Skip to main content

Si nanomebranes: Material properties and applications

Abstract

Silicon (Si) has widely been used as an essential material in the modern semiconductor industry. Recently, new attempts have been actively made to apply Si to a variety of fields such as flexible electronic devices and biosensors by manufacturing Si nanomembranes (NMs) having nanometer thickness. In particular, as the thickness of Si is reduced to a nanometer scale, its mechanical, electrical, and optical properties differ from that of its bulk form, which provides opportunities for the development of new conceptual devices. In this review, we present recent advances in Si NM technology that exhibit functional features different from the bulk materials. In addition, we discuss the opportunities and current challenges related to this field.

References

  1. [1]

    Cavallo, F.; Lagally, M. G. Semiconductors turn soft: Inorganic nanomembranes. Soft Matter 2010, 6, 439–455.

    CAS  Article  Google Scholar 

  2. [2]

    Mack, S.; Meitl, M. A.; Baca, A. J.; Zhu, Z.-T.; Rogers, J. A. Mechanically flexible thin-film transistors that use ultrathin ribbons of silicon derived from bulk wafers. Appl. Phys. Lett. 2006, 88, 213101.

    Article  CAS  Google Scholar 

  3. [3]

    Hu, J. J.; Li, L.; Lin, H. T.; Zhang, P.; Zhou, W. D.; Ma, Z. Q. Flexible integrated photonics: Where materials, mechanics and optics meet [invited]. Opt. Mater. Express 2013, 3, 1313–1331.

    Article  CAS  Google Scholar 

  4. [4]

    Lu, W.; Lieber, C. M. Nanoelectronics from the bottom up. Nanosci. Nat. Mater. 2007, 6, 841–850.

    CAS  Article  Google Scholar 

  5. [5]

    Paskiewicz, D. M.; Savage, D. E.; Holt, M. V.; Evans, P. G.; Lagally, M. G. Nanomembrane-based materials for group IV semiconductor quantum electronics. Sci. Rep. 2014, 4, 4218.

    CAS  Article  Google Scholar 

  6. [6]

    Yin, L.; Sheng, X. Nonconventional biosensors based on nanomembrane materials. In Nanobiomaterials: Classification, Fabrication and Biomedical Applications; Wang, X. M.; Ramalingam, M.; Kong, X. D.; Zhao, L. Y., Eds.; Wiley-VCH Verlag GmbH & Co. KGa: Weinheim, Germany, 2018; pp 241–257.

    Google Scholar 

  7. [7]

    Ferrari, A. C.; Bonaccorso, F.; Fal’ko, V.; Novoselov, K. S.; Roche, S.; Bøggild, P.; Borini, S.; Koppens, F. H. L.; Palermo, V.; Pugno, N. et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 2015, 7, 4598–4810.

    CAS  Article  Google Scholar 

  8. [8]

    Ying, M.; Bonifas, A. P.; Lu, N. S.; Su, Y. W.; Li, R.; Cheng, H. Y.; Ameen, A.; Huang, Y. G.; Rogers, J. A. Silicon nanomembranes for fingertip electronics. Nanotechnology 2012, 23, 344004.

    Article  CAS  Google Scholar 

  9. [9]

    Lagally, M. G. Silicon nanomembranes. MRS Bull. 2007, 32, 57–63.

    CAS  Article  Google Scholar 

  10. [10]

    Zhou, W. D.; Ma, Z. Q. Breakthroughs in photonics 2012: Breakthroughs in nanomembranes and nanomembrane lasers. IEEE Photonics J. 2013, 5, 0700707.

    CAS  Article  Google Scholar 

  11. [11]

    Zhou, H.; Seo, J. H.; Paskiewicz, D. M.; Zhu, Y.; Celler, G. K.; Voyles, P. M.; Zhou, W. D.; Lagally, M. G.; Ma, Z. Q. Fast flexible electronics with strained silicon nanomembranes. Sci. Rep. 2013, 3, 1291.

    Article  CAS  Google Scholar 

  12. [12]

    Clausen, A. M.; Paskiewicz, D. M.; Sadeghirad, A.; Jakes, J.; Savage, D. E.; Stone, D. S.; Liu, F.; Lagally, M. G. Silicon nanomembranes as a means to evaluate stress evolution in deposited thin films. Extreme Mech. Lett. 2014, 1, 9–16.

    Article  Google Scholar 

  13. [13]

    Katiyar, A. K.; Davidson, A. A.; Jang, H.; Hwangbo, Y.; Han, B.; Lee, S.; Hagiwara, Y.; Shimada, T.; Hirakata, H.; Kitamura, T. et al. Ultrasoft silicon nanomembranes: Thickness-dependent effective elastic modulus. Nanoscale 2019, 11, 15184–15194.

    CAS  Article  Google Scholar 

  14. [14]

    Khang, D. Y.; Jiang, H. Q.; Huang, Y.; Rogers, J. A. A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science 2006, 311, 208–212.

    CAS  Article  Google Scholar 

  15. [15]

    Zhang, P. P.; Tevaarwerk, E.; Park, B. N.; Savage, D. E.; Celler, G. K.; Knezevic, I.; Evans, P. G.; Eriksson, M. A.; Lagally, M. G. Electronic transport in nanometre-scale silicon-on-insulator membranes. Nature 2006, 439, 703–706.

    CAS  Article  Google Scholar 

  16. [16]

    Schmidt, O. G.; Eberl, K. Into nanotubes. 2001, 410, 2001.

    Google Scholar 

  17. [17]

    Baca, A. J.; Meitl, M. A.; Ko, H. C.; Mack, S.; Kim, H. S.; Dong, J.; Ferreira, P. M.; Rogers, J. A. Printable single-crystal silicon micro/nanoscale ribbons, platelets and bars generated from bulk wafers. Adv. Funct. Mater. 2007, 17, 3051–3062.

    CAS  Article  Google Scholar 

  18. [18]

    Cavallo, F.; Lagally, M. G. Semiconductor nanomembranes: A platform for new properties via strain engineering. Nanoscale Res. Lett. 2012, 7, 628.

    Article  CAS  Google Scholar 

  19. [19]

    Baca, A. J.; Ahn, J. H.; Sun, Y. G.; Meitl, M. A.; Menard, E.; Kim, H. S.; Choi, W. M.; Kim, D. H.; Huang, Y.; Rogers, J. A. Semiconductor wires and ribbons for high-performance flexible electronics. Angew. Chem., Int. Ed. 2008, 47, 5524–5542.

    CAS  Article  Google Scholar 

  20. [20]

    Hwang, S. W.; Song, J. K.; Huang, X.; Cheng, H. Y.; Kang, S. K.; Kim, B. H.; Kim, J. H.; Yu, S.; Huang, Y. G.; Rogers, J. A. High-performance biodegradable/transient electronics on biodegradable polymers. Adv. Mater. 2014, 26, 3905–3911.

