Skip to main content

Metal-organic frameworks as functional materials for implantable flexible biochemical sensors

Abstract

Metal-organic frameworks (MOFs) exhibit attractive properties such as highly accessible surface area, large porosity, tunable pore size, and built-in redox-active metal sites. They may serve as excellent candidates to construct implantable flexible devices for biochemical sensing due to their high thermal and solution stability. However, MOFs-based sensors have only been mostly reported for in-vitro chemical sensing, their use in implantable chemical sensing and combination with flexible electronics to achieve excellent mechanical compatibility with tissues and organs has rarely been summarized. This paper systematically reviews the biochemical sensors based on MOFs and discusses the feasibility to achieve implantable biochemical sensing through MOFs-based flexible electronics. The properties of MOFs and underlying mechanisms have been introduced, followed by a summarization of different biochemical sensing applications. Strategies to integrate MOFs with flexible devices have been supplied from the standpoints of matching mechanics and compatible fabrication processes. Issues that should be addressed in developing flexible MOFs sensors and potential solutions have also been provided, followed by the perspective for future applications of flexible MOFs sensors. This paper may serve as a reference to offer potential guidelines for the development of flexible MOFs-based biochemical sensors that may benefit future applications in personal healthcare, disease diagnosis and treatment, and fundamental study of various biological processes.

References

  1. [1]

    Wang, X. W.; Liu, Z.; Zhang, T. Flexible sensing electronics for wearable/attachable health monitoring. Small 2017, 13, 1602790.

    Article  CAS  Google Scholar 

  2. [2]

    Song, Y.; Min, J. H.; Gao, W. Wearable and implantable electronics: Moving toward precision therapy. ACS Nano 2019, 13, 12280–12286.

    CAS  Article  Google Scholar 

  3. [3]

    Liu, Y. H.; Pharr, M.; Salvatore, G. A. Lab-on-Skin: A review of flexible and stretchable electronics for wearable health monitoring. ACS Nano 2017, 11, 9614–9635.

    CAS  Article  Google Scholar 

  4. [4]

    Kim, K.; Kim, B.; Lee, C. H. Printing flexible and hybrid electronics for human skin and eye-interfaced health monitoring systems. Adv. Mater. 2020, 32, 1902051.

    CAS  Article  Google Scholar 

  5. [5]

    Yang, Y. R.; Gao, W. Wearable and flexible electronics for continuous molecular monitoring. Chem. Soc. Rev. 2019, 48, 1465–1491.

    CAS  Article  Google Scholar 

  6. [6]

    Gao, W.; Ota, H.; Kiriya D.; Takei, K.; Javey, A. Flexible electronics toward wearable sensing. Acc. Chem. Res. 2019, 52, 523–533.

    CAS  Article  Google Scholar 

  7. [7]

    Ling, W.; Liew, G.; Li, Y.; Hao, Y. F.; Pan, H. Z.; Wang, H. J.; Ning, B. A.; Xu, H.; Huang, X. Materials and techniques for implantable nutrient sensing using flexible sensors integrated with metal-organic frameworks. Adv. Mater. 2018, 30, 1800917.

    Article  CAS  Google Scholar 

  8. [8]

    Ling, W.; Yu, J. X.; Ma, N.; Li, Y.; Wu, Z. Y.; Liang, R.; Hao, Y. F.; Pan, H. Z.; Liu, W. T.; Fu, B. et al. Flexible electronics and materials for synchronized stimulation and monitoring in multi-encephalic regions. Adv. Funct. Mater. 2020, 30, 2002644.

    CAS  Article  Google Scholar 

  9. [9]

    Yu, Y.; Nyein, H. Y. Y.; Gao, W.; Javey, A. Flexible electrochemical bioelectronics: The rise of in situ bioanalysis. Adv. Mater. 2020, 32, 1902083.

    CAS  Article  Google Scholar 

  10. [10]

    Yamamoto, Y.; Harada, S.; Yamamoto, D.; Honda, W.; Arie, T.; Akita, S.; Takei, K. Printed multifunctional flexible device with an integrated motion sensor for health care monitoring. Sci. Adv. 2016, 2, e1601473.

    Google Scholar 

  11. [11]

    Gao, Y. J.; Ota, H.; Schaler, E. W.; Chen, K.; Zhao, A.; Gao, W.; Fahad, H. M.; Leng, Y. G.; Zheng, A. Z.; Xiong, F. et al. Wearable microfluidic diaphragm pressure sensor for health and tactile touch monitoring. Adv. Mater. 2017, 29, 1701985.

    Article  CAS  Google Scholar 

  12. [12]

    Park, S.; Heo, S. W.; Lee, W.; Inoue, D.; Jiang, Z.; Yu, K.; Jinno, H.; Hashizume, D.; Sekino, M.; Yokota, T. et al. Self-powered ultra-flexible electronics via nano-grating-patterned organic photovoltaics. Nature 2018, 561, 516–521.

    CAS  Article  Google Scholar 

  13. [13]

    Gao, W.; Emaminejad, S.; Nyein, H. Y. Y.; Challa, S.; Chen, K.; Peck, A.; Fahad, H. M.; Ota, H.; Shiraki, H.; Kiriya, D. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 2016, 529, 509–514.

    CAS  Article  Google Scholar 

  14. [14]

    Yao, S. S.; Myers, A.; Malhotra, A.; Lin, F. Y.; Bozkurt, A.; Muth, J. F.; Zhu, Y. A wearable hydration sensor with conformal nanowire electrodes. Adv. Healthc. Mater. 2017, 6, 1601159.

    Article  CAS  Google Scholar 

  15. [15]

    Sun, B. H.; McCay, R. N.; Goswami, S.; Xu, Y. D.; Zhang, C.; Ling, Y.; Lin, J.; Yan, Z. Gas-permeable, multifunctional on-skin electronics based on laser-induced porous graphene and sugar-templated elastomer sponges. Adv. Mater. 2018, 30, 1804327.

    Article  CAS  Google Scholar 

  16. [16]

    Li, H. C.; Xu, Y.; Li, X. M.; Chen, Y.; Jiang, Y.; Zhang, C. X.; Lu, B. W.; Wang, J.; Ma, Y. J.; Chen, Y. H. et al. Epidermal inorganic optoelectronics for blood oxygen measurement. Adv. Healthc. Mater. 2017, 6, 1601013.

    Article  CAS  Google Scholar 

  17. [17]

    Hong, Y. J.; Jeong, H.; Cho, K. W.; Lu, N. S.; Kim, D. H. Wearable and implantable devices for cardiovascular healthcare: From monitoring to therapy based on flexible and stretchable electronics. Adv. Funct. Mater. 2019, 29, 1808247.

    Article  CAS  Google Scholar 

  18. [18]

    Zhang, L.; Kumar, K. S.; He, H.; Cai, C. J.; He, X.; Gao, H. X.; Yue, S. Z.; Li, C. S.; Seet, R. C. S.; Ren, H. L. et al. Fully organic compliant dry electrodes self-adhesive to skin for long-term motion-robust epidermal biopotential monitoring. Nat. Commun. 2020, 11, 4683.

    CAS  Article  Google Scholar 

  19. [19]

    Acar, G; Ozturk, O.; Golparvar, A. J.; Elboshra, T. A.; Böhringer, K.; Yapici, M. K. Wearable and flexible textile electrodes for biopotential signal monitoring: A review. Electronics 2019, 8, 479.

    CAS  Article  Google Scholar 

  20. [20]

    Archana, V.; Xia, Y.; Fang, R. Y.; Kumar, G. G. Hierarchical CuO/NiO-carbon nanocomposite derived from metal organic framework on cello tape for the flexible and high performance nonenzymatic electrochemical glucose sensors. ACS Sustain. Chem. Eng. 2019, 7, 6707–6719.

    CAS  Article  Google Scholar 

  21. [21]

    Zhang, Y.; Li, N.; Xiang, Y. J.; Wang, D. B.; Zhang, P.; Wang, Y. Y.; Lu, S.; Xu, R. Q.; Zhao, J. A flexible non-enzymatic glucose sensor based on copper nanoparticles anchored on laser-induced graphene. Carbon 2020, 156, 506–513.

    CAS  Article  Google Scholar 

  22. [22]

    Kim, J.; Campbell, A. S.; Wang, J. Wearable non-invasive epidermal glucose sensors: A review. Talanta 2018, 177, 163–170.

    CAS  Article  Google Scholar 

  23. [23]

    Ashley, B. K.; Brown, M. S.; Park, Y.; Kuan, S.; Koh, A. Skin-inspired, open mesh electrochemical sensors for lactate and oxygen monitoring. Biosens. Bioelectron. 2019, 132, 343–351.

