Skip to main content
Log in

Multi-interface collaboration of graphene cross-linked NiS-NiS2-Ni3S4 polymorph foam towards robust hydrogen evolution in alkaline electrolyte

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Electrocatalytic hydrogen production in alkaline media is extensively adopted in industry. Unfortunately, further performance improvement is severely impeded by the retarded kinetics, which requires the fine regulation of water dissociation, hydrogen recombination, and hydroxyl desorption. Herein, we develop a multi-interface engineering strategy to make an elaborate balance for the alkaline hydrogen evolution reaction (HER) kinetics. The graphene cross-linked three-phase nickel sulfide (NiS-NiS2-Ni3S4) polymorph foam (G-NNNF) was constructed through hydrothermal sulfidation of graphene wrapped nickel foam as a three-dimensional (3D) scaffold template. The G-NNNF exhibits superior catalytic activity toward HER in alkaline electrolyte, which only requires an overpotential of 68 mV to drive 10 mA·cm−2 and is better than most of the recently reported metal sulfides catalysts. Density functional theory (DFT) calculations verify the interfaces between nickel sulfides (NiS/NiS2/Ni3S4) and cross-linked graphene can endow the electrocatalyst with preferable hydrogen adsorption as well as metallic nature. In addition, the electron transfer from Ni3S4/NiS2 to NiS results in the electron accumulation on NiS and the hole accumulation on Ni3S4/NiS2, respectively. The electron accumulation on NiS favors the optimization of the H* adsorption, whereas the hole accumulation on Ni3S4 is beneficial for the adsorption of H2O. The work about multi-interface collaboration pushes forward the frontier of excellent polymorph catalysts design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, H. Y.; Chen, S. M.; Jia, X. F.; Xu, B.; Lin, H. F.; Yang, H. Z.; Song, L.; Wang, X. Amorphous nickel-cobalt complexes hybridized with 1T-phase molybdenum disulfide via hydrazine-induced phase transformation for water splitting. Nat. Commun. 2017, 8, 15377

    Article  CAS  Google Scholar 

  2. Ni, B.; He, P.; Liao, W. X.; Chen, S. M.; Gu, L.; Gong, Y.; Wang, K.; Zhuang, J.; Song, L.; Zhou, G. et al. Surface oxidation of AuNi heterodimers to achieve high activities toward hydrogen/oxygen evolution and oxygen reduction reactions. Small 2018, 14, 1703749

    Article  Google Scholar 

  3. Li, H. Y.; Chen, S. M.; Zhang, Y.; Zhang, Q. H.; Jia, X. F.; Zhang, Q.; Gu, L.; Sun, X. M.; Song, L.; Wang, X. Systematic design of superaerophobic nanotube-array electrode comprised of transition-metal sulfides for overall water splitting. Nat. Commun. 2018, 9, 2452.

    Article  Google Scholar 

  4. Liu, D. L.; Zhang, C.; Yu, Y. F.; Shi, Y. M.; Yu, Y.; Niu, Z. Q.; Zhang, B. Hydrogen evolution activity enhancement by tuning the oxygen vacancies in self-supported mesoporous spinel oxide nanowire arrays. Nano Res. 2018, 11, 603–613.

    Article  CAS  Google Scholar 

  5. Hua, W.; Sun, H. H.; Xu, F.; Wang, J. G. A review and perspective on molybdenum-based electrocatalysts for hydrogen evolution reaction. Rare Met. 2020, 39, 335–351.

    Article  CAS  Google Scholar 

  6. Cheng, T.; Wang, L.; Merinov, B. V.; Goddard III, W. A. Explanation of dramatic pH-dependence of hydrogen binding on noble metal electrode: Greatly weakened water adsorption at high pH. J. Am. Chem. Soc. 2018, 140, 7787–7790.

    Article  CAS  Google Scholar 

  7. Lu, H. Y.; Fan, W.; Huang, Y. P.; Liu, T. X. Lotus root-like porous carbon nanofiber anchored with CoP nanoparticles as all-pH hydrogen evolution electrocatalysts. Nano Res. 2018, 11, 1274–1284.

