Skip to main content

Laser-induced graphene for bioelectronics and soft actuators

Abstract

Laser-assisted process can enable facile, mask-free, large-area, inexpensive, customizable, and miniaturized patterning of laser-induced porous graphene (LIG) on versatile carbonaceous substrates (e.g., polymers, wood, food, textiles) in a programmed manner at ambient conditions. Together with high tailorability of its porosity, morphology, composition, and electrical conductivity, LIG can find wide applications in emerging bioelectronics (e.g., biophysical and biochemical sensing) and soft robots (e.g., soft actuators). In this review paper, we first introduce the methods to make LIG on various carbonaceous substrates and then discuss its electrical, mechanical, and antibacterial properties and biocompatibility that are critical for applications in bioelectronics and soft robots. Next, we overview the recent studies of LIG-based biophysical (e.g., strain, pressure, temperature, hydration, humidity, electrophysiological) sensors and biochemical (e.g., gases, electrolytes, metabolites, pathogens, nucleic acids, immunology) sensors. The applications of LIG in flexible energy generators and photodetectors are also introduced. In addition, LIG-enabled soft actuators that can respond to chemicals, electricity, and light stimulus are overviewed. Finally, we briefly discuss the future challenges and opportunities of LIG fabrications and applications.

References

  1. [1]

    Geim, A. K. Graphene: Status and prospects. Science 2009, 324, 1530–1534.

    CAS  Article  Google Scholar 

  2. [2]

    Chen, Z. P.; Ren, W. C.; Gao, L. B.; Liu, B. L.; Pei, S. F.; Cheng, H. M. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 2011, 10, 424–428.

    CAS  Article  Google Scholar 

  3. [3]

    Zhang, Z. K.; Du, J. H.; Zhang, D. D.; Sun, H. D.; Yin, L. C.; Ma, L. P.; Chen, J. S.; Ma, D. G.; Cheng, H. M.; Ren, W. C. Rosin-enabled ultraclean and damage-free transfer of graphene for large-area flexible organic light-emitting diodes. Nat. Commun. 2017, 8, 14560.

    CAS  Article  Google Scholar 

  4. [4]

    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

    CAS  Google Scholar 

  5. [5]

    Li, X. S.; Cai, W. W.; An, J.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.

    CAS  Article  Google Scholar 

  6. [6]

    Chua, C. K.; Pumera, M. Chemical reduction of graphene oxide: A synthetic chemistry viewpoint. Chem. Soc. Rev. 2014, 43, 291–312.

    CAS  Article  Google Scholar 

  7. [7]

    Luong, D. X.; Bets, K. V.; Algozeeb, W. A.; Stanford, M. G.; Kittrell, C.; Chen, W. Y.; Salvatierra, R. V.; Ren, M. Q.; McHugh, E. A.; Advincula, P. A. et al. Gram-scale bottom-up flash graphene synthesis. Nature 2020, 577, 647–651.

    CAS  Article  Google Scholar 

  8. [8]

    El-Kady, M. F.; Kaner, R. B. Direct laser writing of graphene electronics. ACS Nano 2014, 8, 8725–8729.

    CAS  Article  Google Scholar 

  9. [9]

    El-Kady, M. F.; Strong, V.; Dubin, S.; Kaner, R. B. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 2012, 335, 1326–1330.

    CAS  Article  Google Scholar 

  10. [10]

    Lin, J.; Peng, Z. W.; Liu, Y. Y.; Ruiz-Zepeda, F.; Ye, R. Q.; Samuel, E. L. G.; Yacaman, M. J.; Yakobson, B. I.; Tour, J. M. Laser-induced porous graphene films from commercial polymers. Nat. Commun. 2014, 5, 5714.

    CAS  Article  Google Scholar 

  11. [11]

    Carvalho, A. F.; Fernandes, A. J. S.; Leitão, C.; Deuermeier, J.; Marques, A. C.; Martins, R.; Fortunato, E.; Costa, F. M. Laser-induced graphene strain sensors produced by ultraviolet irradiation of polyimide. Adv. Funct. Mater. 2018, 28, 1805271.

    Article  CAS  Google Scholar 

  12. [12]

    Stanford, M. G.; Zhang, C.; Fowlkes, J. D.; Hoffman, A.; Ivanov, I. N.; Rack, P. D.; Tour, J. M. High-resolution laser-induced graphene. Flexible electronics beyond the visible limit. ACS Appl. Mater. Interfaces 2020, 12, 10902–10907.

    Article  CAS  Google Scholar 

  13. [13]

    Garland, N. T.; McLamore, E. S.; Cavallaro, N. D.; Mendivelso-Perez, D.; Smith, E. A.; Jing, D. P.; Claussen, J. C. Flexible laser-induced graphene for nitrogen sensing in soil. ACS Appl. Mater. Interfaces 2018, 10, 39124–39133.

    CAS  Article  Google Scholar 

  14. [14]

    You, R.; Liu, Y. Q.; Hao, Y. L.; Han, D. D.; Zhang, Y. L.; You, Z. Laser fabrication of graphene-based flexible electronics. Adv. Mater. 2020, 32, 1901981.

    CAS  Article  Google Scholar 

  15. [15]

    Ye, R. Q.; James, D. K.; Tour, J. M. Laser-induced graphene. Acc. Chem. Res. 2018, 51, 1609–1620.

    CAS  Article  Google Scholar 

  16. [16]

    Ye, R. Q.; James, D. K.; Tour, J. M. Laser-induced graphene: From discovery to translation. Adv. Mater. 2019, 31, 1803621.

    Article  CAS  Google Scholar 

  17. [17]

    Liu, Y. Q.; Chen, Z. D.; Mao, J. W.; Han, D. D.; Sun, X. Laser fabrication of graphene-based electronic skin. Front. Chem. 2019, 7, 461.