    CAS  Article  Google Scholar 

  21. [21]

    Seo, J. H.; Zhang, K.; Kim, M.; Zhou, W. D.; Ma, Z. Q. High-performance flexible BICMOS electronics based on single-crystal Si nanomembrane. npj Flex. Electron. 2017, 1, 1.

    CAS  Article  Google Scholar 

  22. [22]

    Qin, G. X.; Yuan, H. C.; Yang, H. J.; Zhou, W. D.; Ma, Z. Q. High-performance flexible thin-film transistors fabricated using print-transferrable polycrystalline silicon membranes on a plastic substrate. Semicond. Sci. Technol. 2010, 26, 025005.

    Article  CAS  Google Scholar 

  23. [23]

    Seo, J. H.; Zhang, Y.; Yuan, H. C.; Wang, Y. X.; Zhou, W. D.; Ma, J. G.; Ma, Z. Q.; Qin, G. X. Investigation of various mechanical bending strains on characteristics of flexible monocrystalline silicon nanomembrane diodes on a plastic substrate. Microelectron. Eng. 2013, 110, 40–43.

    CAS  Article  Google Scholar 

  24. [24]

    Seo, J. H.; Park, J.; Zhao, D. Y.; Yang, H. J.; Zhou, W. D.; Ju, B. K.; Ma, Z. Q. Large-area printed broadband membrane reflectors by laser interference lithography. IEEE Photonics J. 2013, 5, 2200106.

    Article  CAS  Google Scholar 

  25. [25]

    Won, S. M.; Kim, H. S.; Lu, N. S.; Kim, D. G.; Del Solar, C.; Duenas, T.; Ameen, A.; Rogers, J. A. Piezoresistive strain sensors and multiplexed arrays using assemblies of single-crystalline silicon nanoribbons on plastic substrates. IEEE Trans. Electron Devices 2011, 58, 4074–4078.

    CAS  Article  Google Scholar 

  26. [26]

    Artukovic, E.; Kaempgen, M.; Hecht, D. S.; Roth, S.; Grüner, G. Transparent and flexible carbon nanotube transistors. Nano Lett. 2005, 5, 757–760.

    CAS  Article  Google Scholar 

  27. [27]

    Kim, B. H.; Lee, J.; Won, S. M.; Xie, Z. Q.; Chang, J. K.; Yu, Y.; Cho, Y. K.; Jang, H.; Jeong, J. Y.; Lee, Y. et al. Three-dimensional silicon electronic systems fabricated by compressive buckling process. ACS Nano 2018, 12, 4164–4171.

    CAS  Article  Google Scholar 

  28. [28]

    Rogers, J. A.; Lagally, M. G.; Nuzzo, R. G. Synthesis, assembly and applications of semiconductor nanomembranes. Nature 2011, 477, 45–53.

    CAS  Article  Google Scholar 

  29. [29]

    Lee, W.; Jang, H.; Jang, B.; Kim, J. H.; Ahn, J. H. Stretchable Si logic devices with graphene interconnects. Small 2015, 11, 6272–6277.

    CAS  Article  Google Scholar 

  30. [30]

    Kim, D.-H.; Ahn, J.-H.; Choi, W. M.; Kim, H.-S.; Kim, T.-H.; Song, J. Z.; Huang, Y. Y.; Liu, Z. J.; Lu, C.; Rogers, J. A. Stretchable and foldable silicon integrated circuits Science 2008, 320, 507–511.

  31. [31]

    Guo, Q. L.; Di, Z. F.; Lagally, M. G.; Mei, Y. F. Strain engineering and mechanical assembly of silicon/germanium nanomembranes. Mater. Sci. Eng. R Rep. 2018, 128, 1–31.

    Article  Google Scholar 

  32. [32]

    Nomura, K.; Ohta, H.; Takagi, A.; Kamiya, T.; Hirano, M.; Hosono, H. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 2004, 432, 488–492.

    CAS  Article  Google Scholar 

  33. [33]

    Rogers, J. A.; Someya, T.; Huang, Y. G. Materials and mechanics for stretchable electronics. Science 2010, 327, 1603–1607.

    CAS  Article  Google Scholar 

  34. [34]

    Menard, E.; Lee, K. J.; Khang, D. Y.; Nuzzo, R. G.; Rogers, J. A. A printable form of silicon for high performance thin film transistors on plastic substrates. Appl. Phys. Lett. 2004, 84, 5398–5400.

    CAS  Article  Google Scholar 

  35. [35]

    Shuai, Y. C.; Zhao, D. Y.; Singh Chadha, A.; Seo, J. H.; Yang, H. J.; Fan, S. H.; Ma, Z. Q.; Zhou, W. D. Coupled double-layer Fano resonance photonic crystal filters with lattice-displacement. Appl. Phys. Lett. 2013, 103, 241106.

    Article  CAS  Google Scholar 

  36. [36]

    Ju, S.; Facchetti, A.; Xuan, Y.; Liu, J.; Ishikawa, F.; Ye, P. D.; Zhou, C. W.; Marks, T. J.; Janes, D. B. Fabrication of fully transparent nanowire transistors for transparent and flexible electronics. Nat. Nanotechnol. 2007, 2, 378–384.

    CAS  Article  Google Scholar 

  37. [37]

    Qin, G. X.; Tu, G. P.; Cai, T. H.; Ma, J. G.; Ma, Z. Q. Fabrication, characterisation and modelling of fast flexible semiconductor nanomembrane electronics. Int. J. Nanotechnol. 2014, 11, 190–206.

    CAS  Article  Google Scholar 

  38. [38]

    Kim, D.-H.; Kim, Y.-S.; Wu, J.; Liu, Z. J.; Song, J. Z.; Kim, H.-S.; Huang, Y. G.; Hwang, K.-C.; Rogers, J. A. Flexible electronics: Ultrathin silicon circuits with strain-isolation layers and mesh layouts for high-performance electronics on fabric, vinyl, leather, and paper (Adv. Mater. 36/2009). Adv. Mater. 2009, 21, NA–NA.

    Google Scholar 

  39. [39]

    Kim, T. I.; McCall, J. G.; Jung, Y. H.; Huang, X.; Siuda, E. R.; Li, Y. H.; Song, J. Z.; Song, Y. M.; Pao, H. A.; Kim, R. H. et al. Injectable, cellular-scale optoelectronics with applications for wireless optogenetics. Science 2013, 340, 211–216.