    Article  CAS  Google Scholar 

  8. Wei, J.; Zhou, M.; Long, A. C.; Xue, Y. M.; Liao, H. B.; Wei, C.; Xu, Z. J. Heterostructured electrocatalysts for hydrogen evolution reaction under alkaline conditions. Nano-Micro Lett. 2018, 10, 75.

    Article  CAS  Google Scholar 

  9. Wang, Z. Y.; Li, R. L.; Su, C. L.; Loh, K. P. Intercalated phases of transition metal dichalcogenides. SmartMat 2020, 1, e1013.

    Article  Google Scholar 

  10. Lv, J.; Cheng, Y.; Liu, W.; Quan, B.; Liang, X. H.; Ji, G. B.; Du, Y. W. Achieving better impedance matching by a sulfurization method through converting Ni into NiS/Ni3S4 composites. J. Mater. Chem. C 2018, 6, 1822–1828.

    Article  CAS  Google Scholar 

  11. Barim, G.; Smock, S. R.; Antunez, P. D.; Glaser, D.; Brutchey, R. L. Phase control in the colloidal synthesis of well-defined nickel sulfide nanocrystals. Nanoscale 2018, 10, 16298–16306.

    Article  CAS  Google Scholar 

  12. Dai, C.; Li, B.; Li, J.; Zhao, B.; Wu, R. X.; Ma, H. F.; Duan, X. D. Controllable synthesis of NiS and NiS2 nanoplates by chemical vapor deposition. Nano Res. 2020, 13, 2506–2511.

    Article  CAS  Google Scholar 

  13. Zhu, J. H.; Chen, Z.; Jia, L.; Lu, Y. Q.; Wei, X. R.; Wang, X. N.; Wu, W. D.; Han, N.; Li, Y. G.; Wu, Z. X. Solvent-free nanocasting toward universal synthesis of ordered mesoporous transition metal sulfide@N-doped carbon composites for electrochemical applications. Nano Res. 2019, 12, 2250–2258.

    Article  CAS  Google Scholar 

  14. Dong, Q. C.; Zhang, Y. Z.; Dai, Z. Y.; Wang, P.; Zhao, M.; Shao, J. J.; Huang, W.; Dong, X. C. Graphene as an intermediary for enhancing the electron transfer rate: A free-standing Ni3S2@graphene@Co9S8 electrocatalytic electrode for oxygen evolution reaction. Nano Res. 2018, 11, 1389–1398.

    Article  CAS  Google Scholar 

  15. Guo, Y. N.; Park, T.; Yi, J. W.; Henzie, J.; Kim, J.; Wang, Z. L.; Jiang, B.; Bando, Y.; Sugahara, Y.; Tang, J. et al. Nanoarchitectonics for transition-metal-sulfide-based electrocatalysts for water splitting. Adv. Mater. 2019, 31, 1807134.

    Article  Google Scholar 

  16. Jiang, N.; Tang, Q.; Sheng, M.; You, B.; Jiang, D. E.; Sun, Y. J. Nickel sulfides for electrocatalytic hydrogen evolution under alkaline conditions: A case study of crystalline NiS, NiS2, and Ni3S2 nanoparticles. Catal. Sci. Technol. 2016, 6, 1077–1084.

    Article  CAS  Google Scholar 

  17. Staszak-Jirkovský, J.; Malliakas, C. D.; Lopes, P. P.; Danilovic, N.; Kota, S. S.; Chang, K. C.; Genorio, B.; Strmcnik, D.; Stamenkovic Vojislav R.; Kanatzidis, M. G. et al. Design of active and stable Co-Mo-Sx chalcogels as pH-universal catalysts for the hydrogen evolution reaction. Nat. Mater. 2016, 15, 197–203.

    Article  Google Scholar 

  18. Centi, G. Smart catalytic materials for energy transition. SmartMat 2020, 1, e1005.

    Article  Google Scholar 

  19. Lin, J. H.; Wang, P. C.; Wang, H. H.; Li, C.; Si, X. Q.; Qi, J. L.; Cao, J.; Zhong, Z. X.; Fei, W. D.; Feng, J. C. Defect-rich heterogeneous MoS2/NiS2 nanosheets electrocatalysts for efficient overall water splitting. Adv. Sci. 2019, 6, 1900246.

