Skip to main content

MXene based mechanically and electrically enhanced film for triboelectric nanogenerator

This article has been updated

Abstract

The development of triboelectric nanogenerator (TENG) technology which can directly convert ambient mechanical energy into electric energy may affect areas from green energy harvesting to emerging wearing electronics. And, the material of triboelectric layer is critical to the mechanical robustness and electrical output characteristics of the TENGs. Herein, a MXene enhanced electret polytetrafluoroethylene (PTFE) film with a high mechanical property and surface charge density is developed. The MXene/PTFE composite film was synthesized by spraying and annealing treatment. With the doping of MXene, the crystallinity of composite film could be tuned, leading to an enhancement in the tensile property of 450% and reducing the wear volume about 80% in the friction test. Furthermore, the as-fabricated TENG with this composite film outputs 397 V of open-circuit voltage, 21 µA of short-circuit current, and 232 nC of transfer charge quantity, which are 4, 6, and 6 times higher than that of the TENG made by pure PTFE film, respectively. Therefore, this work provides a creative strategy to simultaneously improve the mechanical property and electrical performance of the TENGs, which have great potential in improving device stability under a complex mechanical environment.

This is a preview of subscription content, access via your institution.

Change history

  • 02 May 2021

    Article title found mismatch versus the PDF.

References

  1. [1]

    Yu, X.; Xie, Z. Q.; Yu, Y.; Lee, J.; Vazquez-Guardado, A.; Luan, H. W.; Ruban, J.; Ning, X.; Akhtar, A.; Li, D. F. et al. Skin-integrated wireless haptic interfaces for virtual and augmented reality. Nature 2019, 575, 473–479.

    CAS  Google Scholar 

  2. [2]

    Zhou, Z. H.; Chen, K.; Li, X. S.; Zhang, S. L.; Wu, Y. F.; Zhou, Y. H.; Meng, K. Y.; Sun, C. C.; He, Q.; Fan, W. J. et al. Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays. Nat. Electron. 2020, 3, 571–578.

    Google Scholar 

  3. [3]

    Meng, K. Y.; Zhao, S. L.; Zhou, Y. H.; Wu, Y. F.; Zhang, S. L.; He, Q.; Wang, X.; Zhou, Z. H.; Fan, W. J.; Tan, X. L. et al. A wireless textile-based sensor system for self-powered personalized health care. Matter 2020, 2, 896–907.

    Google Scholar 

  4. [4]

    Yan, C.; Gao, Y. Y.; Zhao, S. L.; Zhang, S. L.; Zhou, Y. H.; Deng, W. L.; Li, Z. W.; Jiang, G.; Jin, L.; Tian, G. et al. A linear-to-rotary hybrid nanogenerator for high-performance wearable biomechanical energy harvesting. Nano Energy 2019, 67, 104235.

    Google Scholar 

  5. [5]

    Lin, Z. M.; Yang, J.; Li, X. S.; Wu, Y. F.; Wei, W.; Liu, J.; Chen, J.; Yang, J. Large-scale and washable smart textiles based on triboelectric nanogenerator arrays for self-powered sleeping monitoring. Adv. Funct. Mater. 2018, 28, 1704112.

    Google Scholar 

  6. [6]

    Meng, K. Y.; Chen, J.; Li, X. S.; Wu, Y. F.; Fan, W. J.; Zhou, Z. H.; He, Q.; Wang, X.; Fan, X.; Zhang, Y. X. et al. Flexible weaving constructed self-powered pressure sensor enabling continuous diagnosis of cardiovascular disease and measurement of cuffless blood pressure. Adv. Funct. Mater. 2019, 29, 1806388.

    Google Scholar 

  7. [7]

    Tian, G.; Deng, W. L.; Gao, Y. Y.; Xiong, D.; Yan, C.; He, X. B.; Yang, T.; Jin, L.; Chu, X.; Zhang, H. T. et al. Rich lamellar crystal baklava-structured PZT/PVDF piezoelectric sensor toward individual table tennis training. Nano Energy 2019, 59, 574–581.