    CAS  Article  Google Scholar 

  40. [40]

    Yeo, W. H.; Kim, Y. S.; Lee, J.; Ameen, A.; Shi, L. K.; Li, M.; Wang, S. D.; Ma, R.; Jin, S. H.; Kang, Z. et al. Multifunctional epidermal electronics printed directly onto the skin. Adv. Mater. 2013, 25, 2773–2778.

    CAS  Article  Google Scholar 

  41. [41]

    Zhang, K.; Jung, Y. H.; Mikael, S.; Seo, J. H.; Kim, M.; Mi, H. Y.; Zhou, H.; Xia, Z. Y.; Zhou, W. D.; Gong, S. Q. et al. Origami silicon optoelectronics for hemispherical electronic eye systems. Nat. Commun. 2017, 8, 1782.

    Article  CAS  Google Scholar 

  42. [42]

    Park, M.; Kim, M. S.; Park, Y. K.; Ahn, J. H. Si membrane based tactile sensor with active matrix circuitry for artificial skin applications. Appl. Phys. Lett. 2015, 106, 043502.

    Article  CAS  Google Scholar 

  43. [43]

    Yang, H. J.; Zhao, D. Y.; Chuwongin, S.; Seo, J. H.; Yang, W. Q.; Shuai, Y. C.; Berggren, J.; Hammar, M.; Ma, Z. Q.; Zhou, W. D. Transfer-printed stacked nanomembrane lasers on silicon. Nat. Photonics 2012, 6, 615–620.

    Article  CAS  Google Scholar 

  44. [44]

    Kim, J.; Lee, M.; Shim, H. J.; Ghaffari, R.; Cho, H. R.; Son, D.; Jung, Y. H.; Soh, M.; Choi, C.; Jung, S. et al. Stretchable silicon nanoribbon electronics for skin prosthesis. Nat. Commun. 2014, 5, 5747.

    CAS  Article  Google Scholar 

  45. [45]

    Choi, W. M.; Song, J. Z.; Khang, D. Y.; Jiang, H. Q.; Huang, Y. Y.; Rogers, J. A. Biaxially stretchable “wavy” silicon nanomembranes. Nano Lett. 2007, 7, 1655–1663.

    CAS  Article  Google Scholar 

  46. [46]

    Kang, S. K.; Hwang, S. W.; Yu, S.; Seo, J. H.; Corbin, E. A.; Shin, J.; Wie, D. S.; Bashir, R.; Ma, Z. Q.; Rogers, J. A. Biodegradable thin metal foils and spin-on glass materials for transient electronics. Adv. Funct. Mater. 2015, 25, 1789–1797.

    CAS  Article  Google Scholar 

  47. [47]

    Lu, L. Y.; Yang, Z. J.; Meacham, K.; Cvetkovic, C.; Corbin, E. A.; Vázquez-Guardado, A.; Xue, M. T.; Yin, L.; Boroumand, J.; Pakeltis, G. et al. Biodegradable monocrystalline silicon photovoltaic microcells as power supplies for transient biomedical implants. Adv. Energy Mater. 2018, 8, 1703035.

    Article  CAS  Google Scholar 

  48. [48]

    Kang, S. K.; Murphy, R. K. J.; Hwang, S. W.; Lee, S. M.; Harburg, D. V.; Krueger, N. A.; Shin, J.; Gamble, P.; Cheng, H. Y.; Yu, S. et al. Bioresorbable silicon electronic sensors for the brain. Nature 2016, 530, 71–76.

    CAS  Article  Google Scholar 

  49. [49]

    Park, S. I.; Xiong, Y. J.; Kim, R. H.; Elvikis, P.; Meitl, M.; Kim, D. H.; Wu, J.; Yoon, J.; Yu, C. J.; Liu, Z. J. et al. Printed assemblies of inorganic light-emitting diodes for deformable and semitransparent displays. Science 2009, 325, 977–981.

    CAS  Article  Google Scholar 

  50. [50]

    Qin, G. X.; Yang, L. C.; Seo, J. H.; Yuan, H. C.; Celler, G. K.; Ma, J. G.; Ma, Z. Q. Experimental characterization and modeling of the bending strain effect on flexible microwave diodes and switches on plastic substrate. Appl. Phys. Lett. 2011, 99, 243104.

    Article  CAS  Google Scholar 

  51. [51]

    Zhou, W. D.; Ma, Z. Q.; Chuwongin, S.; Shuai, Y. C.; Seo, J. H.; Zhao, D. Y.; Yang, H. J.; Yang, W. Q. Semiconductor nanomembranes for integrated silicon photonics and flexible Photonics. Opt. Quantum Electron. 2012, 44, 605–611.

    CAS  Article  Google Scholar 

  52. [52]

    Rodrigues, D.; Barbosa, A. I.; Rebelo, R.; Kwon, I. K.; Reis, R. L.; Correlo, V. M. Skin-integrated wearable systems and implantable biosensors: A comprehensive review. Biosensors 2020, 10, 79.

    Article  Google Scholar 

  53. [53]

    Ma, Y. J.; Feng, X.; Rogers, J. A.; Huang, Y. G.; Zhang, Y. H. Design and application of “J-shaped” stress-strain behavior in stretchable electronics: A review. Lab Chip 2017, 17, 1689–1704.

    CAS  Article  Google Scholar 

  54. [54]

    Khang, D. Y.; Jiang, H. Q.; Huang, Y.; Rogers, J. A. A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science 2006, 311, 208–212.

    CAS  Article  Google Scholar 

  55. [55]

    Salleo, A.; Wong, W. S. Flexible Electronics: Materials and Applications; Springer: Boston, MA, USA, 2009; pp 1–28.

    Google Scholar 

  56. [56]

    Viventi, J.; Kim, D. H.; Moss, J. D.; Kim, Y. S.; Blanco, J. A.; Annetta, N.; Hicks, A.; Xiao, J. L.; Huang, Y. G.; Callans, D. J. et al. A conformal, bio-interfaced class of silicon electronics for mapping cardiac electrophysiology. Sci. Transl. Med. 2010, 2, 24ra22.

    Article  CAS  Google Scholar 

  57. [57]

    Cho, M.; Seo, J. H.; Park, D. W.; Zhou, W. D.; Ma, Z. Q. Capacitancevoltage characteristics of Si and Ge nanomembrane based flexible metal-oxide-semiconductor devices under bending conditions. Appl. Phys. Lett. 2016, 108, 233505.

    Article  CAS  Google Scholar 

  58. [58]

    Zhang, K.; Seo, J. H.; Zhou, W. D.; Ma, Z. Q. Fast flexible electronics using transferrable silicon nanomembranes. J. Phys. D. Appl. Phys. 2012, 45, 143001.