    Article  Google Scholar 

  20. Wang, H. Q.; Xu, X. B.; Ni, B.; Li, H. Y.; Bian, W.; Wang, X. 3D self-assembly of ultrafine molybdenum carbide confined in N-doped carbon nanosheets for efficient hydrogen production. Nanoscale 2017, 9, 15895–15900.

    Article  CAS  Google Scholar 

  21. Hu, J.; Zhang, C. X.; Jiang, L.; Lin, H.; An, Y. M.; Zhou, D.; Leung, M. K. H.; Yang, S. H. Nanohybridization of MoS2 with layered double hydroxides efficiently synergizes the hydrogen evolution in alkaline media. Joule 2017, 1, 383–393.

    Article  CAS  Google Scholar 

  22. Wang, P. T.; Zhang, X.; Zhang, J.; Wan, S.; Guo, S. J.; Lu, G.; Yao, J. L.; Huang, X. Q. Precise tuning in platinum-nickel/nickel sulfide interface nanowires for synergistic hydrogen evolution catalysis. Nat. Commun. 2017, 8, 14580.

    Article  CAS  Google Scholar 

  23. Jin, H. Y.; Liu, X.; Jiao, Y.; Vasileff, A.; Zheng, Y.; Qiao, S. Z. Constructing tunable dual active sites on two-dimensional C3N4@MoN hybrid for electrocatalytic hydrogen evolution. Nano Energy 2018, 53, 690–697.

    Article  CAS  Google Scholar 

  24. Chen, Z. P.; Ren, W. C.; Gao, L. B.; Liu, B. L.; Pei, S. F.; Cheng, H. M. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 2011, 10, 424–428.

    Article  CAS  Google Scholar 

  25. Zhang, B.; Hou, J. G.; Wu, Y. Z.; Cao, S. Y.; Li, Z. W.; Nie, X. W.; Gao, Z. M.; Sun, L. C. Tailoring active sites in mesoporous defect-rich NC/Vo-WON heterostructure array for superior electrocatalytic hydrogen evolution. Adv. Energy Mater. 2019, 9, 1803693.

    Article  Google Scholar 

  26. Wang, H. Q.; Zhang, X. W.; Wang, J. G.; Liu, H. L.; Hu, S. L.; Zhou, W. J.; Liu, H.; Wang, X. Puffing quaternary FexCoyNi1-x-yP nanoarray via kinetically controlled alkaline etching for robust overall water splitting. Sci. China Mater. 2020, 63, 1054–1064.

    Article  CAS  Google Scholar 

  27. Zhang, Z. F.; Wang, H. Q.; Ma, M. J.; Liu, H. L.; Zhang, Z. C.; Zhou, W. J.; Liu, H. Integrating NiMoO wafer as a heterogeneous ‘turbo’ for engineering robust Ru-based electrocatalyst for overall water splitting. Chem. Eng. J. 2020, 127686.

  28. Pothu, R.; Bolagam, R.; Wang, Q. H.; Ni, W.; Cai, J. F.; Peng, X. X.; Feng, Y. Z.; Ma, J. M. Nickel sulfide-based energy storage materials for high-performance electrochemical capacitors. Rare Met. 2021, 40, 353–373.

    Article  CAS  Google Scholar 

  29. Luo, P.; Zhang, H. J.; Liu, L.; Zhang, Y.; Deng, J.; Xu, C. H.; Hu, N.; Wang, Y. Targeted synthesis of unique nickel sulfide (NiS, NiS2) microarchitectures and the applications for the enhanced water splitting system. ACS Appl. Mater. Interfaces 2017, 9, 2500–2508.

    Article  CAS  Google Scholar 

  30. Wang, H. Q.; Xu, Z. F.; Zhang, Z. F.; Hu, S. X.; Ma, M. J.; Zhang, Z. C.; Zhou, W. J.; Liu, H. Addressable surface engineering for N-doped WS2 nanosheet arrays with abundant active sites and the optimal local electronic structure for enhanced hydrogen evolution reaction. Nanoscale 2020, 12, 22541–22550.

    Article  CAS  Google Scholar 

  31. Ni, B.; He, T.; Wang, J. O.; Zhang, S. M.; Ouyang, C.; Long, Y.; Zhuang, J.; Wang, X. The formation of (NiFe)S2 pyrite mesocrystals as efficient pre-catalysts for water oxidation. Chem. Sci. 2018, 9, 2762–2767.