    CAS  Google Scholar 

  8. [8]

    Tat, T.; Libanori, A.; Au, C.; Yau, A.; Chen, J. Advances in triboelectric nanogenerators for biomedical sensing. Biosens. Bioelectron. 2020, 171, 112714.

    Google Scholar 

  9. [9]

    Zhang, B. B.; Zhang, L.; Deng, W. L.; Jin, L.; Chun, F. J.; Pan, H.; Gu, B. N.; Zhang, H. T.; Lv, Z. K.; Yang, W. Q. et al. Self-powered acceleration sensor based on liquid metal triboelectric nanogenerator for vibration monitoring. ACS Nano 2017, 11, 7440–7446.

    CAS  Google Scholar 

  10. [10]

    Chen, G. R.; Li, Y. Z.; Bick, M.; Chen, J. Smart textiles for electricity generation. Chem. Rev. 2020, 120, 3668–3720.

    CAS  Google Scholar 

  11. [11]

    Zhang, N. N.; Huang, F.; Zhao, S. L.; Lv, X. H.; Zhou, Y. H.; Xiang, S. W.; Xu, S. M.; Li, Y. Z.; Chen, G. R.; Tao, C. Y. et al. Photo-rechargeable fabrics as sustainable and robust power sources for wearable bioelectronics. Matter 2020, 2, 1260–1269.

    Google Scholar 

  12. [12]

    Chen, J.; Huang, Y.; Zhang, N. N.; Zou, H. Y.; Liu, R. Y.; Tao, C. Y.; Fan, X.; Wang, Z. L. Micro-cable structured textile for simultaneously harvesting solar and mechanical energy. Nat. Energy 2016, 1, 16138.

    CAS  Google Scholar 

  13. [13]

    Zhang, N. N.; Chen, J.; Huang, Y.; Guo, W. W.; Yang, J.; Du, J.; Fan, X.; Tao, C. Y. A wearable all-solid photovoltaic textile. Adv. Mater. 2016, 28, 263–269.

    Google Scholar 

  14. [14]

    Zou, Y. J.; Libanori, A.; Xu, J.; Nashalian, A.; Chen, J. Triboelectric nanogenerator enabled smart shoes for wearable electricity generation. Research 2020, 2020, 7158953.

    CAS  Google Scholar 

  15. [15]

    Zhu, G.; Zhou, Y. S.; Bai, P.; Meng, X. S.; Jing, Q. S.; Chen, J.; Wang, Z. L. A shape-adaptive thin-film-based approach for 50% high-efficiency energy generation through micro-grating sliding electrification. Adv. Mater. 2014, 26, 3788–3796.

    CAS  Google Scholar 

  16. [16]

    Gao, L. X.; Chen, X.; Lu, S.; Zhou, H.; Xie, W. B.; Chen, J. F.; Qi, M. K.; Yu, H.; Mu, X. J.; Wang, Z. L.; Yang, Y. Enhancing the output performance of triboelectric nanogenerator via grating-electrode-enabled surface plasmon excitation. Adv. Energy Mater. 2019, 9, 1902725.

    CAS  Google Scholar 

  17. [17]

    Chen, J.; Guo, H. Y.; Wu, Z. Y.; Xu, G. Q.; Zi, Y. L.; Hu, C. G.; Wang, Z. L. Actuation and sensor integrated self-powered cantilever system based on TENG technology. Nano Energy 2019, 64, 103920.

    CAS  Google Scholar 

  18. [18]

    Guo, H.; Zhao, J. Q.; Dong, Q. S.; Wang, L. D.; Ren, X. Y.; Liu, S.; Zhang, C.; Dong, G. F. A self-powered and high-voltage-isolated organic optical communication system based on triboelectric nanogenerators and solar cells. Nano Energy 2019, 56, 391–399.