    CAS  Article  Google Scholar 

  18. [18]

    Huang, L. B.; Su, J. J.; Song, Y.; Ye, R. Q. Laser-induced graphene: En route to smart sensing. Nano-Micro Lett. 2020, 12, 157.

    CAS  Article  Google Scholar 

  19. [19]

    Wan, Z. F.; Nguyen, N. T.; Gao, Y. S.; Li, Q. Laser induced graphene for biosensors. Sustain. Mater. Technol. 2020, 25, e00205.

    CAS  Google Scholar 

  20. [20]

    Vashisth, A.; Kowalik, M.; Gerringer, J. C.; Ashraf, C.; Van Duin, A. C. T.; Green, M. J. ReaxFF simulations of laser-induced graphene (LIG) formation for multifunctional polymer nanocomposites. ACS Appl. Nano Mater. 2020, 3, 1881–1890.

    CAS  Article  Google Scholar 

  21. [21]

    Lamberti, A.; Serrapede, M.; Ferraro, G.; Fontana, M.; Perrucci, F.; Bianco, S.; Chiolerio, A.; Bocchini, S. All-SPEEK flexible supercapacitor exploiting laser-induced graphenization. 2D Mater. 2017, 4, 035012.

    Article  CAS  Google Scholar 

  22. [22]

    Singh, S. P.; Li, Y. L.; Zhang, J. B.; Tour, J. M.; Arnusch, C. J. Sulfur-doped laser-induced porous graphene derived from polysulfone-class polymers and membranes. ACS Nano 2018, 12, 289–297.

    CAS  Article  Google Scholar 

  23. [23]

    Ge, L.; Hong, Q.; Li, H.; Liu, C. C.; Li, F. Direct-laser-writing of metal sulfide-graphene nanocomposite photoelectrode toward sensitive photoelectrochemical sensing. Adv. Funct. Mater. 2019, 29, 1904000.

    Article  CAS  Google Scholar 

  24. [24]

    Yang, W. W.; Zhao, W.; Li, Q. S.; Li, H.; Wang, Y. L.; Li, Y. X.; Wang, G. Fabrication of smart components by 3D printing and laser-scribing technologies. ACS Appl. Mater. Interfaces 2020, 12, 3928–3935.

    CAS  Article  Google Scholar 

  25. [25]

    Zhang, Z. C.; Song, M. M.; Hao, J. X.; Wu, K. B.; Li, C. Y.; Hu, C. G. Visible light laser-induced graphene from phenolic resin: A new approach for directly writing graphene-based electrochemical devices on various substrates. Carbon 2018, 127, 287–296.

    CAS  Article  Google Scholar 

  26. [26]

    Cao, L. J.; Zhu, S. R.; Pan, B. H.; Dai, X. Y.; Zhao, W. W.; Liu, Y.; Xie, W. P.; Kuang, Y. B.; Liu, X. Q. Stable and durable laser-induced graphene patterns embedded in polymer substrates. Carbon 2020, 163, 85–94.

    CAS  Article  Google Scholar 

  27. [27]

    Ye, R. Q.; Chyan, Y.; Zhang, J. B.; Li, Y. L.; Han, X.; Kittrell, C.; Tour, J. M. Laser-induced graphene formation on wood. Adv. Mater. 2017, 29, 1702211.

    Article  CAS  Google Scholar 

  28. [28]

    Mahmood, F.; Zhang, H. W.; Lin, J.; Wan, C. X. Laser-induced graphene derived from Kraft lignin for flexible supercapacitors. ACS Omega 2020, 5, 14611–14618.

    CAS  Article  Google Scholar 

  29. [29]

    Zhang, W. L.; Lei, Y. J.; Ming, F. W.; Jiang, Q.; Costa, P. M. F. J.; Alshareef, H. N. Lignin laser lithography: A direct-write method for fabricating 3D graphene electrodes for microsupercapacitors. Adv. Energy Mater. 2018, 8, 1801840.

    Article  CAS  Google Scholar 

  30. [30]

    Edberg, J.; Brooke, R.; Hosseinaei, O.; Fall, A.; Wijeratne, K.; Sandberg, M. Laser-induced graphitization of a forest-based ink for use in flexible and printed electronics. npj Flex. Electron. 2020, 4, 17.

    CAS  Article  Google Scholar 

  31. [31]

    Chyan, Y.; Ye, R. Q.; Li, Y. L.; Singh, S. P.; Arnusch, C. J.; Tour, J. M. Laser-induced graphene by multiple lasing: Toward electronics on cloth, paper, and food. ACS Nano 2018, 12, 2176–2183.

    CAS  Article  Google Scholar 

  32. [32]

    Zang, X. N.; Shen, C. W.; Chu, Y.; Li, B. X.; Wei, M. S.; Zhong, J. W.; Sanghadasa, M.; Lin, L. W. Laser-induced molybdenum carbide-graphene composites for 3D foldable paper electronics. Adv. Mater. 2018, 30, 1800062.

    Article  CAS  Google Scholar 

  33. [33]

    Zang, X. N.; Jian, C. Y.; Zhu, T. S.; Fan, Z.; Wang, W. L.; Wei, M. S.; Li, B. X.; Diaz, M. F.; Ashby, P.; Lu, Z. M. et al. Laser-sculptured ultrathin transition metal carbide layers for energy storage and energy harvesting applications. Nat. Commun. 2019, 10, 3112.

    Article  CAS  Google Scholar 

  34. [34]

    Zang, X. N.; Tai, K. Y.; Jian, C. Y.; Shou, W.; Matusik, W.; Ferralis, N.; Grossman, J. C. Laser-induced tar-mediated sintering of metals and refractory carbides in air. ACS Nano 2020, 14, 10413–10420.