    CAS  Article  Google Scholar 

  24. [24]

    Tur-Garcia, E. L.; Davis, F.; Collyer, S. D.; Holmes, J. L.; Barr, H.; Higson, S. P. J. Novel flexible enzyme laminate-based sensor for analysis of lactate in sweat. Sens. Actuators B: Chem. 2017, 242, 502–510.

    CAS  Article  Google Scholar 

  25. [25]

    Bandodkar, A. J.; Wang, J. Non-invasive wearable electrochemical sensors: Areview. Trends Biotechnol. 2014, 32, 363–371.

    CAS  Article  Google Scholar 

  26. [26]

    Liang, T. T.; Zou, L.; Guo, X. G.; Ma, X. Q.; Zhang, C. K.; Zou, Z.; Zhang, Y. H.; Hu, F. X.; Lu, Z. S.; Tang, K. L. et al. Rising mesopores to realize direct electrochemistry of glucose oxidase toward highly sensitive detection of glucose. Adv. Funct. Mater. 2019, 29, 1903026.

    CAS  Article  Google Scholar 

  27. [27]

    Kim, K.; Lee, C. H.; Park, C. B. Chemical sensing platforms for detecting trace-level Alzheimer’s core biomarkers. Chem. Soc. Rev. 2020, 49, 5446–5472.

    CAS  Article  Google Scholar 

  28. [28]

    Pallares, R. M.; Thanh, N. T. K.; Su, X. D. Sensing of circulating cancer biomarkers with metal nanoparticles. Nanoscale 2019, 11, 22152–22171.

    CAS  Article  Google Scholar 

  29. [29]

    Falahati, M.; Attar, F.; Sharifi, M.; Saboury, A. A.; Salihi, A.; Aziz, F. M.; Kostova, I.; Burda, C.; Priecel, P.; Lopez-Sanchez, J. A. et al. Gold nanomaterials as key suppliers in biological and chemical sensing, catalysis, and medicine. Biochim. Biophys. Acta (BBA)Gen. Subj. 2020, 1864, 129435.

    CAS  Article  Google Scholar 

  30. [30]

    Zhang, B.; Gao, P. X. Metal oxide nanoarrays for chemical sensing: A review of fabrication methods, sensing modes, and their inter-correlations. Front. Mater. 2019, 6, 55.

    Article  Google Scholar 

  31. [31]

    Nunes, D.; Pimentel, A.; Gonçalves, A.; Pereira, S.; Branquinho, R.; Barquinha, P.; Fortunata, E.; Martins, R. Metal oxide nanostructures for sensor applications. Semicond. Sci. Technol. 2019, 34, 043001.

    CAS  Article  Google Scholar 

  32. [32]

    Lee, C. W.; Suh, J. M.; Jang, H. W. Chemical sensors based on two-dimensional (2D) materials for selective detection of ions and molecules in liquid. Front. Chem. 2019, 7, 708.

    CAS  Article  Google Scholar 

  33. [33]

    Khan, K.; Tareen, A. K.; Aslam, M.; Wang, R. H.; Zhang, Y. P.; Mahmood, A.; Ouyang, Z. B.; Zhang, H.; Guo, Z. Y. Recent developments in emerging two-dimensional materials and their applications. J. Mater. Chem. C 2020, 8, 387–440.

    CAS  Article  Google Scholar 

  34. [34]

    Weltin, A.; Kieninger, J.; Urban, G. A. Microfabricated, amperometric, enzyme-based biosensors for in vivo applications. Anal. Bioanal. Chem. 2016, 408, 4503–4521.

    CAS  Article  Google Scholar 

  35. [35]

    Liu, Y.; Matharu, Z.; Howland, M. C.; Revzin, A.; Simonian, A. L. Affinity and enzyme-based biosensors: Recent advances and emerging applications in cell analysis and point-of-care testing. Anal. Bioanal. Chem. 2012, 404, 1181–1196.

    CAS  Article  Google Scholar 

  36. [36]

    Choi, M. M. F. Progress in enzyme-based biosensors using optical transducers. Microchim. Acta 2004, 148, 107–132.

    CAS  Article  Google Scholar 

  37. [37]

    Babu, V. R. S.; Kumar, M. A.; Karanth, N. G.; Thakur, M. S. Stabilization of immobilized glucose oxidase against thermal inactivation by silanization for biosensor applications. Biosens. Bioelectron. 2004, 19, 1337–1341.

    CAS  Article  Google Scholar 

  38. [38]

    Lv, Z. M.; Wang, H. Y.; Chen, C. L.; Yang, S. M.; Chen, L.; Alsaedi, A.; Hayat, T. Enhanced removal of uranium(VI) from aqueous solution by a novel Mg-MOF-74-derived porous MgO/carbon adsorbent. J. Colloid Interface Sci. 2019, 537, A1–A10.

    CAS  Article  Google Scholar 

  39. [39]

    Kokkinos, C.; Economou, A.; Pournara, A.; Manos, M.; Spanopoulos, I.; Kanatzidis, M.; Tziotzi, T.; Petkov, V.; Margariti, A.; Oikonomopoulos, P. et al. 3D-printed lab-in-a-syringe voltammetric cell based on a working electrode modified with a highly efficient Ca-MOF sorbent for the determination of Hg(II). Sens. Actuators B: Chem. 2020, 321, 128508.

    CAS  Article  Google Scholar 

  40. [40]

    Li, Y.; Xie, M. W.; Zhang, X. P.; Liu, Q.; Lin, D. M.; Xu, C. G.; Xie, F. Y.; Sun, X. P. Co-MOF nanosheet array: A high-performance electrochemical sensor for non-enzymatic glucose detection. Sens. Actuators B: Chem. 2019, 278, 126–132.

    CAS  Article  Google Scholar 

  41. [41]

    Yang, Y. M.; Xia, F.; Yang, Y.; Gong, B. Y.; Xie, A. J.; Shen, Y. H.; Zhu, M. Z. Litchi-like Fe3O4@Fe-MOF capped with HAp gatekeepers for pH-triggered drug release and anticancer effect. J. Mater. Chem. B 2017, 5, 8600–8606.

    CAS  Article  Google Scholar 

  42. [42]

    Qiao, Y. X.; Liu, Q.; Lu, S. Y.; Chen, G.; Gao, S. Y.; Lu, W. B.; Sun, X. P. High-performance non-enzymatic glucose detection: Using a conductive Ni-MOF as an electrocatalyst. J. Mater. Chem. B 2020, 8, 5411–5415.

    CAS  Article  Google Scholar 

  43. [43]

    Chen, D. M.; Zhang, N. N.; Liu, C. S.; Du, M. Template-directed synthesis of a luminescent Tb-MOF material for highly selective Fe3+ and Al3+ ion detection and VOC vapor sensing. J. Mater. Chem. C 2017, 5, 2311–2317.

    CAS  Article  Google Scholar 

  44. [44]

    Yu, H. H.; Li, J.; Yang, Y.; Li, X.; Su, Z. M.; Sun, J. Near-infrared (NIR-II) luminescence for the detection of cyclotetramethylene tetranitramine based on stable Nd-MOF. J. Solid State Chem. 2021, 294, 121789.

    CAS  Article  Google Scholar 

  45. [45]

    Cui, Y.; Chen, F.; Yin, X. B. A ratiometric fluorescence platform based on boric-acid-functional Eu-MOF for sensitive detection of H2O2 and glucose. Biosens. Bioelectron. 2019, 135, 208–215.

    CAS  Article  Google Scholar 

  46. [46]

    Huang, N. H.; Li, R. T.; Fan, C.; Wu, K. Y.; Zhang, Z.; Chen, J. X. Rapid sequential detection of Hg2+ and biothiols by a probe DNA—MOF hybrid sensory system. J. Inorg. Biochem. 2019, 197, 110690.

    CAS  Article  Google Scholar 

  47. [47]

    Lestari, W. W.; Arvinawati, M.; Martien, R.; Kusumaningsih, T. Green and facile synthesis of MOF and nano MOF containing zinc(II) and benzen 1,3,5-tri carboxylate and its study in ibuprofen slow-release. Mater. Chem. Phys. 2018, 204, 141–146.

    CAS  Article  Google Scholar 

  48. [48]

    Cui, S. Q.; Marandi, A.; Lebourleux, G.; Thimon, M.; Bourdon, M.; Chen, C. B.; Severino, M. I.; Steggles, V.; Nouar, F.; Serre, C. Heat properties of a hydrophilic carboxylate-based MOF for water adsorption applications. Appl. Therm. Eng. 2019, 161, 114135.

    CAS  Article  Google Scholar 

  49. [49]

    Siemensmeyer, K.; Peeples, C. A.; Tholen, P.; Schmitt, F. J.; Çoşut, B.; Hanna, G.; Yücesan, G. Phosphonate metal—organic frameworks: A novel family of semiconductors. Adv. Mater. 2020, 32, 2000474.