    CAS  Google Scholar 

  19. [19]

    Liang, X.; Jiang, T.; Liu, G. X.; Feng, Y. W.; Zhang, C.; Wang, Z. L. Spherical triboelectric nanogenerator integrated with power management module for harvesting multidirectional water wave energy. Energ Environ. Sci. 2020, 13, 277–285.

    Google Scholar 

  20. [20]

    Wang, Z. L.; Wang, A. C. On the origin of contact-electrification. Mater. Today 2019, 30, 34–51.

    CAS  Google Scholar 

  21. [21]

    Wang, Z. L. On the first principle theory of nanogenerators from Maxwell’s equations. Nano Energy 2019, 68, 104272.

    Google Scholar 

  22. [22]

    Jie, Y.; Ma, J. M.; Chen, Y. D.; Cao, X.; Wang, N.; Wang, Z. L. Efficient delivery of power generated by a rotating triboelectric nanogenerator by conjunction of wired and wireless transmissions using Maxwell’s displacement currents. Adv. Energy Mater. 2018, 8, 1802084.

    Google Scholar 

  23. [23]

    Deng, W. L.; Zhou, Y. H.; Zhao, X.; Zhang, S. L.; Zou, Y. J.; Xu, J.; Yeh, M. H.; Guo, H. Y.; Chen, J. Ternary electrification layered architecture for high-performance triboelectric nanogenerators. ACS Nano 2020, 14, 9050–9058.

    CAS  Google Scholar 

  24. [24]

    Wang, H. M.; Li, D.; Zhong, W.; Xu, L.; Jiang, T.; Wang, Z. L. Self-powered inhomogeneous strain sensor enabled joint motion and three-dimensional muscle sensing. ACS Appl. Mater. Interfaces 2019, 11, 34251–34257.

    CAS  Google Scholar 

  25. [25]

    Tan, P. C.; Zheng, Q.; Zou, Y.; Shi, B. J.; Jiang, D. J.; Qu, X. C.; Ouyang, H.; Zhao, C. C.; Cao, Y.; Fan, Y. B. et al. A battery-like self-charge universal module for motional energy harvest. Adv. Energy Mater. 2019, 9, 1901875.

    Google Scholar 

  26. [26]

    Liang, X.; Jiang, T.; Feng, Y. W.; Lu, P. J.; An, J.; Wang, Z. L. Triboelectric nanogenerator network integrated with charge excitation circuit for effective water wave energy harvesting. Adv. Energy Mater. 2020, 10, 2002123.

    CAS  Google Scholar 

  27. [27]

    Ren, Z. W.; Wang, Z. M.; Liu, Z. R.; Wang, L. F.; Guo, H. Y.; Li, L. L.; Li, S. T.; Chen, X. Y.; Tang, W.; Wang, Z. L. Energy harvesting from breeze wind (0.7–6 m·s−1) using ultra-stretchable triboelectric nanogenerator. Adv. Energy Mater. 2020, 10, 2001770.

    CAS  Google Scholar 

  28. [28]

    Zhou, Y. H.; Deng, W. L.; Xu, J.; Chen, J. Engineering materials at the nanoscale for triboelectric nanogenerators. Cell Rep. Phys. Sci. 2020, 1, 100142.

    CAS  Google Scholar 

  29. [29]

    Xu, J.; Zou, Y. J.; Nashalian, A.; Chen, J. Leverage surface chemistry for high-performance triboelectric nanogenerators. Front. Chem. 2020, 8, 577327.

    CAS  Google Scholar 

  30. [30]

    Chen, J.; Wang, Z. L. Reviving vibration energy harvesting and self-powered sensing by a triboelectric nanogenerator. Joule 2017, 1, 480–521.