    CAS  Article  Google Scholar 

  35. [35]

    Wang, H. M.; Wang, H. M.; Wang, Y. L.; Su, X. Y.; Wang, C. Y.; Zhang, M. C.; Jian, M. Q.; Xia, K. L.; Liang, X. P.; Lu, H. J. et al. Laser writing of Janus graphene/Kevlar textile for intelligent protective clothing. ACS Nano 2020, 14, 3219–3226.

    CAS  Article  Google Scholar 

  36. [36]

    Rahimi, R.; Ochoa, M.; Yu, W. Y.; Ziaie, B. Highly stretchable and sensitive unidirectional strain sensor via laser carbonization. ACS Appl. Mater. Interfaces 2015, 7, 4463–4470.

    CAS  Article  Google Scholar 

  37. [37]

    Sun, B. H.; McCay, R. N.; Goswami, S.; Xu, Y. D.; Zhang, C.; Ling, Y.; Lin, J.; Yan, Z. Gas-permeable, multifunctional on-skin electronics based on laser-induced porous graphene and sugar-templated elastomer sponges. Adv. Mater. 2018, 30, 1804327.

    Article  CAS  Google Scholar 

  38. [38]

    Li, J. T.; Stanford, M. G.; Chen, W. Y.; Presutti, S. E.; Tour, J. M. Laminated laser-induced graphene composites. ACS Nano 2020, 14, 7911–7919.

    CAS  Article  Google Scholar 

  39. [39]

    Gao, Y.; Li, Q.; Wu, R. Y.; Sha, J.; Lu, Y. F.; Xuan, F. Z. Laser direct writing of ultrahigh sensitive SiC-based strain sensor arrays on elastomer toward electronic skins. Adv. Funct. Mater. 2019, 29, 1806786.

    Article  CAS  Google Scholar 

  40. [40]

    Zhu, Y. S.; Cai, H. B.; Ding, H. Y.; Pan, N.; Wang, X. P. Fabrication of low-cost and highly sensitive graphene-based pressure sensors by direct laser scribing polydimethylsiloxane. ACS Appl. Mater. Interfaces 2019, 11, 6195–6200.

    CAS  Article  Google Scholar 

  41. [41]

    Nair, V.; Yi, J.; Isheim, D.; Rotenberg, M.; Meng, L. Y.; Shi, F. Y.; Chen, X. Q.; Gao, X.; Prominski, A.; Jiang, Y. W. et al. Laser writing of nitrogen-doped silicon carbide for biological modulation. Sci. Adv. 2020, 6, eaaz2743.

    CAS  Article  Google Scholar 

  42. [42]

    Davis, M. E. Ordered porous materials for emerging applications. Nature 2002, 417, 813–821.

    CAS  Article  Google Scholar 

  43. [43]

    Miyamoto, A.; Lee, S.; Cooray, N. F.; Lee, S.; Mori, M.; Matsuhisa, N.; Jin, H.; Yoda, L.; Yokota, T.; Itoh, A. et al. Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes. Nat. Nanotechnol. 2017, 12, 907–913.

    CAS  Article  Google Scholar 

  44. [44]

    Tan, K. W.; Jung, B.; Werner, J. G.; Rhoades, E. R.; Thompson, M. O.; Wiesner, U. Transient laser heating induced hierarchical porous structures from block copolymer-directed self-assembly. Science 2015, 349, 54–58.

    CAS  Article  Google Scholar 

  45. [45]

    Bergsman, D. S.; Getachew, B. A.; Cooper, C. B.; Grossman, J. C. Preserving nanoscale features in polymers during laser induced graphene formation using sequential infiltration synthesis. Nat. Commun. 2020, 11, 3636.

    CAS  Article  Google Scholar 

  46. [46]

    Yan, W. H.; Yan, W. R.; Chen, T. D.; Xu, J. G.; Tian, Q.; Ho, D. Size-tunable flowerlike MoS2 nanospheres combined with laser-induced graphene electrodes for NO2 sensing. ACS Appl. Nano Mater. 2020, 3, 2545–2553.

    CAS  Article  Google Scholar 

  47. [47]

    Peng, Z. W.; Ye, R. Q.; Mann, J. A.; Zakhidov, D.; Li, Y. L.; Smalley, P. R.; Lin, J.; Tour, J. M. Flexible boron-doped laser-induced graphene microsupercapacitors. ACS Nano 2015, 9, 5868–5875.

    CAS  Article  Google Scholar 

  48. [48]

    Stanford, M. G.; Yang, K. C.; Chyan, Y.; Kittrell, C.; Tour, J. M. Laser-induced graphene for flexible and embeddable gas sensors. ACS Nano 2019, 13, 3474–3482.

    CAS  Article  Google Scholar 

  49. [49]

    Yang, L.; Yi, N.; Zhu, J.; Cheng, Z.; Yin, X. Y.; Zhang, X. Y.; Zhu, H. L.; Cheng, H. Y. Novel gas sensing platform based on a stretchable laser-induced graphene pattern with self-heating capabilities. J. Mater. Chem. A 2020, 8, 6487–6500.

    CAS  Article  Google Scholar 

  50. [50]

    Yang, Y. R.; Song, Y.; Bo, X. J.; Min, J. H.; Pak, O. S.; Zhu, L. L.; Wang, M. Q.; Tu, J. B.; Kogan, A.; Zhang, H. X. et al. A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat. Nat. Biotechnol. 2020, 38, 217–224.

    CAS  Article  Google Scholar 

  51. [51]

    Tao, L. Q.; Tian, H.; Liu, Y.; Ju, Z. Y.; Pang, Y.; Chen, Y. Q.; Wang, D. Y.; Tian, X. G.; Yan, J. C.; Deng, N. Q. et al. An intelligent artificial throat with sound-sensing ability based on laser induced graphene. Nat. Commun. 2017, 8, 14579.