    CAS  Article  Google Scholar 

  50. [50]

    Levenson, D. A.; Zhang, J. F.; Gelfand, B. S.; Kammampata, S. P.; Thangadurai, V.; Shimizu, G. K. H. Particle size dependence of proton conduction in a cationic lanthanum phosphonate MOF. Dalton Trans. 2020, 49, 4022–4029.

    CAS  Article  Google Scholar 

  51. [51]

    Wang, Y. W.; Nan, L. J.; Jiang, Y. R.; Fan, M. F.; Chen, J.; Yuan, P. X.; Wang, A. J.; Feng, J. J. A robust and efficient aqueous electroche-miluminescence emitter constructed by sulfonate porphyrin-based metal-organic frameworks and its application in ascorbic acid detection. Analyst 2020, 145, 2758–2766.

    CAS  Article  Google Scholar 

  52. [52]

    Cognet, M.; Gutel, T.; Gautier, R.; Le Goff, X. F.; Mesbah, A.; Dacheux, N.; Carboni, M.; Meyer, D. Pillared sulfonate-based metal-organic framework as negative electrode for Li-ion batteries. Mater. Lett. 2019, 236, 73–76.

    CAS  Article  Google Scholar 

  53. [53]

    Hoskins, B. F.; Robson, R. Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments. J. Am. Chem. Soc. 1989, 111, 5962–5964.

    CAS  Article  Google Scholar 

  54. [54]

    Sud, D.; Kaur, G. A comprehensive review on synthetic approaches for metal-organic frameworks: From traditional solvothermal to greener protocols. Polyhedron 2021, 193, 114897.

    CAS  Article  Google Scholar 

  55. [55]

    Bhardwaj, S. K.; Bhardwaj, N.; Kaur, R.; Mehta, J.; Sharma, A. L.; Kim, K. H.; Deep, A. An overview of different strategies to introduce conductivity in metal—organic frameworks and miscellaneous applications thereof. J. Mater. Chem. A 2018, 6, 14992–15009.

    CAS  Article  Google Scholar 

  56. [56]

    Huang, Q. Q.; Lin, Y. J.; Zheng, R.; Deng, W. H.; Kashi, C.; Kumar, P. N.; Wang, G. E.; Xu, G. Tunable electrical conductivity of a new 3D MOFs: Cu-TATAB. Inorg. Chem. Commun. 2019, 105, 119–124.

    CAS  Article  Google Scholar 

  57. [57]

    Xie, X. X.; Yang, Y. C.; Dou, B. H.; Li, Z. F.; Li, G. Proton conductive carboxylate-based metal—organic frameworks. Coord. Chem. Rev. 2020, 403, 213100.

    CAS  Article  Google Scholar 

  58. [58]

    Li, A. L.; Gao, Q.; Xu, J.; Bu, X. H. Proton-conductive metal-organic frameworks: Recent advances and perspectives. Coord. Chem. Rev. 2017, 344, 54–82.

    CAS  Article  Google Scholar 

  59. [59]

    Sadakiyo, M.; Kasai, H.; Kato, K.; Takata, M.; Yamauchi, M. Design and synthesis of hydroxide ion—conductive metal-organic frameworks based on salt inclusion. J. Am. Chem. Soc. 2014, 136, 1702–1705.

    CAS  Article  Google Scholar 

  60. [60]

    Guo, M.; Cai, H. L.; Xiong, R. G. Ferroelectric metal organic framework (MOF). Inorg. Chem. Commun. 2010, 13, 1590–1598.

    CAS  Article  Google Scholar 

  61. [61]

    Bazaga-García, M.; Papadaki, M.; Colodrero, R. M. P.; Olivera-Pastor, P.; Losilla, E. R.; Nieto-Ortega, B.; Aranda, M. Á. G.; Choquesillo-Lazarte, D.; Cabeza, A.; Demadis, K. D. Tuning proton conductivity in alkali metal phosphonocarboxylates by cation size-induced and water-facilitated proton transfer pathways. Chem. Mater. 2015, 27, 424–435.

    Article  CAS  Google Scholar 

  62. [62]

    Liu, S. J.; Cao, C.; Yang, F.; Yu, M. H.; Yao, S. L.; Zheng, T. F.; He, W. W.; Zhao, H. X.; Hu, T. L.; Bu, X. H. High proton conduction in two Coii and Mnii anionic metal-organic frameworks derived from 1,3,5-benzenetricarboxylic acid. Cryst. Growth Des. 2016, 16, 6776–6780.

    CAS  Article  Google Scholar 

  63. [63]

    Gagnon, K. J.; Perry, H. P.; Clearfield, A. Conventional and unconventional metal-organic frameworks based on phosphonate ligands: MOFs and UMOFs. Chem. Rev. 2012, 112, 1034–1054.

    CAS  Article  Google Scholar 

  64. [64]

    Yang, J.; Ma, Z. H.; Gao, W. X.; Wei, M. D. Layered structural co-based mof with conductive network frames as a new supercapacitor electrode. Chem.—Eur. J. 2017, 23, 631–636.

    CAS  Article  Google Scholar 

  65. [65]

    Wang, T.; Farajollahi, M.; Henke, S.; Zhu, T. T.; Bajpe, S. R.; Sun, S. J.; Barnard, J. S.; Lee, J. S.; Madden, J. D. W.; Cheetham, A. K. et al. Functional conductive nanomaterials via polymerisation in nano-channels: PEDOT in a MOF. Mater. Horiz. 2017, 4, 64–71.

    CAS  Article  Google Scholar 

  66. [66]

    Meng, X.; Wang, H. N.; Wang, L. S.; Zou, Y. H.; Zhou, Z. Y. Enhanced proton conductivity of a MOF-808 framework through anchoring organic acids to the zirconium clusters by post-synthetic modification. CrystEngComm 2019, 21, 3146–3150.

    CAS  Article  Google Scholar 

  67. [67]

    Lee, Y. R.; Jang, M. S.; Cho, H. Y.; Kwon, H. J.; Kim, S.; Ahn, W. S. ZIF-8: A comparison of synthesis methods. Chem. Eng. J. 2015, 271, 276–280.

    CAS  Article  Google Scholar 

  68. [68]

    Feng, S. M.; Zhang, X. L.; Shi, D. Y.; Wang, Z. Zeolitic imidazolate framework-8 (ZIF-8) for drug delivery: A critical review. Front. Chem. Sci. Eng. 2021, 15, 221–237.

    CAS  Article  Google Scholar 

  69. [69]

    Winarta, J.; Shan, B. H.; Mcintyre, S. M.; Ye, L.; Wang, C.; Liu, J. C.; Mu, B. A decade of UiO-66 research: A historic review of dynamic structure, synthesis mechanisms, and characterization techniques of an archetypal metal-organic framework. Cryst. Growth Des. 2020, 20, 1347–1362.

    CAS  Article  Google Scholar 

  70. [70]

    Amirjalayer, S.; Tafipolsky, M.; Schmid, R. Molecular dynamics simulation of benzene diffusion in MOF-5: Importance of lattice dynamics. Angew. Chem., Int. Ed. 2007, 46, 463–466.

    CAS  Article  Google Scholar 

  71. [71]

    Al-Janabi, N.; Hill, P.; Torrente-Murciano, L.; Garforth, A.; Gorgojo, P.; Siperstein, F.; Fan, X. L. Mapping the Cu-BTC metal-organic framework (HKUST-1) stability envelope in the presence of water vapour for CO2 adsorption from flue gases. Chem. Eng. J. 2015, 281, 669–677.

    CAS  Article  Google Scholar 

  72. [72]

    Maksimchuk, N. V.; Kholdeeva, O. A.; Kovalenko, K. A.; Fedin, V. P. MIL-101 supported polyoxometalates: Synthesis, characterization, and catalytic applications in selective liquid-phase oxidation. Isr. J. Chem. 2011, 51, 281–289.

    CAS  Article  Google Scholar 

  73. [73]

    Maksimchuk, N. V.; Zalomaeva, O. V.; Skobelev, I. Y.; Kovalenko, K. A.; Fedin, V. P.; Kholdeeva, O. A. Metal-organic frameworks of the MIL-101 family as heterogeneous single-site catalysts. Proc. R. Soc. A: Math., Phys. Eng. Sci. 2012, 468, 2017–2034.

    CAS  Article  Google Scholar 

  74. [74]

    Gao, C. Y.; Tian, H. R.; Ai, J.; Li, L. J.; Dang, S.; Lan, Y. Q.; Sun, Z. M. A microporous Cu-MOF with optimized open metal sites and pore spaces for high gas storage and active chemical fixation of CO2. Chem. Commun. 2016, 52, 11147–11150.

    CAS  Article  Google Scholar 

  75. [75]

    DeSantis, D.; Mason, J. A.; James, B. D.; Houchins, C.; Long, J. R.; Veenstra, M. Techno-economic analysis of metal-organic frameworks for hydrogen and natural gas storage. Energy Fuels 2017, 31, 2024–2032.

