Skip to main content

Ni-based catalysts derived from layered-double-hydroxide nanosheets for efficient photothermal CO2 reduction under flow-type system

Abstract

Photothermal CO2 reduction is an efficient and sustainable catalytic path for CO2 treatment. Here, we successfully fabricated a novel series of Ni-based catalysts (Ni-x) via H2 reduction of NiAl-layered double hydroxide nanosheets at temperatures (x) ranging from 300 to 600 °C. With the increase of the reduction temperature, the methane generation rate of the Ni-x catalyst for photothermal CO2 hydrogenation gradually increased under ultraviolet-visible-infrared (UV-vis-IR) irradiation in a flow-type system. The Ni-600 catalyst showed a CO2 conversion of 78.4%, offering a CH4 production rate of 278.8 mmol·g−1h−1, with near 100% selectivity and 100 h long-term stability. Detailed characterization analyses showed metallic Ni nanoparticles supported on amorphous alumina are the catalytically active phase for CO2 methanation. This study provides a possibility for large-scale conversion and utilization of CO2 from a sustainable perspective.

This is a preview of subscription content, access via your institution.

References

  1. Chueh, W. C.; Falter, C.; Abbott, M.; Scipio, D.; Furler, P.; Haile, S. M.; Steinfeld, A. High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria. Science 2010, 330, 1797–1801.

    CAS  Google Scholar 

  2. Dasgupta, S.; Brunschwig, B. S.; Winkler, J. R.; Gray, H. B. Solar fuels editorial. Chem. Soc. Rev. 2013, 42, 2213–2214.

    CAS  Google Scholar 

  3. Chen, G. B.; Waterhouse, G. I. N.; Shi, R.; Zhao, J. Q.; Li, Z. H.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. From solar energy to fuels: recent advances in light-driven C1 chemistry. Angew. Chem., Int. Ed. 2019, 58, 17528–17551.

    CAS  Google Scholar 

  4. Jiang, X.; Nie, X. W.; Guo, X. W.; Song, C. S.; Chen, J. G. Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis. Chem. Rev. 2020, 120, 7984–8034.

    CAS  Google Scholar 

  5. He, M. Y.; Sun, Y. H.; Han, B. X. Green carbon science: Scientific basis for integrating carbon resource processing, utilization, and recycling. Angew. Chem., Int. Ed. 2013, 52, 9620–9633.

    CAS  Google Scholar 

  6. Gattuso, J. P.; Magnan, A.; Billé, R.; Cheung, W. W. L.; Howes, E. L.; Joos, F.; Allemand, D.; Bopp, L.; Cooley, S. R.; Eakin, C. M. et al. Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science 2015, 349, aac4722.

    Google Scholar 

  7. Su, X.; Yang, X. F.; Huang, Y. Q.; Liu, B.; Zhang, T. Single-atom catalysis toward efficient CO2 conversion to CO and formate products. Acc. Chem. Res. 2019, 52, 656–664.

    CAS  Google Scholar 

  8. Zhao, T. X.; Hu, X. B.; Wu, Y. T.; Zhang, Z. B. Hydrogenation of CO2 to formate with H2: Transition metal free catalyst based on a Lewis pair. Angew. Chem., Int. Ed. 2019, 58, 722–726.

    CAS  Google Scholar 

  9. Zhou, W.; Cheng, K.; Kang, J. C.; Zhou, C.; Subramanian, V.; Zhang, Q. H.; Wang, Y. New horizon in C1 chemistry: Breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels. Chem. Soc. Rev. 2019, 48, 3193–3228.

    CAS  Google Scholar 

  10. Miguel, C. V.; Mendes, A.; Madeira, L. M. Intrinsic kinetics of CO2 methanation over an industrial nickel-based catalyst. J. CO2 Util. 2018, 25, 128–136.

    CAS  Google Scholar 

  11. Götz, M.; Lefebvre, J.; Mörs, F.; Koch, A. M.; Graf, F.; Bajohr, S.; Reimert, R.; Kolb, T. Renewable power-to-gas: A technological and economic review. Renew. Energ. 2016, 85, 1371–1390.