    CAS  Article  Google Scholar 

  52. [52]

    Tehrani, F.; Beltrán-Gastélum, M.; Sheth, K.; Karajic, A.; Yin, L.; Kumar, R.; Soto, F.; Kim, J.; Wang, J.; Barton, S. et al. Laser-induced graphene composites for printed, stretchable, and wearable electronics. Adv. Mater. Technol. 2019, 4, 1900162.

    CAS  Article  Google Scholar 

  53. [53]

    Zhu, J. X.; Cho, M.; Li, Y. T.; Cho, I.; Suh, J. H.; Del Orbe, D.; Jeong, Y.; Ren, T. L.; Park, I. Biomimetic turbinate-like artificial nose for hydrogen detection based on 3D porous laser-induced graphene. ACS Appl. Mater. Interfaces 2019, 11, 24386–24394.

    CAS  Article  Google Scholar 

  54. [54]

    Ling, Y.; Zhuang, X. T.; Xu, Z.; Xie, Y. C.; Zhu, X. Y.; Xu, Y. D.; Sun, B. H.; Lin, J.; Zhang, Y. H.; Yan, Z. Mechanically assembled, three-dimensional hierarchical structures of cellular graphene with programmed geometries and outstanding electromechanical properties. ACS Nano 2018, 12, 12456–12463.

    CAS  Article  Google Scholar 

  55. [55]

    Singh, S. P.; Li, Y. L.; Be’er, A.; Oren, Y.; Tour, J. M.; Arnusch, C. J. Laser-induced graphene layers and electrodes prevents microbial fouling and exerts antimicrobial action. ACS Appl. Mater. Interfaces 2017, 9, 18238–18247.

    CAS  Article  Google Scholar 

  56. [56]

    Huang, L. B.; Xu, S. Y.; Wang, Z. Y.; Xue, K.; Su, J. J.; Song, Y.; Chen, S. J.; Zhu, C. L.; Tang, B. Z.; Ye, R. Q. Self-reporting and photothermally enhanced rapid bacterial killing on a laser-induced graphene mask. ACS Nano 2020, 14, 12045–12053.

    CAS  Article  Google Scholar 

  57. [57]

    Zhong, H.; Zhu, Z. R.; Lin, J.; Cheung, C. F.; Lu, V. L.; Yan, F.; Chan, C. Y.; Li, G. J. Reusable and recyclable graphene masks with outstanding superhydrophobic and photothermal performances. ACS Nano 2020, 14, 6213–6221.

    CAS  Article  Google Scholar 

  58. [58]

    Lu, Y. C.; Lyu, H.; Richardson, A. G.; Lucas, T. H.; Kuzum, D. Flexible neural electrode array based-on porous graphene for cortical microstimulation and sensing. Sci. Rep. 2016, 6, 33526.

    CAS  Article  Google Scholar 

  59. [59]

    d’Amora, M.; Lamberti, A.; Fontana, M.; Giordani, S. Toxicity assessment of laser-induced graphene by zebrafish during development. J. Phys. Mater. 2020, 3, 034008.

    Article  CAS  Google Scholar 

  60. [60]

    Wang, W.; Han, B.; Zhang, Y.; Li, Q.; Zhang, Y. L.; Han, D. D.; Sun, H. B. Laser-induced graphene tapes as origami and stick-on labels for photothermal manipulation via marangoni effect. Adv. Funct. Mater. 2021, 31, 2006179.

    CAS  Article  Google Scholar 

  61. [61]

    Puetz, P.; Behrent, A.; Baeumner, A. J.; Wegener, J. Laser-scribed graphene (LSG) as new electrode material for impedance-based cellular assays. Sens. Actuators B: Chem. 2020, 321, 128443.

    CAS  Article  Google Scholar 

  62. [62]

    Someya, T.; Bao, Z. N.; Malliaras, G. G. The rise of plastic bioelectronics. Nature 2016, 540, 379–385.

    CAS  Article  Google Scholar 

  63. [63]

    Kim, D. H.; Lu, N. S.; Ma, R.; Kim, Y. S.; Kim, R. H.; Wang, S. D.; Wu, J.; Won, S. M.; Tao, H.; Islam, A. et al. Epidermal electronics. Science 2011, 333, 838–843.

    CAS  Article  Google Scholar 

  64. [64]

    Chhetry, A.; Sharifuzzaman, M.; Yoon, H.; Sharma, S.; Xuan, X.; Park, J. Y. MoS2-decorated laser-induced graphene for a highly sensitive, hysteresis-free, and reliable piezoresistive strain sensor. ACS Appl. Mater. Interfaces 2019, 11, 22531–22542.

    CAS  Article  Google Scholar 

  65. [65]

    Dallinger, A.; Keller, K.; Fitzek, H.; Greco, F. Stretchable and skin-conformable conductors based on polyurethane/laser-induced graphene. ACS Appl. Mater. Interfaces 2020, 12, 19855–19865.

    CAS  Article  Google Scholar 

  66. [66]

    Chen, X. P.; Luo, F.; Yuan, M.; Xie, D. L.; Shen, L.; Zheng, K.; Wang, Z. P.; Li, X. D.; Tao, L. Q. A dual-functional graphene-based self-alarm health-monitoring E-skin. Adv. Funct. Mater. 2019, 29, 1904706.

    CAS  Article  Google Scholar 

  67. [67]

    Luo, S. D.; Hoang, P. T.; Liu, T. Direct laser writing for creating porous graphitic structures and their use for flexible and highly sensitive sensor and sensor arrays. Carbon 2016, 96, 522–531.