    CAS  Article  Google Scholar 

  76. [76]

    Xue, D. X.; Wang, Q.; Bai, J. F. Amide-functionalized metal-organic frameworks: Syntheses, structures and improved gas storage and separation properties. Coord. Chem. Rev. 2019, 378, 2–16.

    CAS  Article  Google Scholar 

  77. [77]

    Shen, K.; Chen, X. D.; Chen, J. Y.; Li, Y. W. Development of MOF-derived carbon-based nanomaterials for efficient catalysis. ACS Catal. 2016, 6, 5887–5903.

    CAS  Article  Google Scholar 

  78. [78]

    Wang, T. S.; Gao, L. J.; Hou, J. W.; Herou, S. J. A.; Griffiths, J. T.; Li, W. W.; Dong, J. H.; Gao, S.; Titirici, M. M.; Kumar, R. V. et al. Rational approach to guest confinement inside MOF cavities for low-temperature catalysis. Nat. Commun. 2019, 10, 1340.

    Article  CAS  Google Scholar 

  79. [79]

    Bhadra, B. N.; Vinu, A.; Serre, C.; Jhung, S. H. MOF-derived carbonaceous materials enriched with nitrogen: Preparation and applications in adsorption and catalysis. Mater. Today 2019, 25, 88–111.

    CAS  Article  Google Scholar 

  80. [80]

    Jiang, K.; Zhang, L.; Hu, Q.; Zhao, D.; Xia, T. F.; Lin, W. X.; Yang, Y. Y.; Cui, Y. J.; Yang, Y.; Qian, G. D. Pressure controlled drug release in a Zr-cluster-based MOF. J. Mater. Chem. B 2016, 4, 6398–6401.

    CAS  Article  Google Scholar 

  81. [81]

    Li, H. Y.; Lv, N. N.; Li, X.; Liu, B. T.; Feng, J.; Ren, X. H.; Guo, T.; Chen, D. W.; Stoddart, J. F.; Gref, R. et al. Composite CD-MOF nanocrystals-containing microspheres for sustained drug delivery. Nanoscale 2017, 9, 7454–7463.

    CAS  Article  Google Scholar 

  82. [82]

    Sun, Y. J.; Zheng, L. W.; Yang, Y.; Qian, X.; Fu, T.; Li, X. W.; Yang, Z. Y.; Yan, H.; Cui, C.; Tan, W. H. Metal-organic framework nanocarriers for drug delivery in biomedical applications. Nano-Micro Lett. 2020, 12, 103.

    CAS  Article  Google Scholar 

  83. [83]

    Kim, K. J.; Lu, P.; Culp, J. T.; Ohodnicki, P. R. Metal-organic framework thin film coated optical fiber sensors: A novel waveguide-based chemical sensing platform. ACS Sens. 2018, 3, 386–394.

    CAS  Article  Google Scholar 

  84. [84]

    Yan, B. Lanthanide-functionalized metal-organic framework hybrid systems to create multiple luminescent centers for chemical sensing. Acc. Chem. Res. 2017, 50, 2789–2798.

    CAS  Article  Google Scholar 

  85. [85]

    Yan, B. Photofunctional MOF-based hybrid materials for the chemical sensing of biomarkers. J. Mater. Chem. C 2019, 7, 8155–8175.

    CAS  Article  Google Scholar 

  86. [86]

    Wang, J. H.; Fan, Y. D.; Lee, H. W.; Yi, C. Q.; Cheng, C. M.; Zhao, X.; Yang, M. Ultrasmall metal-organic framework Zn-MOF-74 nanodots: Size-controlled synthesis and application for highly selective colorimetric sensing of iron(III) in aqueous solution. ACS Appl. Nano Mater. 2018, 1, 3747–3753.

    CAS  Article  Google Scholar 

  87. [87]

    He, H. Y.; Collins, D.; Dai, F. N.; Zhao, X. L.; Zhang, G. Q.; Ma, H. Q.; Sun, D. F. Construction of metal-organic frameworks with 1D chain, 2D grid, and 3D porous framework based on a flexible imidazole ligand and rigid benzenedicarboxylates. Cryst. Growth Des. 2010, 10, 895–902.

    CAS  Article  Google Scholar 

  88. [88]

    Bataille, T.; Bracco, S.; Comotti, A.; Costantino, F.; Guerri, A.; Ienco, A.; Marmottini, F. Solvent dependent synthesis of micro- and nano-crystalline phosphinate based 1D tubular MOF: Structure and CO2 adsorption selectivity. CrystEngComm 2012, 14, 7170–7173.

    CAS  Article  Google Scholar 

  89. [89]

    Zhang, Y. X.; Li, B. X.; Lin, H.; Ma, Z. J.; Wu, X. T.; Zhu, Q. L. Impressive second harmonic generation response in a novel phase-matchable NLO-active MOF derived from achiral precursors. J. Mater. Chem. C 2019, 7, 6217–6221.

    CAS  Article  Google Scholar 

  90. [90]

    Kondo, A.; Noguchi, H.; Ohnishi, S.; Kajiro, H.; Tohdoh, A.; Hattori, Y.; Xu, W. C.; Tanaka, H.; Kanoh, H.; Kaneko, K. Novel expansion/shrinkage modulation of 2D layered MOF triggered by clathrate formation with CO2 molecules. Nano Lett. 2006, 6, 2581–2584.

    CAS  Article  Google Scholar 

  91. [91]

    Cheng, J. Y.; Chen, S. M.; Chen, D.; Dong, L. B.; Wang, J. J.; Zhang, T. L.; Jiao, T. P.; Liu, B.; Wang, H.; Kai, J. J. et al. Editable asymmetric all-solid-state supercapacitors based on high-strength, flexible, and programmable 2D-metal-organic framework/reduced graphene oxide self-assembled papers. J. Mater. Chem. A 2018, 6, 20254–20266.

    CAS  Article  Google Scholar 

  92. [92]

    Tan, B.; Zhao, H. M.; Wu, W. H.; Liu, X.; Zhang, Y. B.; Quan, X. Fe3O4-AuNPs anchored 2D metal-organic framework nanosheets with DNA regulated switchable peroxidase-like activity. Nanoscale 2017, 9, 18699–18710.

    CAS  Article  Google Scholar 

  93. [93]

    Zhou, Y.; Zheng, L. R.; Yang, D. R.; Yang, H. Z.; Lu, Q. C.; Zhang, Q. H.; Gu, L.; Wang, X. Enhancing CO2 electrocatalysis on 2D porphyrin-based metal-organic framework nanosheets coupled with visible-light. Small Methods 2021, 5, 2000991.

    CAS  Article  Google Scholar 

  94. [94]

    Chen, X.; Lu, Y.; Dong, J. J.; Ma, L.; Yi, Z. R.; Wang, Y.; Wang, L. J.; Wang, S.; Zhao, Y.; Huang, J. et al. Ultrafast in situ synthesis of large-area conductive metal-organic frameworks on substrates for flexible chemiresistive sensing. ACS Appl. Mater. Interfaces 2020, 12, 57235–57244.

    CAS  Article  Google Scholar 

  95. [95]

    Kumar, A.; Banerjee, K.; Foster, A. S.; Liljeroth, P. Two-dimensional band structure in honeycomb metal-organic frameworks. Nano Lett. 2018, 18, 5596–5602.

    CAS  Article  Google Scholar 

  96. [96]

    Wang, Z. Y.; Liu, T.; Asif, M.; Yu, Y.; Wang, W.; Wang, H. T.; Xiao, F.; Liu, H. F. Rimelike structure-inspired approach toward in situ-oriented self-assembly of hierarchical porous MOF films as a sweat biosensor. ACS Appl. Mater. Interfaces 2018, 10, 27936–27946.

    CAS  Article  Google Scholar 

  97. [97]

    Gnanasekaran, G.; Balaguru, S.; Arthanareeswaran, G.; Das, D. B. Removal of hazardous material from wastewater by using metal organic framework (MOF) embedded polymeric membranes. Sep. Sci. Technol. 2019, 54, 434–446.

    CAS  Article  Google Scholar 

  98. [98]

    Song, L.; Wang, Y. J.; Chai, W. X. A diamond-type metal-organic framework based on nano-sized [Cu84-I)6(PPh3)4]2+ clusters and cyanide-ion linkers: Design, structure and luminescent property. Inorg. Chem. Commun. 2019, 104, 190–196.

    CAS  Article  Google Scholar 

  99. [99]

    Chen, Y. Q.; Zheng, L.; Fu, Y. Y.; Zhou, R. H.; Song, Y. H.; Chen, S. H. MOF-derived Fe3O4/carbon octahedral nanostructures with enhanced performance as anode materials for lithium-ion batteries. RSC Adv. 2016, 6, 85917–85923.