    CAS  Google Scholar 

  31. [31]

    Jing, Q. S.; Zhu, G.; Bai, P.; Xie, Y. N.; Chen, J.; Han, R. P. S.; Wang, Z. L. Case-encapsulated triboelectric nanogenerator for harvesting energy from reciprocating sliding motion. ACS Nano 2014, 8, 3836–3842.

    CAS  Google Scholar 

  32. [32]

    Chen, J.; Yang, J.; Guo, H. Y.; Li, Z. L.; Zheng, L.; Su, Y. J.; Wen, Z.; Fan, X.; Wang, Z. L. Automatic mode transition enabled robust triboelectric nanogenerators. ACS Nano 2015, 9, 12334–12343.

    CAS  Google Scholar 

  33. [33]

    Wang, S. L.; Lin, L.; Wang, Z. L. Triboelectric nanogenerators as self-powered active sensors. Nano Energy 2015, 11, 436–462.

    CAS  Google Scholar 

  34. [34]

    Lin, Z. M.; Chen, J.; Li, X. S.; Zhou, Z. H.; Meng, K. Y.; Wei, W.; Yang, J.; Wang, Z. L. Triboelectric nanogenerator enabled body sensor network for self-powered human heart-rate monitoring. ACS Nano 2017, 11, 8830–8837.

    CAS  Google Scholar 

  35. [35]

    Bai, P.; Zhu, G.; Jing, Q. S.; Yang, J.; Chen, J.; Su, Y. J.; Ma, J. S.; Zhang, G.; Wang, Z. L. Membrane-based self-powered triboelectric sensors for pressure change detection and its uses in security surveillance and healthcare monitoring. Adv. Funct. Mater. 2014, 24, 5807–5813.

    CAS  Google Scholar 

  36. [36]

    Zhou, Z. H.; Padgett, S.; Cai, Z. X.; Conta, G.; Wu, Y. F.; He, Q.; Zhang, S. L.; Sun, C. C.; Liu, J.; Fan, E. D. et al. Single-layered ultra-soft washable smart textiles for all-around ballistocardiograph, respiration, and posture monitoring during sleep. Biosens. Bioelectron. 2020, 155, 112064.

    CAS  Google Scholar 

  37. [37]

    Su, Y. J.; Yang, T. N.; Zhao, X.; Cai, Z. X.; Chen, G. R.; Yao, M. L.; Chen, K.; Bick, M.; Wang, J. J.; Li, S. D. et al. A wireless energy transmission enabled wearable active acetone biosensor for non-invasive prediabetes diagnosis. Nano Energy 2020, 74, 104941.

    CAS  Google Scholar 

  38. [38]

    Yang, J.; Chen, J.; Su, Y. J.; Jing, Q. S.; Li, Z. L.; Yi, F.; Wen, X. N.; Wang, Z. N.; Wang, Z. L. Eardrum-inspired active sensors for self-powered cardiovascular system characterization and throat-attached anti-interference voice recognition. Adv. Mater. 2015, 27, 1316–1326.

    CAS  Google Scholar 

  39. [39]

    Wu, Y.; Jing, Q. S.; Chen, J.; Bai, P.; Bai, J. J.; Zhu, G.; Su, Y. J.; Wang, Z. L. A self-powered angle measurement sensor based on triboelectric nanogenerator. Adv. Funct. Mater. 2015, 25, 2166–2174.

    CAS  Google Scholar 

  40. [40]

    Zou, H. Y.; Zhang, Y.; Guo, L. T.; Wang, P. H.; He, X.; Dai, G. Z.; Zheng, H. W.; Chen, C. Y.; Wang, A. C.; Wang, Z. L. et al. Quantifying the triboelectric series. Nat. Commun. 2019, 10, 1427.

    Google Scholar 

  41. [41]

    Dudem, B.; Kim, D. H.; Mule, A. R.; Yu, J. S. Enhanced performance of microarchitectured PTFE-based triboelectric nanogenerator via simple thermal imprinting lithography for self-powered electronics. ACS Appl. Mater. Interfaces 2018, 10, 24181–24192.