    Article  CAS  Google Scholar 

  59. [59]

    Liu, D.; Zhou, W. D.; Ma, Z. Q. Semiconductor nanomembrane-based light-emitting and photodetecting devices. Photonics 2016, 3, 40.

    Article  CAS  Google Scholar 

  60. [60]

    Kim, M.; Mi, H. Y.; Cho, M.; Seo, J. H.; Zhou, W. D.; Gong, S. Q.; Ma, Z. Q. Tunable biaxial in-plane compressive strain in a Si nanomembrane transferred on a polyimide film. Appl. Phys. Lett. 2015, 106, 212107.

    Article  CAS  Google Scholar 

  61. [61]

    Yang, H. J.; Zhao, D. Y.; Liu, S.; Liu, Y. H.; Seo, J. H.; Ma, Z. Q.; Zhou, W. D. Transfer printed nanomembranes for heterogeneously integrated membrane photonics. Photonics 2015, 2, 1081–1100.

    CAS  Article  Google Scholar 

  62. [62]

    Tao, H.; Brenckle, M. A.; Yang, M. M.; Zhang, J. D.; Liu, M. K.; Siebert, S. M.; Averitt, R. D.; Mannoor, M. S.; McAlpine, M. C.; Rogers, J. A. et al. Silk-based conformal, adhesive, edible food sensors. Adv. Mater. 2012, 24, 1067–1072.

    CAS  Article  Google Scholar 

  63. [63]

    Jang, H.; Lee, W.; Won, S. M.; Ryu, S. Y.; Lee, D.; Koo, J. B.; Ahn, S. D.; Yang, C. W.; Jo, M. H.; Cho, J. H. et al. Quantum confinement effects in transferrable silicon nanomembranes and their applications on unusual substrates. Nano Lett. 2013, 13, 5600–5607.

    CAS  Article  Google Scholar 

  64. [64]

    Shergujri, M. A.; Jaman, R.; Baruah, A. J.; Mahato, M.; Pyngrope, D.; Singh, L. R.; Gogoi, M. Paper-based sensors for biomedical applications. In Biomedical Engineering and Its Applications in Healthcare; Paul, S., Ed.; Springer: Singapore, 2019; pp 355–376.

  65. [65]

    Rogers, J. A.; Ahn, J. H. Silicon Nanomembranes: Fundamental Science and Applications; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2016.

    Book  Google Scholar 

  66. [66]

    Kim, D. H.; Lu, N. S.; Ghaffari, R.; Kim, Y. S.; Lee, S. P.; Xu, L. Z.; Wu, J.; Kim, R. H.; Song, J. Z.; Liu, Z. J. et al. Materials for multifunctional balloon catheters with capabilities in cardiac electrophysiological mapping and ablation therapy. Nat. Mater. 2011, 10, 316–323.

    CAS  Article  Google Scholar 

  67. [67]

    Hwang, S. W.; Huang, X.; Seo, J. H.; Song, J. K.; Kim, S.; Hage-Ali, S.; Chung, H. J.; Tao, H.; Omenetto, F. G.; Ma, Z. Q. et al. Materials for bioresorbable radio frequency electronics. Adv. Mater. 2013, 25, 3526–3531.

    CAS  Article  Google Scholar 

  68. [68]

    Hwang, S. W.; Park, G.; Edwards, C.; Corbin, E. A.; Kang, S. K.; Cheng, H. Y.; Song, J. K.; Kim, J. H.; Yu, S.; Ng, J. et al. Dissolution chemistry and biocompatibility of single-crystalline silicon nanomembranes and associated materials for transient electronics. ACS Nano 2014, 8, 5843–5851.

    CAS  Article  Google Scholar 

  69. [69]

    Yu, K. J.; Kuzum, D.; Hwang, S. W.; Kim, B. H.; Juul, H.; Kim, N. H.; Won, S. M.; Chiang, K.; Trumpis, M.; Richardson, A. G. et al. Bioresorbable silicon electronics for transient spatiotemporal mapping of electrical activity from the cerebral cortex. Nat. Mater. 2016, 15, 782–791.

    CAS  Article  Google Scholar 

  70. [70]

    Shin, J.; Yan, Y.; Bai, W. B.; Xue, Y. G.; Gamble, P.; Tian, L. M.; Kandela, I.; Haney, C. R.; Spees, W.; Lee, Y. et al. Bioresorbable pressure sensors protected with thermally grown silicon dioxide for the monitoring of chronic diseases and healing processes. Nat. Biomed. Eng. 2019, 3, 37–46.

    CAS  Article  Google Scholar 

  71. [71]

    Hwang, S. W.; Lee, C. H.; Cheng, H. Y.; Jeong, J. W.; Kang, S. K.; Kim, J. H.; Shin, J.; Yang, J.; Liu, Z. J.; Ameer, G. A. et al. Biodegradable elastomers and silicon nanomembranes/nanoribbons for stretchable, transient electronics, and biosensors. Nano Lett. 2015, 15, 2801–2808.

    CAS  Article  Google Scholar 

  72. [72]

    Sun, Y. G.; Choi, W. M.; Jiang, H. Q.; Huang, Y. Y.; Rogers, J. A. Controlled buckling of semiconductor nanoribbons for stretchable electronics. Nat. Nanotechnol. 2006, 1, 201–207.

    CAS  Article  Google Scholar 

  73. [73]

    Xia, F.; Kim, S. B.; Cheng, H. Y.; Lee, J. M.; Song, T.; Huang, Y. G.; Rogers, J. A.; Paik, U.; Park, W. I. Facile synthesis of free-standing silicon membranes with three-dimensional nanoarchitecture for anodes of lithium ion batteries. Nano Lett. 2013, 13, 3340–3346.

    CAS  Article  Google Scholar 

  74. [74]

    Lee, W.; Hwangbo, Y.; Kim, J. H.; Ahn, J. H. Mobility enhancement of strained Si transistors by transfer printing on plastic substrates. NPG Asia Mater. 2016, 8, e256.

    CAS  Article  Google Scholar 

  75. [75]

    Keum, H.; Carlson, A.; Ning, H. L.; Mihi, A.; Eisenhaure, J. D.; Braun, P. V.; Rogers, J. A.; Kim, S. Silicon micro-masonry using elastomeric stamps for three-dimensional microfabrication. J. Micromech. Microeng. 2012, 22, 055018.

    Article  CAS  Google Scholar 

  76. [76]

    Ko, H. C.; Baca, A. J.; Rogers, J. A. Bulk quantities of single-crystal silicon micro-/nanoribbons generated from bulk wafers. Nano Lett. 2006, 6, 2318–2324.