    Google Scholar 

  12. Li, Y. G.; Hao, J. C.; Song, H.; Zhang, F. Y.; Bai, X. H.; Meng, X. G.; Zhang, H. Y.; Wang, S. F.; Hu, Y.; Ye, J. H. Selective light absorberassisted single nickel atom catalysts for ambient sunlight-driven CO2 methanation. Nat. Commun. 2019, 10, 2359.

    Google Scholar 

  13. Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.

    CAS  Google Scholar 

  14. Pan, Y. X.; You, Y.; Xin, S.; Li, Y. T.; Fu, G. T.; Cui, Z. M.; Men, Y. L.; Cao, F. F.; Yu, S. H.; Goodenough, J. B. Photocatalytic CO2 reduction by carbon-coated indium-oxide nanobelts. J. Am. Chem. Soc. 2017, 139, 4123–4129.

    CAS  Google Scholar 

  15. Zhao, Y. F.; Chen, G. B.; Bian, T.; Zhou, C.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Smith, L. J.; O’Hare, D.; Zhang, T. R. Defect-rich ultrathin ZnAl-layered double hydroxide nanosheets for efficient photoreduction of CO2 to CO with water. Adv. Mater. 2015, 27, 7824–7831.

    CAS  Google Scholar 

  16. Hu, B. B.; Guo, Q.; Wang, K.; Wang, X. T. Enhanced photocatalytic activity of porous In2O3 for reduction of CO2 with H2O. J. Mater. Sci.: Mater. Electron. 2019, 30, 7950–7962.

    CAS  Google Scholar 

  17. Inoue, T.; Fujishima, A.; Konishi, S.; Honda, K. Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 1979, 277, 637–638.

    CAS  Google Scholar 

  18. Wan, L. L.; Zhou, Q. X.; Wang, X.; Wood, T. E.; Wang, L.; Duchesne, P. N.; Guo, J. L.; Yan, X. L.; Xia, M. K.; Li, Y. F. et al. Cu2O nanocubes with mixed oxidation-state facets for (photo)catalytic hydrogenation of carbon dioxide. Nat. Catal. 2019, 2, 889–898.

    CAS  Google Scholar 

  19. Robatjazi, H.; Zhao, H. Q.; Swearer, D. F.; Hogan, N. J.; Zhou, L. N.; Alabastri, A.; McClain, M. J.; Nordlander, P.; Halas, N. J. Plasmon-induced selective carbon dioxide conversion on earth-abundant aluminum-cuprous oxide antenna-reactor nanoparticles. Nat. Commun. 2017, 8, 27.

    Google Scholar 

  20. Kong, T. T.; Jiang, Y. W.; Xiong, Y. J. Photocatalytic CO2 conversion: What can we learn from conventional COx hydrogenation? Chem. Soc. Rev. 2020, 49, 6579–6591.

    CAS  Google Scholar 

  21. Li, M.; Li, P.; Chang, K.; Wang, T.; Liu, L. Q.; Kang, Q.; Ouyang, S. X.; Ye, J. H. Highly efficient and stable photocatalytic reduction of CO2 to CH4 over Ru loaded NaTaO3. Chem. Commun. 2015, 51, 7645–7648.

    CAS  Google Scholar 

  22. Tu, W. G.; Zhou, Y.; Zou, Z. G. Photocatalytic conversion of CO2 into renewable hydrocarbon fuels: State-of-the-art accomplishment, challenges, and prospects. Adv. Mater. 2014, 26, 4607–4626.

    CAS  Google Scholar 

  23. Indrakanti, V. P.; Kubicki, J. D.; Schobert, H. H. Photoinduced activation of CO2 on Ti-based heterogeneous catalysts: Current state, chemical physics-based insights and outlook. Energy Environ. Sci. 2009, 2, 745–758.

    CAS  Google Scholar 

  24. Ali, S.; Lee, J.; Kim, H.; Hwang, Y.; Razzaq, A.; Jung, J. W.; Cho, C. H.; In, S. I. Sustained, photocatalytic CO2 reduction to CH4 in a continuous flow reactor by earth-abundant materials: Reduced titania-Cu2O Z-scheme heterostructures. Appl. Catal. B: Environ. 2020, 279, 119344.