    CAS  Google Scholar 

  42. [42]

    Chun, S.; Choi, I. Y.; Son, W.; Jung, J.; Lee, S.; Kim, H. S.; Pang, C.; Park, W.; Kim, J. K. High-output and bending-tolerant triboelectric nanogenerator based on an interlocked array of surface-functionalized indium tin oxide nanohelixes. ACS Energy Letters 2019, 4, 1748–1754.

    CAS  Google Scholar 

  43. [43]

    Wang, S. H.; Xie, Y. N.; Niu, S. M.; Lin, L.; Liu, C.; Zhou, Y. S.; Wang, Z. L. Maximum surface charge density for triboelectric nanogenerators achieved by ionized-air injection: Methodology and theoretical understanding. Adv. Mater. 2014, 26, 6720–6728.

    CAS  Google Scholar 

  44. [44]

    Chen, J.; Guo, H.; He, X. M.; Liu, G. L.; Xi, Y.; Shi, H. F.; Hu, C. G. Enhancing performance of triboelectric nanogenerator by filling high dielectric nanoparticles into sponge PDMS film. ACS Appl. Mater. Interfaces 2016, 8, 736–744.

    CAS  Google Scholar 

  45. [45]

    Paria, S.; Si, S. K.; Karan, S. K.; Das, A. K.; Maitra, A.; Bera, R.; Halder, L.; Bera, A.; De, A.; Khatua, B. B. A strategy to develop highly efficient TENGs through the dielectric constant, internal resistance optimization, and surface modification. J. Mater. Chem. A 2019, 7, 3979–3991.

    CAS  Google Scholar 

  46. [46]

    Zhu, G.; Lin, Z. H.; Jing, Q. S.; Bai, P.; Pan, C. F.; Yang, Y.; Zhou, Y. S.; Wang, Z. L. Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator. Nano Lett. 2013, 13, 847–853.

    CAS  Google Scholar 

  47. [47]

    Chen, B. D.; Tang, W.; Zhang, C.; Xu, L.; Zhu, L. P.; Yang, L. J.; He, C.; Chen, J.; Liu, L.; Zhou, T. et al. Au nanocomposite enhanced electret film for triboelectric nanogenerator. Nano Res. 2018, 11, 3096–3105.

    CAS  Google Scholar 

  48. [48]

    Jin, L.; Xiao, X.; Deng, W. L.; Nashalian, A.; He, D. R.; Raveendran, V.; Yan, C.; Su, H.; Chu, X.; Yang, T. et al. Manipulating relative permittivity for high-performance wearable triboelectric nanogenerators. Nano Lett. 2020, 20, 6404–6411.

    CAS  Google Scholar 

  49. [49]

    Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J. J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253.

    CAS  Google Scholar 

  50. [50]

    Cheng, Y.; Ma, Y. N.; Li, L. Y.; Zhu, M.; Yue, Y.; Liu, W. J.; Wang, L. F.; Jia, S. F.; Li, C.; Qi, T. Y. et al. Bioinspired microspines for a high-performance spray Ti3C2Tx MXene-based piezoresistive sensor. ACS Nano 2020, 14, 2145–2155.

    CAS  Google Scholar 

  51. [51]

    Gao, Y. Y.; Yan, C.; Huang, H. C.; Yang, T.; Tian, G.; Xiong, D.; Chen, N. J.; Chu, X.; Zhong, S.; Deng, W. L. et al. Microchannel-confined MXene based flexible piezoresistive multifunctional micro-force sensor. Adv. Funct. Mater. 2020, 30, 1909603.

    CAS  Google Scholar 

  52. [52]

    Xu, H.; Ren, A. B.; Wu, J.; Wang, Z. M. Recent advances in 2D MXenes for photodetection. Adv. Funct. Mater. 2020, 30, 2000907.