    CAS  Article  Google Scholar 

  100. [100]

    Yaghi, O. M.; O’Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J. Reticular synthesis and the design of new materials. Nature 2003, 423, 705–714.

    CAS  Article  Google Scholar 

  101. [101]

    Ockwig, N. W.; Delgado-Friedrichs, O.; O’Keeffe, M.; Yaghi, O. M. Reticular chemistry: Occurrence and taxonomy of nets and grammar for the design of frameworks. Acc. Chem. Res. 2005, 38, 176–182.

    CAS  Article  Google Scholar 

  102. [102]

    Rosales-Vázquez, L. D.; Rodriguez, I. J. B.; Hernández-Ortega, S.; Sánchez-Mendieta, V.; Vilchis-Nestor, A. R.; de Jesús Cázares-Marinero, J.; Dorazco-González, A. Structure of a luminescent MOF-2 derivative with a core of Zn(II)-terephthalate-isoquinoline and its application in sensing of xylenes. Crystals 2020, 10, 344.

    Article  CAS  Google Scholar 

  103. [103]

    Li, H. L.; Eddaoudi, M.; O’Keeffe, M.; Yaghi, O. M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 1999, 402, 276–279.

    CAS  Article  Google Scholar 

  104. [104]

    Sarawade, P.; Tan, H.; Anjum, D.; Cha, D.; Polshettiwar, V. Size- and shape-controlled synthesis of hexagonal bipyramidal crystals and hollow self-assembled Al-MOF spheres. ChemSusChem 2014, 7, 529–535.

    CAS  Article  Google Scholar 

  105. [105]

    Farha, O. K.; Eryazici, I.; Jeong, N. C.; Hauser, B. G.; Wilmer, C. E.; Sarjeant, A. A.; Snurr, R. Q.; Nguyen, S. T.; Yazaydin, A. Ö.; Hupp, J. T. Metal-organic framework materials with ultrahigh surface areas: Is the sky the limit? J. Am. Chem. Soc. 2012, 134, 15016–15021.

    CAS  Article  Google Scholar 

  106. [106]

    Oliveira, L. C. A.; Petkowicz, D. I.; Smaniotto, A.; Pergher, S. B. C. Magnetic zeolites: A new adsorbent for removal of metallic contaminants from water. Water Res. 2004, 38, 3699–3704.

    CAS  Article  Google Scholar 

  107. [107]

    Whiting, G. T.; Grondin, D.; Stosic, D.; Bennici, S.; Auroux, A. Zeolite-MgCl2 composites as potential long-term heat storage materials: Influence of zeolite properties on heats of water sorption. Solar Energy Mater. Solar Cells 2014, 128, 289–295.

    CAS  Article  Google Scholar 

  108. [108]

    Sowunmi, A. R.; Folayan, C. O.; Anafi, F. O.; Ajayi, O. A.; Omisanya, N. O.; Obada, D. O.; Dodoo-Arhin, D. Dataset on the comparison of synthesized and commercial zeolites for potential solar adsorption refrigerating system. Data in Brief 2018, 20, 90–95.

    CAS  Article  Google Scholar 

  109. [109]

    Feng, Y. C.; Meng, Y.; Li, F. X.; Lv, Z. P.; Xue, J. W. Synthesis of mesoporous LTA zeolites with large BET areas. J. Porous Mat. 2013, 20, 465–471.

    CAS  Article  Google Scholar 

  110. [110]

    Shulga, O. V.; Jefferson, K.; Khan, A. R.; D’souza, V. T.; Liu, J. Y.; Demchenko, A. V.; Stine, K. J. Preparation and characterization of porous gold and its application as a platform for immobilization of acetylcholine esterase. Chem. Mater. 2007, 19, 3902–3911.

    CAS  Article  Google Scholar 

  111. [111]

    Cai, W. Y.; Xu, Q.; Zhao, X. N.; Zhu, J. J.; Chen, H. Y. Porous gold-nanoparticle-CaCO3 hybrid material: Preparation, characterization, and application for horseradish peroxidase assembly and direct electrochemistry. Chem. Mater. 2006, 18, 279–284.

    CAS  Article  Google Scholar 

  112. [112]

    Nyce, G. W.; Hayes, J. R.; Hamza, A. V.; Satcher, J. H. Synthesis and characterization of hierarchical porous gold materials. Chem. Mater. 2007, 19, 344–346.

    CAS  Article  Google Scholar 

  113. [113]

    Kameoka, S.; Tsai, A. P. CO oxidation over a fine porous gold catalyst fabricated by selective leaching from an ordered AuCu3 intermetallic compound. Catal. Lett. 2008, 121, 337–341.

    CAS  Article  Google Scholar 

  114. [114]

    Jiang, P.; Cizeron, J.; Bertone, J. F.; Colvin, V. L. Preparation of macroporous metal films from colloidal crystals. J. Am. Chem. Soc. 1999, 121, 7957–7958.

    CAS  Article  Google Scholar 

  115. [115]

    Snyder, J.; Asanithi, P.; Dalton, A. B.; Erlebacher, J. Stabilized nanoporous metals by dealloying ternary alloy precursors. Adv. Mater. 2008, 20, 4883–4886.

    CAS  Article  Google Scholar 

  116. [116]

    Kumar, R. V.; Diamant, Y.; Gedanken, A. Sonochemical synthesis and characterization of nanometer-size transition metal oxides from metal acetates. Chem. Mater. 2000, 12, 2301–2305.

    CAS  Article  Google Scholar 

  117. [117]

    Gao, W.; Dickinson, L.; Grozinger, C.; Morin, F. G.; Reven, L. Self-assembled monolayers of alkylphosphonic acids on metal oxides. Langmuir 1996, 12, 6429–6435.

    CAS  Article  Google Scholar 

  118. [118]

    Kamata, H.; Ueno, S. I.; Sato, N.; Naito, T. Mercury oxidation by hydrochloric acid over TiO2 supported metal oxide catalysts in coal combustion flue gas. Fuel Process. Technol. 2009, 90, 947–951.

    CAS  Article  Google Scholar 

  119. [119]

    Passe-Coutrin, N.; Altenor, S.; Cossement, D.; Jean-Marius, C.; Gaspard, S. Comparison of parameters calculated from the BET and Freundlich isotherms obtained by nitrogen adsorption on activated carbons: A new method for calculating the specific surface area. Microp. Mesop. Mater. 2008, 111, 517–522.

    CAS  Article  Google Scholar 

  120. [120]

    Gamby, J.; Taberna, P. L.; Simon, P.; Fauvarque, J. F.; Chesneau, M. Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors. J. Power Sources 2001, 101, 109–116.

    CAS  Article  Google Scholar 

  121. [121]

    Kacan, E. Optimum BET surface areas for activated carbon produced from textile sewage sludges and its application as dye removal. J. Environ. Manage. 2016, 166, 116–123.

    CAS  Article  Google Scholar 

  122. [122]

    Zhu, W. Z.; Miser, D. E.; Chan, W. G.; Hajaligol, M. R. Characterization of multiwalled carbon nanotubes prepared by carbon arc cathode deposit. Mater. Chem. Phys. 2003, 82, 638–647.

    CAS  Article  Google Scholar 

  123. [123]

    Rashidi, A. M.; Akbarnejad, M. M.; Khodadadi, A. A.; Mortazavi, Y.; Ahmadpourd, A. Single-wall carbon nanotubes synthesized using organic additives to Co-Mo catalysts supported on nanoporous MgO. Nanotechnology 2007, 18, 315605.

    Article  CAS  Google Scholar 

  124. [124]

    Zhao, B.; Liu, P.; Jiang, Y.; Pan, D. Y.; Tao, H. H.; Song, J. S.; Fang, T.; Xu, W. W. Supercapacitor performances of thermally reduced graphene oxide. J. Power Sources 2012, 198, 423–427.

    CAS  Article  Google Scholar 

  125. [125]

    Park, S.; An, J.; Potts, J. R.; Velamakanni, A.; Murali, S.; Ruoff, R. S. Hydrazine-reduction of graphite- and graphene oxide. Carbon 2011, 49, 3019–3023.

    CAS  Article  Google Scholar 

  126. [126]

    Upare, P. P.; Yoon, J. W.; Kim, M. Y.; Kang, H. Y.; Hwang, D. W.; Hwang, Y. K.; Kung, H. H.; Chang, J. S. Chemical conversion of biomass-derived hexose sugars to levulinic acid over sulfonic acid-functionalized graphene oxide catalysts. Green Chem. 2013, 15, 2935–2943.

    CAS  Article  Google Scholar 

  127. [127]

    Xu, B.; Yue, S. F.; Sui, Z. Y.; Zhang, X. T.; Hou, S. S.; Cao, G. P.; Yang, Y. S. What is the choice for supercapacitors: Graphene or graphene oxide. Energy Environ. Sci. 2011, 4, 2826–2830.