    CAS  Article  Google Scholar 

  77. [77]

    Carlson, A.; Bowen, A. M.; Huang, Y. G.; Nuzzo, R. G.; Rogers, J. A. Transfer printing techniques for materials assembly and micro/nanodevice fabrication. Adv. Mater. 2012, 24, 5284–5318.

    CAS  Article  Google Scholar 

  78. [78]

    Meitl, M. A.; Zhu, Z. T.; Kumar, V.; Lee, K. J.; Feng, X.; Huang, Y. Y.; Adesida, I.; Nuzzo, R. G.; Rogers, J. A. Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nat. Mater. 2006, 5, 33–38.

    CAS  Article  Google Scholar 

  79. [79]

    Das, T.; Jang, H.; Lee, J. B.; Chu, H.; Kim, S. D.; Ahn, J. H. Vertical field effect tunneling transistor based on graphene-ultrathin Si nanomembrane heterostructures. 2D Mater. 2015, 2, 044006.

    Article  CAS  Google Scholar 

  80. [80]

    Gomes, M. da M.; Quinhones, M. S.; Engelhardt, E.; Lerner, R. M.; Andrés, A.; Pereira, P. M. C. de M.; Miguens, S.; Nacional, S.; Ministério da Educação e Ciência; Berger, J. et al. We are Intechopen, the world’s leading publisher of open access books built by scientists, for scientists top 1%. Intech 2013, 15, 13.

    Google Scholar 

  81. [81]

    Torres Sevilla, G. A.; Ghoneim, M. T.; Fahad, H.; Rojas, J. P.; Hussain, A. M.; Hussain, M. M. Flexible nanoscale high-performance FinFETs. ACS Nano 2014, 8, 9850–9856.

    CAS  Article  Google Scholar 

  82. [82]

    Lee, K. J.; Motala, M. J.; Meitl, M. A.; Childs, W. R.; Menard, E.; Shim, A. K.; Rogers, J. A.; Nuzzo, R. G. Large-area, selective transfer of microstructured silicon: A printing-based approach to high-performance thin-film transistors supported on flexible substrates. Adv. Mater. 2005, 17, 2332–2336.

    CAS  Article  Google Scholar 

  83. [83]

    Seo, J. H.; Yuan, H. C.; Sun, L.; Zhou, W. D.; Ma, Z. Q. Transferrable single-crystal silicon nanomembranes and their application to flexible microwave systems. J. Inf. Disp. 2011, 12, 109–113.

    CAS  Article  Google Scholar 

  84. [84]

    Menon, L.; Yang, H. J.; Cho, S. J.; Mikael, S.; Ma, Z. Q.; Zhou, W. D. Transferred flexible three-color silicon membrane photodetector arrays. IEEE Photonics J. 2015, 7, 6800106.

    CAS  Article  Google Scholar 

  85. [85]

    Sun, L.; Qin, G. X.; Seo, J. H.; Celler, G. K.; Zhou, W. D.; Ma, Z. Q. 12-GHz thin-film transistors on transferrable silicon nanomembranes for high-performance flexible electronics. Small 2010, 6, 2553–2557.

    CAS  Article  Google Scholar 

  86. [86]

    Yang, H. J.; Zhao, D. Y.; Seo, J. H.; Chuwongin, S.; Kim, S.; Rogers, J. A.; Ma, Z. Q.; Zhou, W. D. Broadband membrane reflectors on glass. IEEE Photonics Technol. Lett. 2012, 24, 476–478.

    CAS  Article  Google Scholar 

  87. [87]

    Feng, X.; Meitl, M. A.; Bowen, A. M.; Huang, Y. G.; Nuzzo, R. G.; Rogers, J. A. Competing fracture in kinetically controlled transfer printing. Langmuir 2007, 23, 12555–12560.

    CAS  Article  Google Scholar 

  88. [88]

    Carlson, A.; Kim-Lee, H. J.; Wu, J.; Elvikis, P.; Cheng, H. Y.; Kovalsky, A.; Elgan, S.; Yu, Q. M.; Ferreira, P. M.; Huang, Y. G. et al. Shear-enhanced adhesiveless transfer printing for use in deterministic materials assembly. Appl. Phys. Lett. 2011, 98, 264104.

    Article  CAS  Google Scholar 

  89. [89]

    Carlson, A.; Wang, S. D.; Elvikis, P.; Ferreira, P. M.; Huang, Y. G.; Rogers, J. A. Active, programmable elastomeric surfaces with tunable adhesion for deterministic assembly by transfer printing. Adv. Funct. Mater. 2012, 22, 4476–4484.

    CAS  Article  Google Scholar 

  90. [90]

    Park, S. I.; Xiong, Y. J.; Kim, R. H.; Elvikis, P.; Meitl, M.; Kim, D. H.; Wu, J.; Yoon, J.; Yu, C. J.; Liu, Z. J. et al. Printed assemblies of inorganic light-emitting diodes for deformable and semitransparent displays. Science 2009, 325, 977–981.

    CAS  Article  Google Scholar 

  91. [91]

    Khang, D. Y.; Rogers, J. A.; Lee, H. H. Mechanical buckling: Mechanics, metrology, and stretchable electronics. Adv. Funct. Mater. 2009, 19, 1526–1536.

    CAS  Article  Google Scholar 

  92. [92]

    Jiang, H. Q.; Khang, D. Y.; Song, J. Z.; Sun, Y. G.; Huang, Y. G.; Rogers, J. A. Finite deformation mechanics in buckled thin films on compliant supports. Proc. Natl. Acad. Sci. USA 2007, 104, 15607–15612.

    CAS  Article  Google Scholar 

  93. [93]

    Gelinck, G. H.; Huitema, H. E. A.; van Veenendaal, E.; Cantatore, E.; Schrijnemakers, L.; van der Putten, J. B. P. H.; Geuns, T. C. T.; Beenhakkers, M.; Giesbers, J. B.; Huisman, B. H. et al. Flexible active-matrix displays and shift registers based on solution-processed organic transistors. Nat. Mater. 2004, 3, 106–110.

    CAS  Article  Google Scholar 

  94. [94]

    Sun, Y.; Kumar, V.; Adesida, I.; Rogers, J. A. Buckled and wavy ribbons of GaAs for high-performance electronics on elastomeric substrates. Adv. Mater. 2006, 18, 2857–2862.

    CAS  Article  Google Scholar 

  95. [95]

    Kim, D. H.; Rogers, J. A. Stretchable electronics: Materials strategies and devices. Adv. Mater. 2008, 20, 4887–4892.

    CAS  Article  Google Scholar 

  96. [96]

    Xu, S.; Yan, Z.; Jang, K. I.; Huang, W.; Fu, H. R.; Kim, J.; Wei, Z. J.; Flavin, M.; McCracken, J.; Wang, R. H. et al. Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling. Science 2015, 347, 154–159.