    CAS  Google Scholar 

  53. [53]

    Abdolhosseinzadeh, S.; Schneider, R.; Verma, A.; Heier, J.; Nüesch, F.; Zhang, C. F. Turning trash into treasure: Additive free MXene sediment inks for screen-printed micro-supercapacitors. Adv. Mater. 2020, 32, 2000716.

    CAS  Google Scholar 

  54. [54]

    Anasori, B.; Lukatskaya, M. R.; Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2017, 2, 16098.

    CAS  Google Scholar 

  55. [55]

    Dong, Y. C.; Mallineni, S. S. K.; Maleski, K.; Behlow, H.; Mochalin, V. N.; Rao, A. M.; Gogotsi, Y.; Podila, R. Metallic MXenes: A new family of materials for flexible triboelectric nanogenerators. Nano Energy 2018, 44, 103–110.

    CAS  Google Scholar 

  56. [56]

    Sarycheva, A.; Gogotsi, Y. Raman spectroscopy analysis of the structure and surface chemistry of Ti3C2Tx MXene. Chem. Mater. 2020, 32, 3480–3488.

    CAS  Google Scholar 

  57. [57]

    Ma, Y. N.; Liu, N. S.; Li, L. Y.; Hu, X. K.; Zou, Z. G.; Wang, J. B.; Luo, S. J.; Gao, Y. H. A highly flexible and sensitive piezoresistive sensor based on MXene with greatly changed interlayer distances. Nat. Commun. 2017, 8, 1207.

    Google Scholar 

  58. [58]

    Sciuti, V. F.; Melo, C. C.; Canto, L. B.; Canto, R. B. Influence of surface crystalline structures on DSC analysis of PTFE. Mater. Res. 2017, 20, 1350–1359.

    CAS  Google Scholar 

  59. [59]

    Conte, M.; Pinedo, B.; Igartua, A. Role of crystallinity on wear behavior of PTFE composites. Wear 2013, 307, 81–86.

    CAS  Google Scholar 

  60. [60]

    Lebedev, Y. A.; Korolev, Y. M.; Polikarpov, V. M.; Ignat’eva, L. N.; Antipov, E. M. X-ray powder diffraction study of polytetrafluoroethylene. Crystallogr. Rep. 2010, 55, 609–614.

    CAS  Google Scholar 

  61. [61]

    Xia, X. N.; Chen, J.; Guo, H. Y.; Liu, G. L.; Wei, D. P.; Xi, Y.; Wang, X.; Hu, C. G. Embedding variable micro-capacitors in polydimethylsiloxane for enhancing output power of triboelectric nanogenerator. Nano Res. 2016, 10, 320–330.

    Google Scholar 

Download references

Acknowledgements

The authors thank the support of the National Natural Science Foundation of China (Nos. 51922023 and 61874011), National Key Research and Development Program of China (No. 2016YFA0202704), Beijing Talents Foundation (No. 2017000021223TD04), Tribology Science Fund of State Key Laboratory of Tribology (No. SKLTKF19B02), Open Research Foundation of State Key Laboratory of Digital Manufacturing Equipment & Technology (DMETKF2020014), and Young Scientific and Technological Innovation Research Team Funds of Sichuan Province (No. 20CXTD0106). Furthermore, the authors are grateful to Dr. Weijie Sun, who work as an engineer of material analysis test center of Beijing Institute of Nanoenergy and Nanosystems, for the material characterization.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Weiqing Yang or Chi Zhang.

Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Liu, G., Bu, T. et al. MXene based mechanically and electrically enhanced film for triboelectric nanogenerator. Nano Res. 14, 4833–4840 (2021). https://doi.org/10.1007/s12274-021-3437-5

Download citation

Keywords

  • MXene
  • polytetrafluoroethylene (PTFE)
  • mechanically and electrically enhanced
  • triboelectric layer
  • triboelectric nanogenerator