    CAS  Article  Google Scholar 

  128. [128]

    Chuang, C. H.; Kung, C. W. Metal-organic frameworks toward electrochemical sensors: Challenges and opportunities. Electroanalysis 2020, 32, 1885–1895.

    CAS  Article  Google Scholar 

  129. [129]

    Zhang, Z. M.; Huang, Y. C.; Ding, W. W.; Li, G. K. Multilayer interparticle linking hybrid MOF-199 for noninvasive enrichment and analysis of plant hormone ethylene. Anal. Chem. 2014, 86, 3533–3540.

    CAS  Article  Google Scholar 

  130. [130]

    Zhang, Y. W.; Li, Z.; Zhao, Q.; Zhou, Y. L.; Liu, H. W.; Zhang, X. X. A facilely synthesized amino-functionalized metal-organic framework for highly specific and efficient enrichment of glycopeptides. Chem. Commun. 2014, 50, 11504–11506.

    CAS  Article  Google Scholar 

  131. [131]

    Chang, N.; Gu, Z. Y.; Yan, X. P. Zeolitic imidazolate framework-8 nanocrystal coated capillary for molecular sieving of branched alkanes from linear alkanes along with high-resolution chromatographic separation of linear alkanes. J. Am. Chem. Soc. 2010, 132, 13645–13647.

    CAS  Article  Google Scholar 

  132. [132]

    Lin, H. Z.; Chen, H. M.; Shao, X.; Deng, C. H. A capillary column packed with a zirconium(IV)-based organic framework for enrichment of endogenous phosphopeptides. Microchim. Acta 2018, 185, 562.

    Article  CAS  Google Scholar 

  133. [133]

    Zhao, M. T.; Yuan, K.; Wang, Y.; Li, G D.; Guo, J.; Gu, L.; Hu, W. P.; Zhao, H. J.; Tang, Z. Y. Metal-organic frameworks as selectivity regulators for hydrogenation reactions. Nature 2016, 539, 76–80.

    CAS  Article  Google Scholar 

  134. [134]

    An, B.; Zhang, J. Z.; Cheng, K.; Ji, P. F.; Wang, C.; Lin, W. B. Confinement of ultrasmall Cu/ZnOx nanoparticles in metal-organic frameworks for selective methanol synthesis from catalytic hydrogenation of CO2. J. Am. Chem. Soc. 2017, 139, 3834–3840.

    CAS  Article  Google Scholar 

  135. [135]

    Aijaz, A.; Karkamkar, A.; Choi, Y. J.; Tsumori, N.; RÆnnebro, E.; Autrey, T.; Shioyama, H.; Xu, Q. Immobilizing highly catalytically active Pt nanoparticles inside the pores of metal-organic framework: A double solvents approach. J. Am. Chem. Soc. 2012, 134, 13926–13929.

    CAS  Article  Google Scholar 

  136. [136]

    Vakili, R.; Gibson, E. K.; Chansai, S.; Xu, S. J.; Al-Janabi, N.; Wells, P. P.; Hardacre, C.; Walton, A.; Fan, X. L. Understanding the CO oxidation on Pt nanoparticles supported on MOFs by Operando XPS. ChemCatChem 2018, 10, 4238–4242.

    CAS  Article  Google Scholar 

  137. [137]

    Noh, T. H.; Lee, H.; Jang, J.; Jung, O. S. Organization and energy transfer of fused aromatic hydrocarbon guests within anion-confining nanochannel MOFs. Angew. Chem., Int. Ed. 2015, 54, 9284–9288.

    CAS  Article  Google Scholar 

  138. [138]

    Gong, M.; Yang, J.; Li, Y S.; Zhuang, Q. X.; Gu, J. L. Substitutiontype luminescent MOF sensor with built-in capturer for selective cholesterol detection in blood serum. J. Mater. Chem. C 2019, 7, 12674–12681.

    CAS  Article  Google Scholar 

  139. [139]

    Zhang, X.; Xu, Y. D.; Ye, B. X. An efficient electrochemical glucose sensor based on porous nickel-based metal organic framework/carbon nanotubes composite (Ni-MOF/CNTs). J. Alloys Compd. 2018, 767, 651–656.

    CAS  Article  Google Scholar 

  140. [140]

    Zhang, Y. M.; Yuan, S.; Day, G.; Wang, X.; Yang, X. Y.; Zhou, H. C. Luminescent sensors based on metal-organic frameworks. Coord. Chem. Rev. 2018, 354, 28–45.

    CAS  Article  Google Scholar 

  141. [141]

    Dolgopolova, E. A.; Rice, A. M.; Martin, C. R.; Shustova, N. B. Photochemistry and photophysics of MOFs: Steps towards MOF-based sensing enhancements. Chem. Soc. Rev. 2018, 47, 4710–4728.

    CAS  Article  Google Scholar 

  142. [142]

    He, H. J.; Cui, Y. J.; Li, B.; Wang, B.; Jin, C. H.; Yu, J. C.; Yao, L. J.; Yang, Y.; Chen, B. L.; Qian, G. D. Confinement of perovskite-QDs within a single MOF crystal for significantly enhanced multiphoton excited luminescence. Adv. Mater. 2019, 31, e1806897.

    Article  CAS  Google Scholar 

  143. [143]

    He, H. J.; Ma, E.; Cui, Y. J.; Yu, J. C.; Yang, Y.; Song, T.; Wu, C. D.; Chen, X. Y.; Chen, B. L.; Qian, G. D. Polarized three-photon-pumped laser in a single MOF microcrystal. Nat. Commun. 2016, 7, 11087.

    CAS  Article  Google Scholar 

  144. [144]

    Dong, J.; Zhao, D.; Lu, Y.; Sun, W. Y. Photoluminescent metal-organic frameworks and their application for sensing biomolecules. J. Mater. Chem. A 2019, 7, 22744–22767.

    CAS  Article  Google Scholar 

  145. [145]

    Allendorf, M. D.; Bauer, C. A.; Bhakta, R. K.; Houk, R. J. T. Luminescent metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1330–1352.

    CAS  Article  Google Scholar 

  146. [146]

    Heine, J.; Müller-Buschbaum, K. Engineering metal-based luminescence in coordination polymers and metal-organic frameworks. Chem. Soc. Rev. 2013, 42, 9232–9242.

    CAS  Article  Google Scholar 

  147. [147]

    Hu, Z. C.; Deibert, B. J.; Li, J. Luminescent metal-organic frameworks for chemical sensing and explosive detection. Chem. Soc. Rev. 2014, 43, 5815–5840.

    CAS  Article  Google Scholar 

  148. [148]

    Pan, M.; Liao, W. M.; Yin, S. Y.; Sun, S. S.; Su, C. Y. Single-phase white-light-emitting and photoluminescent color-tuning coordination assemblies. Chem. Rev. 2018, 118, 8889–8935.

    CAS  Article  Google Scholar 

  149. [149]

    Wibowo, A. C.; Vaughn, S. A.; Smith, M. D.; Loye, H. C. Z. Novel bismuth and lead coordination polymers synthesized with pyridine-2, 5-dicarboxylates: Two single component “white” light emitting phosphors. Inorg. Chem. 2010, 49, 11001–11008.

    CAS  Article  Google Scholar 

  150. [150]

    Chen, J.; Zhang, Q.; Liu, Z. F.; Wang, S. H.; Xiao, Y.; Li, R.; Xu, J. G.; Zhao, Y. P.; Zheng, F. K.; Guo, G. C. Color tunable and near white-light emission of two solvent-induced 2D lead(II) coordination networks based on a rigid ligand 1-tetrazole-4-imidazole-benzene. Dalton Trans. 2015, 44, 10089–10096.

    CAS  Article  Google Scholar 

  151. [151]

    Moudam, O.; Kaeser, A.; Delavaux-Nicot, B.; Duhayon, C.; Holler, M.; Accorsi, G.; Armaroli, N.; Séguy, I.; Navarro, J.; Destruel, P. et al. Electrophosphorescent homo- and heteroleptic copper(I) complexes prepared from various bis-phosphine ligands. Chem. Commun. (Camb.) 2007, 3077–3079.

  152. [152]

    Zhang, H. B.; Lin, P.; Shan, X. C.; Du, F. L.; Li, Q. P.; Du, S. W. An inorganic-organic composite framework with an unprecedented 3D heterometallic inorganic connectivity and white-light emission. Chem. Commun. 2013, 49, 2231–2233.

    CAS  Article  Google Scholar 

  153. [153]

    Tang, Y. Y.; Ding, C. X.; Ng, S. W.; Xie, Y. S. Syntheses, structures and photoluminescence of Zn(II), Ag(I), Cu(I) and Co(II) coordination polymers of a tetrapyridyl ligand. RSC Adv. 2013, 3, 18134–18141.