    CAS  Article  Google Scholar 

  97. [97]

    Babaee, S.; Shim, J.; Weaver, J. C.; Chen, E. R.; Patel, N.; Bertoldi, K. 3D soft metamaterials with negative Poisson’s ratio. Adv. Mater. 2013, 25, 5044–5049.

    CAS  Article  Google Scholar 

  98. [98]

    Roberts, M. M.; Klein, L. J.; Savage, D. E.; Slinker, K. A.; Friesen, M.; Celler, G.; Eriksson, M. A.; Lagally, M. G. Elastically relaxed free-standing strained-silicon nanomembranes. Nat. Mater. 2006, 5, 388–393.

    CAS  Article  Google Scholar 

  99. [99]

    Lee, S.; Kim, K.; Dhakal, K. P.; Kim, H.; Yun, W. S.; Lee, J.; Cheong, H.; Ahn, J. H. Thickness-dependent phonon renormalization and enhanced Raman scattering in ultrathin silicon nanomembranes. Nano Lett. 2017, 17, 7744–7750.

    CAS  Article  Google Scholar 

  100. [100]

    Sarkar, A.; Bar, R.; Singh, S.; Chowdhury, R. K.; Bhattacharya, S.; Das, A. K.; Ray, S. K. Size-tunable electroluminescence characteristics of quantum confined Si nanocrystals embedded in Si-rich oxide matrix. Appl. Phys. Lett. 2020, 116, 231105.

    CAS  Article  Google Scholar 

  101. [101]

    Brus, L. Zero-dimensional “excitons” in semiconductor clusters. IEEE J. Quantum Electron. 1986, 22, 1909–1914.

    Article  Google Scholar 

  102. [102]

    Groenewold, J. Wrinkling of plates coupled with soft elastic media. Phys. A Stat. Mech. Appl. 2001, 298, 32–45.

    Article  Google Scholar 

  103. [103]

    Sarkar, A.; Katiyar, A. K.; Mukherjee, S.; Singh, S.; Singh, S. K.; Das, A. K.; Ray, S. K. Geometry controlled white light emission and extraction in CdS/black-Si conical heterojunctions. ACS Appl. Electron. Mater. 2019, 1, 25–33.

    CAS  Article  Google Scholar 

  104. [104]

    Ray, S. K.; Katiyar, A. K.; Raychaudhuri, A. K. One-dimensional Si/Ge nanowires and their heterostructures for multifunctional applications—A review. Nanotechnology 2017, 28, 092001.

    Article  CAS  Google Scholar 

  105. [105]

    Cho, M.; Seo, J. H.; Lee, J.; Zhao, D. Y.; Mi, H. Y.; Yin, X.; Kim, M.; Wang, X. D.; Zhou, W. D.; Ma, Z. Q. Ultra-thin distributed Bragg reflectors via stacked single-crystal silicon nanomembranes. Appl. Phys. Lett. 2015, 106, 181107.

    Article  CAS  Google Scholar 

  106. [106]

    Zhou, W. D.; Zhao, D. Y.; Shuai, Y. C.; Yang, H. J.; Chuwongin, S.; Chadha, A.; Seo, J. H.; Wang, K. X.; Liu, V.; Ma, Z. Q. et al. Progress in 2D photonic crystal Fano resonance photonics. Prog. Quantum Electron. 2014, 38, 1–74.

    CAS  Article  Google Scholar 

  107. [107]

    Zhao, D. Y.; Yang, H. J.; Ma, Z. Q.; Zhou, W. D. Polarization independent broadband reflectors based on cross-stacked gratings. Opt. Express 2011, 19, 9050–9055.

    Article  Google Scholar 

  108. [108]

    Shuai, Y. C.; Zhao, D. Y.; Medhi, G.; Peale, R.; Ma, Z. Q.; Buchwald, W.; Soref, R.; Zhou, W. D. Fano-resonance photonic crystal membrane reflectors at mid- and far-infrared. IEEE Photonics J. 2013, 5, 4700206.

    Article  CAS  Google Scholar 

  109. [109]

    Shuai, Y. C.; Zhao, D. Y.; Tian, Z. B.; Seo, J. H.; Plant, D. V.; Ma, Z. Q.; Fan, S. H.; Zhou, W. D. Double-layer Fano resonance photonic crystal filters. Opt. Express 2013, 21, 24582–24589.

    Article  CAS  Google Scholar 

  110. [110]

    Qiang, Z. X.; Yang, H. J.; Chuwongin, S.; Zhao, D. Y.; Ma, Z. Q.; Zhou, W. D. Design of Fano broadband reflectors on SOI. IEEE Photonics Technol. Lett. 2010, 22, 1108–1110.

    Article  Google Scholar 

  111. [111]

    Cho, M.; Seo, J. H.; Zhao, D. Y.; Lee, J.; Xiong, K. L.; Yin, X.; Liu, Y. H.; Liu, S. C.; Kim, M.; Kim, T. J. et al. Amorphous Si/SiO2 distributed Bragg reflectors with transfer printed single-crystalline Si nanomembranes. J. Vac. Sci. Technol. B 2016, 34, 040601.

    Article  CAS  Google Scholar 

  112. [112]

    Liu, V.; Povinelli, M.; Fan, S. H. Resonance-enhanced optical forces between coupled photonic crystal slabs. Opt. Express 2009, 17, 21897–21909.

    CAS  Article  Google Scholar 

  113. [113]

    Rogers, J. A.; Lagally, M. G.; Nuzzo, R. G. Synthesis, assembly and applications of semiconductor nanomembranes. Nature 2011, 477, 45–53.

    CAS  Article  Google Scholar 

  114. [114]

    Peng, W. N.; Aksamija, Z.; Scott, S. A.; Endres, J. J.; Savage, D. E.; Knezevic, I.; Eriksson, M. A.; Lagally, M. G. Probing the electronic structure at semiconductor surfaces using charge transport in nanomembranes. Nat. Commun. 2013, 4, 1339.

    Article  CAS  Google Scholar 

  115. [115]

    Peng, W. N.; Zamiri, M.; Scott, S. A.; Cavallo, F.; Endres, J. J.; Knezevic, I.; Eriksson, M. A.; Lagally, M. G. Electronic transport in hydrogen-terminated Si(001) nanomembranes. Phys. Rev. Appl. 2018, 9, 024037.

    CAS  Article  Google Scholar 

  116. [116]

    Song, E. M.; Guo, Z. X.; Li, G. D.; Liao, F. Y.; Li, G. J.; Du, H. N.; Schmidt, O. G.; Kim, M.; Yi, Y.; Bao, W. Z. et al. Thickness-dependent electronic transport in ultrathin, single crystalline silicon nanomembranes. Adv. Electron. Mater. 2019, 5, 1900232.