    CAS  Article  Google Scholar 

  68. [68]

    Tao, L. Q.; Wang, D. Y.; Tian, H.; Ju, Z. Y.; Liu, Y.; Pang, Y.; Chen, Y. Q.; Yang, Y.; Ren, T. L. Self-adapted and tunable graphene strain sensors for detecting both subtle and large human motions. Nanoscale 2017, 9, 8266–8273.

    CAS  Article  Google Scholar 

  69. [69]

    Wang, Y. N.; Wang, Y.; Zhang, P. P.; Liu, F.; Luo, S. D. Laser-induced freestanding graphene papers: A new route of scalable fabrication with tunable morphologies and properties for multifunctional devices and structures. Small 2018, 14, 1802350.

    Article  CAS  Google Scholar 

  70. [70]

    He, M. H.; Wang, Y. N.; Wang, S. R.; Luo, S. D. Laser-induced graphene enabled 1D fiber electronics. Carbon 2020, 168, 308–318.

    CAS  Article  Google Scholar 

  71. [71]

    Kaidarova, A.; Khan, M. A.; Marengo, M.; Swanepoel, L.; Przybysz, A.; Muller, C.; Fahlman, A.; Buttner, U.; Geraldi, N. R.; Wilson, R. P. et al. Wearable multifunctional printed graphene sensors. npj Flex. Electron. 2019, 3, 15.

    Article  CAS  Google Scholar 

  72. [72]

    Rahimi, R.; Ochoa, M.; Ziaie, B. Direct laser writing of porous-carbon/silver nanocomposite for flexible electronics. ACS Appl. Mater. Interfaces 2016, 8, 16907–16913.

    CAS  Article  Google Scholar 

  73. [73]

    Tian, Q.; Yan, W. R.; Li, Y. Q.; Ho, D. Bean pod-inspired ultrasensitive and self-healing pressure sensor based on laser-induced graphene and polystyrene microsphere sandwiched structure. ACS Appl. Mater. Interfaces 2020, 12, 9710–9717.

    CAS  Article  Google Scholar 

  74. [74]

    Xu, Y. D.; Sun, B. H.; Ling, Y.; Fei, Q. H.; Chen, Z. Y.; Li, X. P.; Guo, P. J.; Jeon, N.; Goswami, S.; Liao, Y. X. et al. Multiscale porous elastomer substrates for multifunctional on-skin electronics with passive-cooling capabilities. Proc. Natl. Acad. Sci. USA 2020, 117, 205–213.

    CAS  Article  Google Scholar 

  75. [75]

    Shao, Q.; Liu, G.; Teweldebrhan, D.; Balandin, A. A. High-temperature quenching of electrical resistance in graphene interconnects. Appl. Phys. Lett. 2008, 92, 202108.

    Article  CAS  Google Scholar 

  76. [76]

    Bobinger, M. R.; Romero, F. J.; Salinas-Castillo, A.; Becherer, M.; Lugli, P.; Morales, D. P.; Rodríguez, N.; Rivadeneyra, A. Flexible and robust laser-induced graphene heaters photothermally scribed on bare polyimide substrates. Carbon 2019, 144, 116–126.

    CAS  Article  Google Scholar 

  77. [77]

    Huang, X.; Cheng, H. Y.; Chen, K. L.; Zhang, Y. L.; Zhang, Y. H.; Liu, Y. H.; Zhu, C. Q.; Ouyang, S. C.; Kong, G. W.; Yu, C. J. et al. Epidermal impedance sensing sheets for precision hydration assessment and spatial mapping. IEEE Trans. Biomed. Eng. 2013, 60, 2848–2857.

    Article  Google Scholar 

  78. [78]

    Lan, L. Y.; Le, X. H.; Dong, H. Y.; Xie, J.; Ying, Y. B.; Ping, J. F. One-step and large-scale fabrication of flexible and wearable humidity sensor based on laser-induced graphene for real-time tracking of plant transpiration at bio-interface. Biosens. Bioelectron. 2020, 165, 112360.

    CAS  Article  Google Scholar 

  79. [79]

    Zhu, C. C.; Tao, L. Q.; Wang, Y.; Zheng, K.; Yu, J. B.; Li, X. D.; Chen, X. P.; Huang, Y. X. Graphene oxide humidity sensor with laser-induced graphene porous electrodes. Sens. Actuators B: Chem. 2020, 325, 128790.

    CAS  Article  Google Scholar 

  80. [80]

    Adhikari, K. K.; Wang, C.; Qiang, T.; Wu, Q. Polyimide-derived laser-induced porous graphene-incorporated microwave resonator for high-performance humidity sensing. Appl. Phys. Express 2019, 12, 106501.

    CAS  Article  Google Scholar 

  81. [81]

    Xu, Y. D.; Zhao, G. G.; Zhu, L.; Fei, Q. H.; Zhang, Z.; Chen, Z. Y.; An, F. F.; Chen, Y. Y.; Ling, Y.; Guo, P. J. et al. Pencil-paper on-skin electronics. Proc. Natl. Acad. Sci. USA 2020, 117, 18292–18301.

    CAS  Article  Google Scholar 

  82. [82]

    Liu, Y. H.; Pharr, M.; Salvatore, G. A. Lab-on-skin: A review of flexible and stretchable electronics for wearable health monitoring. ACS Nano 2017, 11, 9614–9635.

    CAS  Article  Google Scholar 

  83. [83]

    Xuan, X.; Kim, J. Y.; Hui, X.; Das, P. S.; Yoon, H. S.; Park, J. Y. A highly stretchable and conductive 3D porous graphene metal nanocomposite based electrochemical-physiological hybrid biosensor. Biosens. Bioelectron. 2018, 120, 160–167.