    CAS  Article  Google Scholar 

  154. [154]

    Chen, W.; Wang, J. Y.; Chen, C.; Yue, Q.; Yuan, H. M.; Chen, J. S.; Wang, S. N. Photoluminescent metal-organic polymer constructed from trimetallic clusters and mixed carboxylates. Inorg. Chem. 2003, 42, 944–946.

    CAS  Article  Google Scholar 

  155. [155]

    Dai, J. C.; Wu, X. T.; Fu, Z. Y.; Cui, C. P.; Hu, S. M.; Du, W. X.; Wu, L. M.; Zhang, H. H.; Sun, R. Q. Synthesis, structure, and fluorescence of the novel cadmium(II)-trimesate coordination polymers with different coordination architectures. Inorg. Chem. 2002, 41, 1391–1396.

    CAS  Article  Google Scholar 

  156. [156]

    Fumanal, M.; Corminboeuf, C.; Smit, B.; Tavernelli, I. Optical absorption properties of metal-organic frameworks: Solid state versus molecular perspective. Phy. Chem. Chem. Phys. 2020, 22, 19512–19521.

    CAS  Article  Google Scholar 

  157. [157]

    Mathieu, E.; Sipos, A.; Demeyere, E.; Phipps, D.; Sakaveli, D.; Borbas, K. E. Lanthanide-based tools for the investigation of cellular environments. Chem. Commun. 2018, 54, 10021–10035.

    CAS  Article  Google Scholar 

  158. [158]

    Bünzli, J. C. G. Benefiting from the unique properties of lanthanide ions. Acc. Chem. Res. 2006, 39, 53–61.

    Article  CAS  Google Scholar 

  159. [159]

    Yang, X. G.; Lin, X. Q.; Zhao, Y. B.; Zhao, Y. S.; Yan, D. P. Lanthanide metal-organic framework microrods: Colored optical waveguides and chiral polarized emission. Angew. Chem., Int. Ed. 2017, 56, 7853–7857.

    CAS  Article  Google Scholar 

  160. [160]

    Zhao, S.-N.; Wang, G. B.; Poelman, D.; Van Der Voort, P. Luminescent lanthanide MOFs: A unique platform for chemical sensing. Materials 2018, 11, 572.

    Article  CAS  Google Scholar 

  161. [161]

    Rocha, J.; Carlos, L. D.; Paz, F. A. A.; Ananias, D. Luminescent multifunctional lanthanides-based metal-organic frameworks. Chem. Soc. Rev. 2011, 40, 926–940.

    CAS  Article  Google Scholar 

  162. [162]

    Li, X. J.; Lu, S.; Tu, D. T.; Zheng, W.; Chen, X. Y. Luminescent lanthanide metal-organic framework nanoprobes: From fundamentals to bioapplications. Nanoscale 2020, 12, 15021–15035.

    CAS  Article  Google Scholar 

  163. [163]

    Xu, H.; Cao, C. S.; Kang, X. M.; Zhao, B. Lanthanide-based metal-organic frameworks as luminescent probes. Dalton Trans. 2016, 45, 18003–18017.

    CAS  Article  Google Scholar 

  164. [164]

    Wu, S. Y.; Min, H.; Shi, W.; Cheng, P. Multicenter metal-organic framework-based ratiometric fluorescent sensors. Adv. Mater. 2020, 32, 1805871.

    CAS  Article  Google Scholar 

  165. [165]

    Yin, H.-Q.; Wang, X.-Y.; Yin, X.-B. Rotation restricted emission and antenna effect in single metal-organic frameworks. J. Am. Chem. Soc. 2019, 141, 15166–15173.

    CAS  Article  Google Scholar 

  166. [166]

    Cui, Y. J.; Yue, Y. F.; Qian, G. D.; Chen, B. L. Luminescent functional metal-organic frameworks. Chem. Rev. 2012, 112, 1126–1162.

    CAS  Article  Google Scholar 

  167. [167]

    Wu, S. Y.; Lin, Y. N.; Liu, J. W.; Shi, W.; Yang, G. M.; Cheng, P. Rapid detection of the biomarkers for carcinoid tumors by a water stable luminescent lanthanide metal-organic framework sensor. Adv. Funct. Mater. 2018, 28, 1707169.

    Article  CAS  Google Scholar 

  168. [168]

    Lv, X. L.; Xie, L. H.; Wang, B.; Zhao, M. J.; Cui, Y. J.; Li, J. R. Flexible metal-organic frameworks for the wavelength-based luminescence sensing of aqueous pH. J. Mater. Chem. C 2018, 6, 10628–10639.

    CAS  Article  Google Scholar 

  169. [169]

    Guo, Z. Y.; Song, X. Z.; Lei, H. P.; Wang, H. L.; Su, S. Q.; Xu, H.; Qian, G. D.; Zhang, H. J.; Chen, B. L. A ketone functionalized luminescent terbium metal-organic framework for sensing of small molecules. Chem. Commun. 2015, 51, 376–379.

    CAS  Article  Google Scholar 

  170. [170]

    Lian, X.; Yan, B. Diagnosis of penicillin allergy: A MOFs-based composite hydrogel for detecting ß-lactamase in serum. Chem. Commun. 2019, 55, 241–244.

    CAS  Article  Google Scholar 

  171. [171]

    Li, X. J.; Zhou, S. Y.; Lu, S.; Tu, D. T.; Zheng, W.; Liu, Y.; Li, R. F.; Chen, X. Y. Lanthanide metal-organic framework nanoprobes for the in vitro detection of cardiac disease markers. ACS Appl. Mater. Interfaces 2019, 11, 43989–43995.

    CAS  Article  Google Scholar 

  172. [172]

    Zhao, H. X.; Shu, G.; Zhu, J. Y.; Fu, Y. Y.; Gu, Z.; Yang, D. Y. Persistent luminescent metal-organic frameworks with long-lasting near infrared emission for tumor site activated imaging and drug delivery. Biomaterials 2019, 217, 119332.

    CAS  Article  Google Scholar 

  173. [173]

    Yang, X. G.; Lu, X. M.; Zhai, Z. M.; Zhao, Y.; Liu, X. Y.; Ma, L. F.; Zang, S. Q. Facile synthesis of a micro-scale MOF host-guest with long-lasting phosphorescence and enhanced optoelectronic performance. Chem. Commun. 2019, 55, 11099–11102.

    CAS  Article  Google Scholar 

  174. [174]

    Li, S. M.; Zheng, X. J.; Yuan, D. Q.; Ablet, A.; Jin, L. P. In situ formed white-light-emitting lanthanide-zinc-organic frameworks. Inorg. Chem. 2012, 51, 1201–1203.

    CAS  Article  Google Scholar 

  175. [175]

    Liu, Y.; Pan, M.; Yang, Q. Y.; Fu, L.; Li, K.; Wei, S. C.; Su, C. Y. Dual-emission from a single-phase eu-ag metal-organic framework: An alternative way to get white-light phosphor. Chem. Mater. 2012, 24, 1954–1960.

    CAS  Article  Google Scholar 

  176. [176]

    White, K. A.; Chengelis, D. A.; Gogick, K. A.; Stehman, J.; Rosi, N. L.; Petoud, S. Near-infrared luminescent lanthanide MOF barcodes. J. Am. Chem. Soc. 2009, 131, 18069–18071.

    CAS  Article  Google Scholar 

  177. [177]

    Li, L. N.; Zhang, S. Q.; Xu, L. J.; Chen, Z. N.; Luo, J. H. Highly sensitized near-infrared luminescence in Ir-Ln heteronuclear coordination polymers via light-harvesting antenna of Ir(III) unit. J. Mater. Chem. C 2014, 2, 1698–1703.

    CAS  Article  Google Scholar 

  178. [178]

    Rocío-Bautista, P.; Taima-Mancera, I.; Pasán, J.; Pino, V Metal-organic frameworks in green analytical chemistry. Separations 2019, 6, 33.

    Article  CAS  Google Scholar 

  179. [179]

    Xu, H.; Liu, X. F.; Cao, C. S.; Zhao, B.; Cheng, P.; He, L. N. A porous metal-organic framework assembled by [Cu30] nanocages: Serving as recyclable catalysts for CO2 fixation with aziridines. Adv. Sci. 2016, 3, 1600048.

    Article  CAS  Google Scholar 

  180. [180]

    Gao, W. Y.; Wojtas, L.; Ma, S. Q. A porous metal-metalloporphyrin framework featuring high-density active sites for chemical fixation of CO2 under ambient conditions. Chem. Commun. 2014, 50, 5316–5318.

    CAS  Article  Google Scholar 

  181. [181]

    Xu, H.; Cao, C. S.; Hu, H. S.; Wang, S. B.; Liu, J. C.; Cheng, P.; Kaltsoyannis, N.; Li, J.; Zhao, B. High uptake of ReO4 and CO2 conversion by a radiation-resistant thorium-nickle [Th48Ni6] nanocage-based metal-organic framework. Angew. Chem., Int. Ed. 2019, 58, 6022–6027.