    Article  CAS  Google Scholar 

  117. [117]

    Thomsen, C.; Strait, J.; Vardeny, Z.; Maris, H. J.; Tauc, J.; Hauser, J. J. Coherent phonon generation and detection by picosecond light pulses. Phys. Rev. Lett. 1984, 53, 989–992.

    CAS  Article  Google Scholar 

  118. [118]

    Chen, I. J.; Mante, P. A.; Chang, C. K.; Yang, S. C.; Chen, H. Y.; Huang, Y. R.; Chen, L. C.; Chen, K. H.; Gusev, V.; Sun, C. K. Graphene-to-substrate energy transfer through out-of-plane longitudinal acoustic phonons. Nano Lett. 2014, 14, 1317–1323.

    CAS  Article  Google Scholar 

  119. [119]

    Major, T. A.; Lo, S. S.; Yu, K.; Hartland, G. V. Time-resolved studies of the acoustic vibrational modes of metal and semiconductor Nano-objects. J. Phys. Chem. Lett. 2014, 5, 866–874.

    CAS  Article  Google Scholar 

  120. [120]

    Bartels, A.; Cerna, R.; Kistner, C.; Thoma, A.; Hudert, F.; Janke, C.; Dekorsy, T. Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling. Rev. Sci. Instrum. 2007, 78, 035107.

    CAS  Article  Google Scholar 

  121. [121]

    Cuffe, J.; Ristow, O.; Chávez, E.; Shchepetov, A.; Chapuis, P. O.; Alzina, F.; Hettich, M.; Prunnila, M.; Ahopelto, J.; Dekorsy, T. et al. Lifetimes of confined acoustic phonons in ultrathin silicon membranes. Phys. Rev. Lett. 2013, 110, 095503.

    CAS  Article  Google Scholar 

  122. [122]

    Sarkar, A.; Katiyar, A. K.; Mukherjee, S.; Ray, S. K. Enhanced UV-visible photodetection characteristics of a flexible Si membrane-Zno heterojunction utilizing piezo-phototronic effect. J. Phys. D. Appl. Phys. 2017, 50, 145104.

    Article  CAS  Google Scholar 

  123. [123]

    Sarkar, A.; Katiyar, A. K.; Das, A. K.; Ray, S. K. Si membrane-ZnO heterojunction-based broad band visible light emitting diode for flexible optoelectronic devices. Flex. Print. Electron. 2018, 3, 025004.

    Article  CAS  Google Scholar 

  124. [124]

    Zhao, D.; Yang, H.; Chuwongin, S.; Seo, J. H.; Ma, Z.; Zhou, W. Design of photonic crystal membrane-reflector-based VCSELs. IEEE Photonics J. 2012, 4, 2169–2175.

    Article  Google Scholar 

  125. [125]

    Zhao, D. Y.; Yang, H. J.; Seo, J. H.; Ma, Z. Q.; Zhou, W. D. Design and characterization of photonic crystal membrane reflector based vertical cavity surface emitting lasers on silicon. Rev. Nanosci. Nanotechnol. 2014, 3, 77–87.

    CAS  Article  Google Scholar 

  126. [126]

    Huang, X.; Liu, Y. H.; Kong, G. W.; Seo, J. H.; Ma, Y. J.; Jang, K. I.; Fan, J. A.; Mao, S. M.; Chen, Q. W.; Li, D. Z. et al. Epidermal radio frequency electronics for wireless power transfer. Microsyst. Nanoeng. 2016, 2, 16052.

    Article  Google Scholar 

  127. [127]

    Seo, J. H.; Ling, T.; Gong, S. Q.; Zhou, W. D.; Ma, A. L.; Guo, L. J.; Ma, Z. Q. Fast flexible transistors with a nanotrench structure. Sci. Rep. 2016, 6, 24771.

    CAS  Article  Google Scholar 

  128. [128]

    Qin, G. X.; Yuan, H. C.; Celler, G. K.; Ma, J. G.; Ma, Z. Q. RF model of flexible microwave switches employing single-crystal silicon nanomembranes on a plastic substrate. Microelectron. Eng. 2012, 95, 21–25.

    CAS  Article  Google Scholar 

  129. [129]

    Qin, G. X.; Yuan, H. C.; Celler, G. K.; Zhou, W. D.; Ma, J. G.; Ma, Z. Q. RF model of flexible microwave single-crystalline silicon nanomembrane PIN diodes on plastic substrate. Microelectron. J. 2011, 42, 509–514.

    CAS  Article  Google Scholar 

  130. [130]

    Qin, G. X.; Seo, J. H.; Zhang, Y.; Zhou, H.; Zhou, W. D.; Wang, Y. X.; Ma, J. G.; Ma, Z. Q. RF characterization of gigahertz flexible silicon thin-film transistor on plastic substrates under bending conditions. IEEE Electron Device Lett. 2013, 34, 262–264.

    CAS  Article  Google Scholar 

  131. [131]

    Qin, G. X.; Yan, Y. X.; Jiang, N. Y.; Ma, J. G.; Ma, P. X.; Racanelli, M.; Ma, Z. Q. RF characteristics of proton radiated large-area SiGe HBTs at extreme temperatures. Microelectron. Reliab. 2012, 52, 2568–2571.

    CAS  Article  Google Scholar 

  132. [132]

    Menon, L.; Yang, H.; Cho, S. J.; Mikael, S.; Ma, Z.; Zhou, W. Transferred flexible three-color silicon membrane photodetector arrays. IEEE Photonics Journal. 2015, 7, 1–6.

    Article  CAS  Google Scholar 

  133. [133]

    Das, T.; Chen, X.; Jang, H.; Oh, I. K.; Kim, H.; Ahn, J. H. Highly flexible hybrid CMOS Inverter based on Si nanomembrane and molybdenum disulfide. Small 2016, 12, 5720–5727.

    CAS  Article  Google Scholar 

  134. [134]

    Li, G. J.; Ma, Z.; You, C. Y.; Huang, G. S.; Song, E. M.; Pan, R. B.; Zhu, H.; Xin, J. Q.; Xu, B. R.; Lee, T. et al. Silicon nanomembrane phototransistor flipped with multifunctional sensors toward smart digital dust. Sci. Adv. 2020, 6, eaaz6511.

    CAS  Article  Google Scholar 

  135. [135]

    Hekmatshoar, B.; Cherenack, K. H.; Kattamis, A. Z.; Long, K.; Wagner, S.; Sturm, J. C. Highly stable amorphous-silicon thin-film transistors on clear plastic. Appl. Phys. Lett. 2008, 93, 032103.