    CAS  Article  Google Scholar 

  84. [84]

    Choi, S. J.; Kim, I. D. Recent developments in 2D nanomaterials for chemiresistive-type gas sensors. Electron. Mater. Lett. 2018, 14, 221–260.

    CAS  Article  Google Scholar 

  85. [85]

    Wu, D. Z.; Peng, Q. Q.; Wu, S.; Wang, G. S.; Deng, L.; Tai, H. L.; Wang, L. Y.; Yang, Y. J.; Dong, L. X.; Zhao, Y. et al. A simple graphene NH3 gas sensor via laser direct writing. Sensors 2018, 18, 4405.

    Article  CAS  Google Scholar 

  86. [86]

    Nayak, P.; Kurra, N.; Xia, C.; Alshareef, H. N. Highly efficient laser scribed graphene electrodes for on-chip electrochemical sensing applications. Adv. Electron. Mater. 2016, 2, 1600185.

    Article  CAS  Google Scholar 

  87. [87]

    Xu, G. Y.; Jarjes, Z. A.; Wang, H. W.; Phillips, A. R. J.; Kilmartin, P. A.; Travas-Sejdic, J. Detection of neurotransmitters by three-dimensional laser-scribed graphene grass electrodes. ACS Appl. Mater. Interfaces 2018, 10, 42136–42145.

    CAS  Article  Google Scholar 

  88. [88]

    Han, T.; Nag, A.; Simorangkir, R. B. V. B.; Afsarimanesh, N.; Liu, H. R.; Mukhopadhyay, S. C.; Xu, Y. Z.; Zhadobov, M.; Sauleau, R. Multifunctional flexible sensor based on laser-induced graphene. Sensors 2019, 19, 3477.

    CAS  Article  Google Scholar 

  89. [89]

    Sharma, S.; Ganeshan, S. K.; Pattnaik, P. K.; Kanungo, S.; Chappanda, K. N. Laser induced flexible graphene electrodes for electrochemical sensing of hydrazine. Mater. Lett. 2020, 262, 127150.

    CAS  Article  Google Scholar 

  90. [90]

    Getachew, B. A.; Bergsman, D. S.; Grossman, J. C. Laser-induced graphene from polyimide and polyethersulfone precursors as a sensing electrode in anodic stripping voltammetry. ACS Appl. Mater. Interfaces 2020, 12, 48511–48517.

    CAS  Article  Google Scholar 

  91. [91]

    Wan, Z. F.; Umer, M.; Lobino, M.; Thiel, D.; Nguyen, N. T.; Trinchi, A.; Shiddiky, M. J. A.; Gao, Y. S.; Li, Q. Laser induced self-N-doped porous graphene as an electrochemical biosensor for femtomolar miRNA detection. Carbon 2020, 163, 385–394.

    CAS  Article  Google Scholar 

  92. [92]

    Yu, Y. C.; Joshi, P. C.; Wu, J.; Hu, A. M. Laser-induced carbon-based smart flexible sensor array for multiflavors detection. ACS Appl. Mater. Interfaces 2018, 10, 34005–34012.

    CAS  Article  Google Scholar 

  93. [93]

    Matsui, J.; Takayose, M.; Akamatsu, K.; Nawafune, H.; Tamaki, K.; Sugimoto, N. Molecularly imprinted nanocomposites for highly sensitive SPR detection of a non-aqueous atrazine sample. Analyst 2009, 134, 80–86.

    CAS  Article  Google Scholar 

  94. [94]

    Jeong, S. Y.; Kim, J. S.; Lee, J. H. Rational design of semiconductor-based chemiresistors and their libraries for next-generation artificial olfaction. Adv. Mater. 2020, 32, 2002075.

    CAS  Article  Google Scholar 

  95. [95]

    Broza, Y. Y.; Zhou, X.; Yuan, M. M.; Qu, D. Y.; Zheng, Y. B.; Vishinkin, R.; Khatib, M.; Wu, W. W.; Haick, H. Disease detection with molecular biomarkers: From chemistry of body fluids to nature-inspired chemical sensors. Chem. Rev. 2019, 119, 11761–11817.

    CAS  Article  Google Scholar 

  96. [96]

    Cheng, C.; Wang, S. T.; Wu, J.; Yu, Y. C.; Li, R. Z.; Eda, S.; Chen, J. G.; Feng, G. Y.; Lawrie, B.; Hu, A. M. Bisphenol a sensors on polyimide fabricated by laser direct writing for onsite river water monitoring at attomolar concentration. ACS Appl. Mater. Interfaces 2016, 8, 17784–17792.

    CAS  Article  Google Scholar 

  97. [97]

    Marques, A. C.; Cardoso, A. R.; Martins, R.; Sales, M. G. F.; Fortunato, E. Laser-induced graphene-based platforms for dual biorecognition of molecules. ACS Appl. Nano Mater. 2020, 3, 2795–2803.

    CAS  Article  Google Scholar 

  98. [98]

    Fenzl, C.; Nayak, P.; Hirsch, T.; Wolfbeis, O. S.; Alshareef, H. N.; Baeumner, A. J. Laser-scribed graphene electrodes for aptamer-based biosensing. ACS Sens. 2017, 2, 616–620.

    CAS  Article  Google Scholar 

  99. [99]

    Soares, R. R. A.; Hjort, R. G.; Pola, C. C.; Parate, K.; Reis, E. L.; Soares, N. F.; McLamore, E. S.; Claussen, J. C.; Gomes, C. L. Laser-induced graphene electrochemical immunosensors for rapid and label-free monitoring of Salmonella enterica in chicken broth. ACS Sens. 2020, 5, 1900–1911.