    CAS  Google Scholar 

  25. Melsheimer, J.; Guo, W.; Ziegler, D.; Wesemann, M.; Schlögl, R. Methanation of carbon dioxide over Ru/titania at room temperature: Explorations for a photoassisted catalytic reaction. Catal. Lett. 1991, 11, 157–168.

    CAS  Google Scholar 

  26. Wang, L.; Wan, J. W.; Zhao, Y. S.; Yang, N. L.; Wang, D. Hollow multi-shelled structures of Co3O4 dodecahedron with unique crystal orientation for enhanced photocatalytic CO2 reduction. J. Am. Chem. Soc. 2019, 141, 2238–2241.

    CAS  Google Scholar 

  27. Wu, L. Y.; Mu, Y. F.; Guo, X. X.; Zhang, W.; Zhang, Z. M.; Zhang, M.; Lu, T. B. Encapsulating perovskite quantum dots in iron-based metal-organic frameworks (MOFs) for efficient photocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2019, 58, 9491–9495.

    CAS  Google Scholar 

  28. Song, C. Q.; Liu, X.; Xu, M.; Masi, D.; Wang, Y. G.; Deng, Y. C.; Zhang, M. T.; Qin, X. T.; Feng, K.; Yan, J. et al. Photothermal conversion of CO2 with tunable selectivity using Fe-based catalysts: From oxide to carbide. ACS Catal. 2020, 10, 10364–10374.

    CAS  Google Scholar 

  29. Wang, L.; Dong, Y. C.; Yan, T. J.; Hu, Z. X.; Jelle, A. A.; Meira, D. M.; Duchesne, P. N.; Loh, J. Y. Y.; Qiu, C. Y.; Storey, E. E. et al. Black indium oxide a photothermal CO2 hydrogenation catalyst. Nat. Commun. 2020, 11. 2432.

    CAS  Google Scholar 

  30. Xu, Y. F.; Duchesne, P. N.; Wang, L.; Tavasoli, A.; Jelle, A. A.; Xia, M. K.; Liao, J. F.; Kuang, D. B.; Ozin, G. A. High-performance light-driven heterogeneous CO2 catalysis with near-unity selectivity on metal phosphides. Nat. Commun. 2020, 11, 5149.

    CAS  Google Scholar 

  31. Qi, Y. H.; Song, L. Z.; Ouyang, S. X.; Liang, X. C.; Ning, S. B.; Zhang, Q. Q.; Ye, J. H. Photoinduced defect engineering: Enhanced photothermal catalytic performance of 2D black In2O3−x, nanosheets with bifunctional oxygen vacancies. Adv. Mater. 2020, 32, 1903915.

    CAS  Google Scholar 

  32. O’Brien, P. G.; Sandhel, A.; Wood, T. E.; Jelle, A. A.; Hoch, L. B.; Perovic, D. D.; Mims, C. A.; Ozin, G. A. Photomethanation of gaseous CO2 over Ru/silicon nanowire catalysts with visible and near-infrared photons. Adv. Sci. 2014, 1, 1400001.

    Google Scholar 

  33. Zhang, X.; Li, X. Q.; Zhang, D.; Su, N. Q.; Yang, W. T.; Everitt, H. O.; Liu, J. Product selectivity in plasmonic photocatalysis for carbon dioxide hydrogenation. Nat. Commun. 2017, 8, 14542.

    CAS  Google Scholar 

  34. Jia, J.; Wang, H.; Lu, Z. L.; O’Brien, P. G.; Ghoussoub, M.; Duchesne, P.; Zheng, Z. Q.; Li, P. C.; Qiao, Q.; Wang, L. et al. Photothermal catalyst engineering: Hydrogenation of gaseous CO2 with high activity and tailored selectivity. Adv. Sci. 2017, 4, 1700252.

    Google Scholar 

  35. Sastre, F.; Puga, A. V.; Liu, L. C.; Corma, A.; Garcia, H. Complete photocatalytic reduction of CO2 to methane by H2 under solar light irradiation. J. Am. Chem. Soc. 2014, 136, 6798–6801.

    CAS  Google Scholar 

  36. Adachi-Pagano, M.; Forano, C.; Besse, J. P. Synthesis of Al-rich hydrotalcite-like compounds by using the urea hydrolysis reaction-control of size and morphology. J. Mater. Chem. 2003, 13, 1988–1993.

