholar 

  118. Shirasaki, Y.; Supran, G. J.; Bawendi, M. G.; Bulović, V. Emergence of colloidal quantum-dot light-emitting technologies. Nat. Photon. 2013, 7, 13–23.

    Article  CAS  Google Scholar 

  119. Coe-Sullivan, S. Quantum dot developments. Nat. Photon. 2009, 3, 315–316.

    Article  CAS  Google Scholar 

  120. Lee, S.; Yoon, D. E.; Kim, D.; Shin, D. J.; Jeong, B. G.; Lee, D.; Lim, J.; Bae, W. K.; Lim, H. K.; Lee, D. C. Direct cation exchange of CdSe nanocrystals into ZnSe enabled by controlled binding between guest cations and organic ligands. Nanoscale 2019, 11, 15072–15082.

    Article  CAS  Google Scholar 

  121. Sekitani, T.; Nakajima, H.; Maeda, H.; Fukushima, T.; Aida, T.; Hata, K.; Someya, T. Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. Nat. Mater. 2009, 8, 494–499.

    Article  CAS  Google Scholar 

  122. Friend, R. H.; Gymer, R. W.; Holmes, A. B.; Burroughes, J. H.; Marks, R. N.; Taliani, C.; Bradley, D. D. C.; Dos Santos, D. A.; Brédas, J. L.; Lögdlund, M. et al. Electroluminescence in conjugated polymers. Nature 1999, 397, 121–128.

    Article  CAS  Google Scholar 

  123. Liang, J. J.; Li, L.; Niu, X. F.; Yu, Z. B.; Pei, Q. B. Elastomeric polymer light-emitting devices and displays. Nat. Photon. 2013, 7, 817–824.

    Article  CAS  Google Scholar 

  124. Yu, Z. B.; Niu, X. F.; Liu, Z. T.; Pei, Q. B. Intrinsically stretchable polymer light-emitting devices using carbon nanotube-polymer composite electrodes. Adv. Mater. 2011, 23, 3989–3994.

    Article  CAS  Google Scholar 

  125. Teo, M. Y.; Kim, N.; Kee, S.; Kim, B. S.; Kim, G.; Hong, S.; Jung, S.; Lee, K. Highly stretchable and highly conductive PEDOT: PSS/ionic liquid composite transparent electrodes for solution-processed stretchable electronics. ACS Appl. Mater. Interfaces 2017, 9, 819–826.

    Article  CAS  Google Scholar 

  126. Lee, G. J.; Choi, C.; Kim, D. H.; Song, Y. M. Bioinspired artificial eyes: Optic components, digital cameras, and visual prostheses. Adv. Funct. Mater. 2018, 28, 1705202.

    Article  CAS  Google Scholar 

  127. Lee, G. J.; Yoo, Y. J.; Song, Y. M. Recent advances in imaging systems and photonic nanostructures inspired by insect eye geometry. Appl. Spectrosc. Rev. 2018, 53, 112–128.

    Article  Google Scholar 

  128. Fan, Z. C.; Yang, Y. Y.; Zhang, F.; Xu, Z.; Zhao, H. B.; Wang, T. Y.; Song, H. J.; Huang, Y. G.; Rogers, J. A.; Zhang, Y. H. Inverse design strategies for 3D surfaces formed by mechanically guided assembly. Adv. Mater. 2020, 32, 1908424.

    Article  CAS  Google Scholar 

  129. Zhao, H. B.; Li, K.; Han, M. D.; Zhu, F.; Vázquez-Guardado, A.; Guo, P. J.; Xie, Z. Q.; Park, Y.; Chen, L.; Wang, X. J. et al. Buckling and twisting of advanced materials into morphable 3D mesostructures. Proc. Natl. Acad. Sci. USA 2019, 116, 13239–13248.

    Article  CAS  Google Scholar 

  130. Lee, W.; Liu, Y.; Lee, Y.; Sharma, B. K.; Shinde, S. M.; Kim, S. D.; Nan, K. W.; Yan, Z.; Han, M. D.; Huang, Y. G. et al. Two-dimensional materials in functional three-dimensional architectures with applications in photodetection and imaging. Nat. Commun. 2018, 9, 1417.

    Article  CAS  Google Scholar 

  131. Jang, K. I.; Li, K.; Chung, H. U.; Xu, S.; Jung, H. N.; Yang, Y. Y.; Kwak, J. W.; Jung, H. H.; Song, J.; Yang, C. et al. Self-assembled three dimensional network designs for soft electronics. Nat. Commun. 2017, 8, 15894.

    Article  CAS  Google Scholar 

  132. Bai, K.; Cheng, X.; Xue, Z. G.; Song, H. L.; Sang, L.; Zhang, F.; Liu, F.; Luo, X.; Huang, W.; Huang, Y. G. et al. Geometrically reconfigurable 3D mesostructures and electromagnetic devices through a rational bottom-up design strategy. Sci. Adv. 2020, 6, eabb7417.

    Article  CAS  Google Scholar 

  133. Yan, D. J.; Chang, J. H.; Zhang, H.; Liu, J. X.; Song, H. L.; Xue, Z. G.; Zhang, F.; Zhang, Y. H. Soft three-dimensional network materials with rational bio-mimetic designs. Nat. Commun. 2020, 11, 1180.

    Article  CAS  Google Scholar 

  134. Cheng, X.; Zhang, Y. H. Micro/nanoscale 3D assembly by rolling, folding, curving, and buckling approaches. Adv. Mater. 2019, 31, 1901895.

    Article  CAS  Google Scholar 

  135. Kaltenbrunner, M.; Sekitani, T.; Reeder, J.; Yokota, T.; Kuribara, K.; Tokuhara, T.; Drack, M.; Schwödiauer, R.; Graz, I.; Bauer-Gogonea, S. et al. An ultra-lightweight design for imperceptible plastic electronics. Nature 2013, 499, 458–463.

    Article  CAS  Google Scholar 

  136. Lee, H.; Song, C.; Hong, Y. S.; Kim, M. S.; Cho, H. R.; Kang, T.; Shin, K.; Choi, S. H.; Hyeon, T.; Kim, D. H. Wearable/disposable sweat-based glucose monitoring device with multistage transdermal drug delivery module. Sci. Adv. 2017, 3, e1601314.

    Article  CAS  Google Scholar 

  137. Jiang, Y.; Liu, Z. Y.; Matsuhisa, N.; Qi, D. P.; Leow, W. R.; Yang, H.; Yu, J. C.; Chen, G.; Liu, Y. Q.; Wan, C. J. et al. Auxetic mechanical metamaterials to enhance sensitivity of stretchable strain sensors. Adv. Mater. 2018, 30, 1706589.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Institute for Basic Science (No. IBS-R006-A1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dae-Hyeong Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, JK., Kim, M.S., Yoo, S. et al. Materials and devices for flexible and stretchable photodetectors and light-emitting diodes. Nano Res. 14, 2919–2937 (2021). https://doi.org/10.1007/s12274-021-3447-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3447-3

Keywords

Navigation