    Article  CAS  Google Scholar 

  32. Wu, T. X.; Zhu, X. G.; Wang, G. Z.; Zhang, Y. X.; Zhang, H. M.; Zhao, H. J. Vapor-phase hydrothermal growth of single crystalline NiS2 nanostructure film on carbon fiber cloth for electrocatalytic oxidation of alcohols to ketones and simultaneous H2 evolution. Nano Res. 2018, 11, 1004–1017.

    Article  CAS  Google Scholar 

  33. Kong, L.; Tang, C.; Peng, H. J.; Huang, J. Q.; Zhang, Q. Advanced energy materials for flexible batteries in energy storage: A review. SmartMat 2020, 1, e1007.

    Article  Google Scholar 

  34. Li, Q.; Wang, D. W.; Han, C.; Ma, X.; Lu, Q. Q.; Xing, Z. C.; Yang, X. R. Construction of amorphous interface in an interwoven NiS/NiS2 structure for enhanced overall water splitting. J. Mater. Chem. A 2018, 6, 8233–8237.

    Article  CAS  Google Scholar 

  35. Fang, Z. W.; Peng, L. L.; Qian, Y. M.; Zhang, X.; Xie, Y. J.; Cha, J. J.; Yu, G. H. Dual tuning of Ni-Co-A (A = P, Se, O) nanosheets by anion substitution and holey engineering for efficient hydrogen evolution. J. Am. Chem. Soc. 2018, 140, 5241–5247.

    Article  CAS  Google Scholar 

  36. Yang, Y.; Yao, H. Q.; Yu, Z. H.; Islam, S. M.; He, H. Y.; Yuan, M. W.; Yue, Y. H.; Xu, K.; Hao, W. C.; Sun, G. B. et al. Hierarchical nanoassembly of MoS2/Co9S8/Ni3S2/Ni as a highly efficient electrocatalyst for overall water splitting in a wide pH range. J. Am. Chem. Soc. 2019, 141, 10417–10430.

    Article  CAS  Google Scholar 

  37. Feng, L. L.; Yu, G. T.; Wu, Y. Y.; Li, G. D.; Li, H.; Sun, Y. H.; Asefa, T.; Chen, W.; Zou, X. X. High-index faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting. J. Am. Chem. Soc. 2015, 137, 14023–14026.

    Article  CAS  Google Scholar 

  38. Miao, R.; Dutta, B.; Sahoo, S.; He, J. K.; Zhong, W.; Cetegen, S. A.; Jiang, T.; Alpay, S. P.; Suib, S. L. Mesoporous iron sulfide for highly efficient electrocatalytic hydrogen evolution. J. Am. Chem. Soc. 2017, 139, 13604–13607.

    Article  CAS  Google Scholar 

  39. Kim, M.; Anjum, M. A. R.; Lee, M.; Lee, B. J.; Lee, J. S. Activating MoS2 basal plane with Ni2P nanoparticles for Pt-like hydrogen evolution reaction in acidic media. Adv. Funct. Mater. 2019, 29, 1809151.

    Article  Google Scholar 

  40. Li, M. C.; Qian, Y. T.; Du, J. M.; Wu, H. R.; Zhang, L. Y.; Li, G.; Li, K. D.; Wang, W. M.; Kang, D. J. CuS nanosheets decorated with CoS2 nanoparticles as an efficient electrocatalyst for enhanced hydrogen evolution at all pH values. ACS Sustainable Chem. Eng. 2019, 7, 14016–14022.

    Article  CAS  Google Scholar 

  41. Jiang, Y. Q.; Qian, X.; Zhu, C. L.; Liu, H. Y.; Hou, L. X. Nickel cobalt sulfide double-shelled hollow nanospheres as superior bifunctional electrocatalysts for photovoltaics and alkaline hydrogen evolution. ACS Appl. Mater. Interfaces 2018, 10, 9379–9389.

    Article  CAS  Google Scholar 

  42. Zhang, J.; Wang, T.; Pohl, D.; Rellinghaus, B.; Dong, R. H.; Liu, S. H.; Zhuang, X. D.; Feng, X. L. Interface engineering of MoS2/Ni3S2 heterostructures for highly enhanced electrochemical overall-watersplitting activity. Angew. Chem., Int. Ed. 2016, 55, 6702–6707.