    Article  CAS  Google Scholar 

  136. [136]

    Kim, D. H.; Ahn, J. H.; Choi, W. M.; Kim, H. S.; Kim, T. H.; Song, J. Z.; Huang, Y. Y.; Liu, Z. J.; Lu, C.; Rogers, J. A. Stretchable and foldable silicon integrated circuits. Science 2008, 320, 507–511.

    CAS  Article  Google Scholar 

  137. [137]

    Xu, C. H.; Pan, R. B.; Guo, Q. L.; Wu, X.; Li, G. J.; Huang, G. S.; An, Z. H.; Li, X. L.; Mei, Y. F. Ultrathin silicon nanomembrane in a tubular geometry for enhanced photodetection. Adv. Opt. Mater. 2019, 7, 1900823.

    CAS  Article  Google Scholar 

  138. [138]

    Jang, H.; Kim, J.; Kim, M. S.; Cho, J. H.; Choi, H.; Ahn, J. H. Observation of the inverse giant piezoresistance effect in silicon nanomembranes probed by ultrafast terahertz spectroscopy. Nano Lett. 2014, 14, 6942–6948.

    CAS  Article  Google Scholar 

  139. [139]

    Song, Y. M.; Xie, Y. Z.; Malyarchuk, V.; Xiao, J. L.; Jung, I.; Choi, K. J.; Liu, Z. J.; Park, H.; Lu, C. F.; Kim, R. H. et al. Digital cameras with designs inspired by the arthropod eye. Nature 2013, 497, 95–99.

    CAS  Article  Google Scholar 

  140. [140]

    Jeong, J. W.; Yeo, W. H.; Akhtar, A.; Norton, J. J. S.; Kwack, Y. J.; Li, S.; Jung, S. Y.; Su, Y. W.; Lee, W.; Xia, J. et al. Materials and optimized designs for human-machine interfaces via epidermal electronics. Adv. Mater. 2013, 25, 6839–6846.

    CAS  Article  Google Scholar 

  141. [141]

    Won, S. M.; Kim, H. S.; Lu, N. S.; Kim, D. G.; Del Solar, C.; Duenas, T.; Ameen, A.; Rogers, J. A. Piezoresistive strain sensors and multiplexed arrays using assemblies of single-crystalline silicon nanoribbons on plastic substrates. IEEE Trans. Electron Devices 2011, 58, 4074–4078.

    CAS  Article  Google Scholar 

  142. [142]

    Hwang, S. W.; Tao, H.; Kim, D. H.; Cheng, H. Y.; Song, J. K.; Rill, E.; Brenckle, M. A.; Panilaitis, B.; Won, S. M.; Kim, Y. S. et al. A physically transient form of silicon electronics. Science 2012, 337, 1640–1644.

    CAS  Article  Google Scholar 

  143. [143]

    Maheshwari, V.; Saraf, R. Tactile devices to sense touch on a par with a human finger. Angew. Chem., Int. Ed. 2008, 47, 7808–7826.

    CAS  Article  Google Scholar 

  144. [144]

    Ying, M.; Bonifas, A. P.; Lu, N. S.; Su, Y. W.; Li, R.; Cheng, H. Y.; Ameen, A.; Huang, Y. G.; Rogers, J. A. Silicon nanomembranes for fingertip electronics. Nanotechnology 2012, 23, 344004.

    Article  CAS  Google Scholar 

  145. [145]

    Lee, Y. K.; Yu, K. J.; Song, E. M.; Barati Farimani, A.; Vitale, F.; Xie, Z. Q.; Yoon, Y.; Kim, Y.; Richardson, A.; Luan, H. W. et al. Dissolution of monocrystalline silicon nanomembranes and their use as encapsulation layers and electrical interfaces in water-soluble electronics. ACS Nano 2017, 11, 12562–12572.

    CAS  Article  Google Scholar 

  146. [146]

    Fang, H.; Yu, K. J.; Gloschat, C.; Yang, Z. J.; Song, E. M.; Chiang, C. H.; Zhao, J. N.; Won, S. M.; Xu, S. Y.; Trumpis, M. et al. Capacitively coupled arrays of multiplexed flexible silicon transistors for long-term cardiac electrophysiology. Nat. Biomed. Eng. 2017, 1, 0038.

    CAS  Article  Google Scholar 

  147. [147]

    Hernandez, H. L.; Kang, S. K.; Lee, O. P.; Hwang, S. W.; Kaitz, J. A.; Inci, B.; Park, C. W.; Chung, S.; Sottos, N. R.; Moore, J. S. et al. Triggered transience of metastable poly(phthalaldehyde) for transient electronics. Adv. Mater. 2014, 26, 7637–7642.

    CAS  Article  Google Scholar 

  148. [148]

    Shiri, D.; Kong, Y. F.; Buin, A.; Anantram, M. P. Strain induced change of bandgap and effective mass in silicon nanowires. Appl. Phys. Lett. 2008, 93, 073114.

    Article  CAS  Google Scholar 

  149. [149]

    Hong, K. H.; Kim, J.; Lee, S. H.; Shin, J. K. Strain-driven electronic band structure modulation of Si nanowires. Nano Lett. 2008, 8, 1335–1340.

    CAS  Article  Google Scholar 

  150. [150]

    Zhou, M.; Liu, Z.; Wang, Z. F.; Bai, Z. Q.; Feng, Y. P.; Lagally, M. G.; Liu, F. Strain-engineered surface transport in Si(001): Complete isolation of the surface state via tensile strain. Phys. Rev. Lett. 2013, 111, 246801.

    Article  CAS  Google Scholar 

  151. [151]

    Katiyar, A. K.; Thai, K. Y.; Yun, W. S.; Lee, J.; Ahn, J. H. Breaking the absorption limit of Si toward SWIR wavelength range via strain engineering. Sci. Adv. 2020, 6, eabb0576.

    CAS  Article  Google Scholar 

  152. [152]

    Seo, J. H.; Zhang, K.; Kim, M.; Zhao, D. Y.; Yang, H. J.; Zhou, W. D.; Ma, Z. Q. Flexible phototransistors based on single-crystalline silicon nanomembranes. Adv. Opt. Mater. 2016, 4, 120–125.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the National Research Foundation of Korea (No. NRF-2015R1A3A2066337).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jong-Hyun Ahn.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sarkar, A., Lee, Y. & Ahn, JH. Si nanomebranes: Material properties and applications. Nano Res. 14, 3010–3032 (2021). https://doi.org/10.1007/s12274-021-3440-x

Download citation

Keywords

  • Si nanomebranes
  • flexible electronics
  • bio-integrated electronics
  • Si optoelectronics
  • strain engineering