    CAS  Google Scholar 

  37. Fogg, A. M.; Rohl, A. L.; Parkinson, G. M.; O’Hare, D. Predicting guest orientations in layered double hydroxide intercalates. Chem. Mater. 1999, 11, 1194–1200.

    CAS  Google Scholar 

  38. Gao, W.; Zhao, Y. F.; Chen, H. R.; Chen, H.; Li, Y. W.; He, S.; Zhang, Y. K.; Wei, M.; Evans, D. G.; Duan, X. Core-shell Cu@(CuCo-alloy)/Al2O3 catalysts for the synthesis of higher alcohols from syngas. Green Chem. 2015, 17, 1525–1534.

    CAS  Google Scholar 

  39. Li, Z. H.; Liu, J. J.; Zhao, Y. F.; Shi, R.; Waterhouse, G. I. N.; Wang, Y. S.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Photothermal hydrocarbon synthesis using alumina-supported cobalt metal nanoparticle catalysts derived from layered-double-hydroxide nanosheets. Nano Energy 2019, 60, 467–475.

    CAS  Google Scholar 

  40. Zhao, M. Q.; Zhang, Q.; Zhang, W.; Huang, J. Q.; Zhang, Y. H.; Su, D. S.; Wei, F. Embedded high density metal nanoparticles with extraordinary thermal stability derived from guest-host mediated layered double hydroxides. J. Am. Chem. Soc. 2010, 132, 14739–14741.

    CAS  Google Scholar 

  41. Chen, G. B.; Gao, R.; Zhao, Y. F.; Li, Z. H.; Waterhouse, G. I. N.; Shi, R.; Zhao, J. Q.; Zhang, M. T.; Shang, L.; Sheng, G. Y. et al. Alumina-supported CoFe alloy catalysts derived from layered-double-hydroxide nanosheets for efficient photothermal CO2 hydrogenation to hydrocarbons. Adv. Mater. 2018, 30, 1704663.

    Google Scholar 

  42. Gorschlüter, A.; Merz, H. Locallied d-d excitations in NiO(100) and CoO(100). Phys. Rev. B 1994, 49, 17293–17302.

    Google Scholar 

  43. Tan, L.; Xu, S. M.; Wang, Z. L.; Xu, Y. Q.; Wang, X.; Hao, X. J.; Bai, S.; Ning, C. J.; Wang, Y.; Zhang, W. K. et al. Highly selective photoreduction of CO2 with suppressing H2 evolution over monolayer layered double hydroxide under irradiation above 600 nm. Angew. Chem., Int. Ed. 2019, 58, 11860–11867.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for financial support from the National Key Projects for Fundamental Research and Development of China (Nos. 2018YFB1502002, 2017YFA0206904, and 2017YFA0206900), the National Natural Science Foundation of China (Nos. 51825205, 51772305, 21871279, 21902168, and 52072382), the Beijing Natural Science Foundation (Nos. 2191002, and 2194089), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB17000000), the Royal Society-Newton Advanced Fellowship (No. NA170422), the International Partnership Program of Chinese Academy of Sciences (Nos. GJHZ1819 and GJHZ201974), the K. C. Wong Education Foundation, the Central China Normal University (No. 2020YBZZ019), the Youth Innovation Promotion Association of the CAS and the Open Fund of the Key Laboratory of Thermal Management and Energy Utilization of Aircraft, Ministry of Industry and Information Technology, Nanjing University of Aeronautics and Astronautics (No. CEPE2020014). The XAFS experiments were conducted in 1W1B beamline of Beijing Synchrotron Radiation Facility (BSRF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tierui Zhang.

Electronic supplementary material

12274_2021_3436_MOESM1_ESM.pdf

Ni-based catalysts derived from layered-double-hydroxide nanosheets for efficient photothermal CO2 reduction under flow-type system

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Shi, R., Zhao, J. et al. Ni-based catalysts derived from layered-double-hydroxide nanosheets for efficient photothermal CO2 reduction under flow-type system. Nano Res. 14, 4828–4832 (2021). https://doi.org/10.1007/s12274-021-3436-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3436-6

Keywords

  • photothermal CO2 hydrogenation
  • Ni-based catalysts
  • layered double hydroxide
  • photocatalysis
  • solar-to-fuel