    Article  CAS  Google Scholar 

  43. Li, Y. X.; Yin, J.; An, L.; Lu, M.; Sun, K.; Zhao, Y. Q.; Gao, D. Q.; Cheng, F. Y.; Xi, P. X. FeS2/CoS2 interface nanosheets as efficient bifunctional electrocatalyst for overall water splitting. Small 2018, 14, 1801070.

    Article  Google Scholar 

  44. Peng, S. J.; Li, L. L.; Zhang, J.; Tan, T. L.; Zhang, T. R.; Ji, D. X.; Han, X. P.; Cheng, F. Y.; Ramakrishna, S. Engineering Co9S8/WS2 array films as bifunctional electrocatalysts for efficient water splitting. J. Mater. Chem. A 2017, 5, 23361–23368.

    Article  CAS  Google Scholar 

  45. Yang, Y. Q.; Zhang, K.; Lin, H. L.; Li, X.; Chan, H. C.; Yang, L. C.; Gao, Q. S. MoS2-Ni3S2 heteronanorods as efficient and stable bifunctional electrocatalysts for overall water splitting. ACS Catal. 2017, 7, 2357–2366.

    Article  CAS  Google Scholar 

  46. Gu, X. D.; Zheng, S. J.; Huang, X. B.; Yuan, H. F.; Li, J. P.; Kundu, M.; Wang, X. G. Hybrid Ni3S2-1MoS2 nanowire arrays as a pH-universal catalyst for accelerating the hydrogen evolution reaction. Chem. Commun. 2020, 56, 2471–2474.

    Article  CAS  Google Scholar 

  47. Guo, Y. N.; Tang, J.; Wang, Z. L.; Kang, Y. M.; Bando, Y.; Yamauchi, Y. Elaborately assembled core-shell structured metal sulfides as a bifunctional catalyst for highly efficient electrochemical overall water splitting. Nano Energy 2018, 47, 494–502.

    Article  CAS  Google Scholar 

  48. Hou, Y.; Qiu, M.; Nam, G.; Kim, M. G.; Zhang, T.; Liu, K. J.; Zhuang, X. D.; Cho, J.; Yuan, C.; Feng, X. L. Integrated hierarchical cobalt sulfide/nickel selenide hybrid nanosheets as an efficient three-dimensional electrode for electrochemical and photoelectrochemical water splitting. Nano Lett. 2017, 17, 4202–4209.

    Article  CAS  Google Scholar 

  49. Wu, Y. Y.; Liu, Y. P.; Li, G. D.; Zou, X.; Lian, X. R.; Wang, D. J.; Sun, L.; Asefa, T.; Zou, X. X. Efficient electrocatalysis of overall water splitting by ultrasmall NixCo3−xS4 coupled Ni3S2 nanosheet arrays. Nano Energy 2017, 35, 161–170.

    Article  CAS  Google Scholar 

  50. Zheng, M. Y.; Du, J.; Hou, B. P.; Xu, C. L. Few-layered Mo(1−x)WxS2 hollow nanospheres on Ni3S2 nanorod heterostructure as robust electrocatalysts for overall water splitting. ACS Appl. Mater. Interfaces 2017, 9, 26066–26076.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2017YFB0405400), Shandong Provincial Natural Science Foundation (Nos. ZR2019BB025 and ZR2018ZC0842), the Project of “20 items of University” of Jinan (No. 2018GXRC031), the National Natural Science Foundation of China (Nos. 21976014, U1930402 and 22071172), and the generous computer time from TianHe2-JK Supercomputer Center.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haiqing Wang, Shuxian Hu or Hong Liu.

Electronic supplementary material

12274_2021_3445_MOESM1_ESM.pdf

Multi-interface collaboration of graphene cross-linked NiS-NiS2-Ni3S4 polymorph foam towards robust hydrogen evolution in alkaline electrolyte

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Zhang, W., Zhang, X. et al. Multi-interface collaboration of graphene cross-linked NiS-NiS2-Ni3S4 polymorph foam towards robust hydrogen evolution in alkaline electrolyte. Nano Res. 14, 4857–4864 (2021). https://doi.org/10.1007/s12274-021-3445-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3445-5

Keywords

Navigation