    CAS  Article  Google Scholar 

  100. [100]

    Yoon, H.; Nah, J.; Kim, H.; Ko, S.; Sharifuzzaman, M.; Barman, S. C.; Xuan, X.; Kim, J.; Park, J. Y. A chemically modified laser-induced porous graphene based flexible and ultrasensitive electrochemical biosensor for sweat glucose detection. Sens. Actuators B: Chem. 2020, 311, 127866.

    CAS  Article  Google Scholar 

  101. [101]

    Torrente-Rodríguez, R. M.; Tu, J. B.; Yang, Y. R.; Min, J. H.; Wang, M. Q.; Song, Y.; Yu, Y.; Xu, C. H.; Ye, C.; IsHak, W. W. et al. Investigation of cortisol dynamics in human sweat using a graphene-based wireless mHealth system. Matter 2020, 2, 921–937.

    Article  Google Scholar 

  102. [102]

    Torrente-Rodríguez, R. M.; Lukas, H.; Tu, J. B.; Min, J. H.; Yang, Y. R.; Xu, C. H.; Rossiter, H. B.; Gao, W. SARS-CoV-2 RapidPlex: A graphene-based multiplexed telemedicine platform for rapid and low-cost COVID-19 diagnosis and monitoring. Matter 2020, 3, 1981–1998.

    Article  Google Scholar 

  103. [103]

    Stanford, M. G.; Li, J. T.; Chyan, Y.; Wang, Z.; Wang, W.; Tour, J. M. Laser-induced graphene triboelectric nanogenerators. ACS Nano 2019, 13, 7166–7174.

    CAS  Article  Google Scholar 

  104. [104]

    Zhao, P. F.; Bhattacharya, G.; Fishlock, S. J.; Guy, J. G. M.; Kumar, A.; Tsonos, C.; Yu, Z. D.; Raj, S.; McLaughlin, J. A.; Luo, J. K. et al. Replacing the metal electrodes in triboelectric nanogenerators: High-performance laser-induced graphene electrodes. Nano Energy 2020, 75, 104958.

    CAS  Article  Google Scholar 

  105. [105]

    Yang, C.; Huang, Y. X.; Cheng, H. H.; Jiang, L.; Qu, L. T. Rollable, stretchable, and reconfigurable graphene hygroelectric generators. Adv. Mater. 2019, 31, 1805705.

    Article  CAS  Google Scholar 

  106. [106]

    Zhao, F.; Cheng, H. H.; Zhang, Z. P.; Jiang, L.; Qu, L. T. Direct power generation from a graphene oxide film under moisture. Adv. Mater. 2015, 27, 4351–4357.

    CAS  Article  Google Scholar 

  107. [107]

    Bai, J. X.; Huang, Y. X.; Cheng, H. H.; Qu, L. T. Moist-electric generation. Nanoscale 2019, 11, 23083–23091.

    CAS  Article  Google Scholar 

  108. [108]

    Zhang, C.; Xie, Y. C.; Deng, H.; Tumlin, T.; Zhang, C.; Su, J. W.; Yu, P.; Lin, J. Monolithic and flexible ZnS/SnO2 ultraviolet photodetectors with lateral graphene electrodes. Small 2017, 13, 1604197.

    Article  CAS  Google Scholar 

  109. [109]

    Chen, Y.; Long, J. Y.; Zhou, S.; Shi, D. C.; Huang, Y.; Chen, X.; Gao, J.; Zhao, N.; Wong, C. P. UV laser-induced polyimide-to-graphene conversion: Modeling, fabrication, and application. Small Methods 2019, 3, 1900208.

    CAS  Article  Google Scholar 

  110. [110]

    Hines, L.; Petersen, K.; Lum, G. Z.; Sitti, M. Soft actuators for small-scale robotics. Adv. Mater. 2017, 29, 1603483.

    Article  CAS  Google Scholar 

  111. [111]

    Deng, H.; Zhang, C.; Su, J. W.; Xie, Y. C.; Zhang, C.; Lin, J. Bioinspired multi-responsive soft actuators controlled by laser tailored graphene structures. J. Mater. Chem. B 2018, 6, 5415–5423.

    CAS  Article  Google Scholar 

  112. [112]

    Ling, Y.; Pang, W. B.; Li, X. P.; Goswami, S.; Xu, Z.; Stroman, D.; Liu, Y. C.; Fei, Q. H.; Xu, Y. D.; Zhao, G. G. et al. Laser-induced graphene for electrothermally controlled, mechanically guided, 3D assembly and human-soft actuators interaction. Adv. Mater. 2020, 32, 1908475.

    CAS  Article  Google Scholar 

  113. [113]

    Luong, D. X.; Subramanian, A. K.; Silva, G. A. L.; Yoon, J.; Cofer, S.; Yang, K.; Owuor, P. S.; Wang, T.; Wang, Z.; Lou, J. et al. Laminated object manufacturing of 3D-printed laser-induced graphene foams. Adv. Mater. 2018, 30, 1707416.

    Article  CAS  Google Scholar 

  114. [114]

    Senyuk, B.; Behabtu, N.; Martinez, A.; Lee, T.; Tsentalovich, D. E.; Ceriotti, G.; Tour, J. M.; Pasquali, M.; Smalyukh, I. I. Three-dimensional patterning of solid microstructures through laser reduction of colloidal graphene oxide in liquid-crystalline dispersions. Nat. Commun. 2015, 6, 7157.

    Article  Google Scholar 

  115. [115]

    Kucherenko, I. S.; Sanborn, D.; Chen, B. L.; Garland, N.; Serhan, M.; Forzani, E.; Gomes, C.; Claussen, J. C. Ion-selective sensors based on laser-induced graphene for evaluating human hydration levels using urine samples. Adv. Mater. Technol. 2020, 5, 1901037.

    CAS  Article  Google Scholar 

  116. [116]

    Lin, X. N.; Lu, Z. W.; Dai, W. L.; Liu, B. C.; Zhang, Y. X.; Li, J. Y.; Ye, J. S. Laser engraved nitrogen-doped graphene sensor for the simultaneous determination of Cd(II) and Pb(II). J. Electroanal. Chem. 2018, 828, 41–49.

    CAS  Article  Google Scholar 

  117. [117]

    Li, H.; Guo, C. X.; Liu, C. C.; Ge, L.; Li, F. Laser-induced graphene hybrid photoelectrode for enhanced photoelectrochemical detection of glucose. Analyst 2020, 145, 4041–4049.

    CAS  Article  Google Scholar 

  118. [118]

    Zhang, Y.; Li, N.; Xiang, Y. J.; Wang, D. B.; Zhang, P.; Wang, Y. Y.; Lu, S.; Xu, R. Q.; Zhao, J. A flexible non-enzymatic glucose sensor based on copper nanoparticles anchored on laser-induced graphene. Carbon 2020, 156, 506–513.

    CAS  Article  Google Scholar 

  119. [119]

    Tehrani, F.; Bavarian, B. Facile and scalable disposable sensor based on laser engraved graphene for electrochemical detection of glucose. Sci. Rep. 2016, 6, 27975.

    CAS  Article  Google Scholar 

  120. [120]

    Yoon, H.; Nah, J.; Kim, J.; Xuan, X.; Park, J. Laser-induced graphene stamp for high performacne elecrochemical sensing applications. In Proceedings of the IEEE 32nd International Conference on Micro Electro Mechanical Systems (MEMS), Seoul, Republic of Korea, 2019, pp 537–540.

  121. [121]

    Zhang, Y. H.; Zhu, H. C.; Sun, P.; Sun, C. K.; Huang, H.; Guan, S.; Liu, H. L.; Zhang, H. Y.; Zhang, C.; Qin, K. R. Laser-induced graphene-based non-enzymatic sensor for detection of hydrogen peroxide. Electroanalysis 2019, 31, 1334–1341.

    CAS  Article  Google Scholar 

  122. [122]

    Aparicio-Martínez, E.; Ibarra, A.; Estrada-Moreno, I. A.; Osuna, V.; Dominguez, R. B. Flexible electrochemical sensor based on laser scribed graphene/Ag nanoparticles for non-enzymatic hydrogen peroxide detection. Sens. Actuators: B Chem. 2019, 301, 127101.

    Article  CAS  Google Scholar 

  123. [123]

    Mamleyev, E. R.; Heissler, S.; Nefedov, A.; Weidler, P. G.; Nordin, N.; Kudryashov, V. V.; Länge, K.; MacKinnon, N.; Sharma, S. Laser-induced hierarchical carbon patterns on polyimide substrates for flexible urea sensors. npj Flex. Electron. 2019, 3, 2.

    Article  CAS  Google Scholar 

  124. [124]

    Yagati, A. K.; Behrent, A.; Beck, S.; Rink, S.; Goepferich, A. M.; Min, J. H.; Lee, M. H.; Baeumner, A. J. Laser-induced graphene interdigitated electrodes for label-free or nanolabel-enhanced highly sensitive capacitive aptamer-based biosensors. Biosens. Bioelectron. 2020, 164, 112272.

    CAS  Article  Google Scholar 

  125. [125]

    Xu, G. Y.; Jarjes, Z. A.; Desprez, V.; Kilmartin, P. A.; Travas-Sejdic, J. Sensitive, selective, disposable electrochemical dopamine sensor based on PEDOT-modified laser scribed graphene. Biosens. Bioelectron. 2018, 107, 184–191.

    CAS  Article  Google Scholar 

  126. [126]

    Hui, X.; Xuan, X.; Kim, J.; Park, J. Y. A highly flexible and selective dopamine sensor based on Pt-Au nanoparticle-modified laser-induced graphene. Electrochim. Acta 2019, 328, 135066.

    CAS  Article  Google Scholar 

  127. [127]

    Vanegas, D. C.; Patiño, L.; Mendez, C.; de Oliveira, D. A; Torres, A. M.; Gomes, C. L.; McLamore, E. S. Laser scribed graphene biosensor for detection of biogenic amines in food samples using locally sourced materials. Biosensors 2018, 8, 42.

    Article  CAS  Google Scholar 

  128. [128]

    You, Z. H.; Qiu, Q. M.; Chen, H. Y.; Feng, Y. Y.; Wang, X.; Wang, Y. X.; Ying, Y. B. Laser-induced noble metal nanoparticle-graphene composites enabled flexible biosensor for pathogen detection. Biosens. Bioelectron. 2020, 150, 111896.

    CAS  Article  Google Scholar 

  129. [129]

    Cardoso, A. R.; Marques, A. C.; Santos, L.; Carvalho, A. F.; Costa, F. M.; Martins, R.; Sales, M. G. F.; Fortunato, E. Molecularly-imprinted chloramphenicol sensor with laser-induced graphene electrodes. Biosens. Bioelectron. 2019, 124-125, 167–175.

    CAS  Article  Google Scholar 

  130. [130]

    Ge, L.; Hong, Q.; Li, H.; Li, F. A laser-induced TiO2-decorated graphene photoelectrode for sensitive photoelectrochemical biosensing. Chem. Commun. 2019, 55, 4945–4948.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Z. Y. acknowledges the financial support from the NSF grant (ECCS-1917630) and University of Missouri-Columbia startup fund.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zheng Yan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Fei, Q., Page, M. et al. Laser-induced graphene for bioelectronics and soft actuators. Nano Res. 14, 3033–3050 (2021). https://doi.org/10.1007/s12274-021-3441-9

Download citation

Keywords

  • laser-induced graphene
  • bioelectronics
  • biophysical sensors
  • biochemical sensors
  • soft actuators