    CAS  Article  Google Scholar 

  182. [182]

    Kornienko, N.; Zhao, Y. B.; Kley, C. S.; Zhu, C. H.; Kim, D.; Lin, S.; Chang, C. J.; Yaghi, O. M.; Yang, P. D. Metal-organic frameworks for electrocatalytic reduction of carbon dioxide. J. Am. Chem. Soc. 2015, 137, 14129–14135.

    CAS  Article  Google Scholar 

  183. [183]

    Ding, M. L.; Flaig, R. W.; Jiang, H. L.; Yaghi, O. M. Carbon capture and conversion using metal-organic frameworks and MOF-based materials. Chem. Soc. Rev. 2019, 48, 2783–2828.

    CAS  Article  Google Scholar 

  184. [184]

    Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444.

    Article  CAS  Google Scholar 

  185. [185]

    Murray, L. J.; Dincă, M.; Long, J. R. Hydrogen storage in metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1294–1314.

    CAS  Article  Google Scholar 

  186. [186]

    Sun, W.; Wang, J. Z.; Zhang, G. N.; Liu, Z. L. A luminescent terbium MOF containing uncoordinated carboxyl groups exhibits highly selective sensing for Fe3+ ions. RSC Adv. 2014, 4, 55252–55255.

    CAS  Article  Google Scholar 

  187. [187]

    Devic, T.; Serre, C. High valence 3p and transition metal based MOFs. Chem. Soc. Rev. 2014, 43, 6097–6115.

    CAS  Article  Google Scholar 

  188. [188]

    Schoenecker, P. M.; Carson, C. G.; Jasuja, H.; Flemming, C. J. J.; Walton, K. S. Effect of water adsorption on retention of structure and surface area of metal-organic frameworks. Ind. Eng. Chem. Res. 2012, 51, 6513–6519.

    CAS  Article  Google Scholar 

  189. [189]

    Ming, Y.; Purewal, J.; Yang, J.; Xu, C. C.; Soltis, R.; Warner, J.; Veenstra, M.; Gaab, M.; Müller, U.; Siegel, D. J. Kinetic stability of MOF-5 in humid environments: Impact of powder densification, humidity level, and exposure time. Langmuir 2015, 31, 4988–4995.

    CAS  Article  Google Scholar 

  190. [190]

    Todaro, M.; Buscarino, G.; Sciortino, L.; Alessi, A.; Messina, F.; Taddei, M.; Ranocchiari, M.; Cannas, M.; Gelardi, F. M. Decomposition process of carboxylate MOF HKUST-1 unveiled at the atomic scale level. J. Phys. Chem. C 2016, 120, 12879–12889.

    CAS  Article  Google Scholar 

  191. [191]

    Al-Janabi, N.; Martis, V.; Servi, N.; Siperstein, F. R.; Fan, X. L. Cyclic adsorption of water vapour on CuBTC MOF: Sustaining the hydrothermal stability under non-equilibrium conditions. Chem. Eng. J. 2018, 333, 594–602.

    CAS  Article  Google Scholar 

  192. [192]

    Miles, D. O.; Jiang, D. M; Burrows, A. D.; Halls, J. E.; Marken, F. Conformal transformation of [Co(bdc)(DMF)] (Co-MOF-71, bdc = 1,4-benzenedicarboxylate, DMF = N,N-dimethylformamide) into porous electrochemically active cobalt hydroxide. Electrochem. Commun. 2013, 27, 9–13.

    CAS  Article  Google Scholar 

  193. [193]

    Qu, C.; Jiao, Y.; Zhao, B. T.; Chen, D. C.; Zou, R. Q.; Walton, K. S.; Liu, M. L. Nickel-based pillared MOFs for high-performance supercapacitors: Design, synthesis and stability study. Nano Energy 2016, 26, 66–73.

    CAS  Article  Google Scholar 

  194. [194]

    Li, Y. Z.; Huangfu, C.; Du, H. J.; Liu, W. B.; Li, Y. W.; Ye, J. S. Electrochemical behavior of metal-organic framework MIL-101 modified carbon paste electrode: An excellent candidate for electroanalysis. J. Electroanal. Chem. 2013, 709, 65–69.

    CAS  Article  Google Scholar 

  195. [195]

    Fernandes, D. M.; Barbosa, A. D. S.; Pires, J.; Balula, S. S.; Cunha-Silva, L.; Freire, C. Novel composite material polyoxovanadate@MIL-101(Cr): A highly efficient electrocatalyst for ascorbic acid oxidation. ACS Appl. Mater. Interfaces 2013, 5, 13382–13390.

    CAS  Article  Google Scholar 

  196. [196]

    Yuan, S.; Qin, J. S.; Lollar, C. T.; Zhou, H. C. Stable metal-organic frameworks with group 4 metals: Current status and trends. ACS Cent. Sci. 2018, 4, 440–450.

    CAS  Article  Google Scholar 

  197. [197]

    Howarth, A. J.; Liu, Y. Y.; Li, P.; Li, Z. Y.; Wang, T. C.; Hupp, J. T.; Farha, O. K. Chemical, thermal and mechanical stabilities of metal-organic frameworks. Nat. Rev. Mater. 2016, 1, 15018.

    CAS  Article  Google Scholar 

  198. [198]

    Wang, C. H.; Liu, X. L.; Demir, N. K.; Chen, J. P.; Li, K. Applications of water stable metal-organic frameworks. Chem. Soc. Rev. 2016, 45, 5107–5134.

    CAS  Article  Google Scholar 

  199. [199]

    Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K. P. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc. 2008, 130, 13850–13851.

    Article  CAS  Google Scholar 

  200. [200]

    Kandiah, M.; Nilsen, M. H.; Usseglio, S.; Jakobsen, S.; Olsbye, U.; Tilset, M.; Larabi, C.; Quadrelli, E. A.; Bonino, F.; Lillerud, K. P. Synthesis and stability of tagged UiO-66 Zr-MOFs. Chem. Mater. 2010, 22, 6632–6640.

    CAS  Article  Google Scholar 

  201. [201]

    Rubio-Giménez, V.; Tatay, S.; Martí-Gastaldo, C. Electrical conductivity and magnetic bistability in metal-organic frameworks and coordination polymers: charge transport and spin crossover at the nanoscale. Chem. Soc. Rev. 2020, 49, 5601–5638.

    Article  Google Scholar 

  202. [202]

    D’Alessandro, D. M.; Kanga, J. R. R.; Caddy, J. S. Towards conducting metal-organic frameworks. Aust. J. Chem. 2011, 64, 718–722.

    Article  CAS  Google Scholar 

  203. [203]

    Sun, L.; Campbell, M. G.; Dincă, M. Electrically conductive porous metal-organic frameworks. Angew. Chem., Int. Ed. 2016, 55, 3566–3579.

    CAS  Article  Google Scholar 

  204. [204]

    Medina, D. D.; Mähringer, A.; Bein, T. Electroactive metalorganic frameworks. Isr. J. Chem. 2018, 58, 1089–1101.

    CAS  Article  Google Scholar 

  205. [205]

    Kung, C. W.; Han, P. C.; Chuang, C. H.; Wu, K. C. W. Electronically conductive metal-organic framework-based materials. APL Mater. 2019, 7, 110902.

    Article  CAS  Google Scholar 

  206. [206]

    Deng, X. L.; Hu, J. Y.; Luo, J. Y.; Liao, W. M.; He, J. Conductive metal-organic frameworks: Mechanisms, design strategies and recent advances. Top. Curr. Chem. 2020, 378, 27.

    CAS  Article  Google Scholar 

  207. [207]

    Xie, L. S.; Skorupskii, G.; Dincă, M. Electrically conductive metal-organic frameworks. Chem. Rev. 2020, 120, 8536–8580.

    CAS  Article  Google Scholar 

  208. [208]

    Souto, M.; Strutyński, K.; Melle-Franco, M.; Rocha, J. Electroactive organic building blocks for the chemical design of functional porous frameworks (MOFs and COFs) in electronics. Chem.—Eur. J. 2020, 26, 10912–10935.

    CAS  Google Scholar 

  209. [209]

    Leong, C. F.; Usov, P. M.; D’Alessandro, D. M. Intrinsically conducting metal-organic frameworks. MRS Bulletin 2016, 41, 858–864.

    Article  Google Scholar 

  210. [210]

    Han, S. B.; Warren, S. C.; Yoon, S. M.; Malliakas, C. D.; Hou, X. L.; Wei, Y. H.; Kanatzidis, M. G.; Grzybowski, B. A. Tunneling electrical connection to the interior of metal-organic frameworks. J. Am. Chem. Soc. 2015, 137, 8169–8175.

    CAS  Article  Google Scholar 

  211. [211]

    Kung, C. W.; Platero-Prats, A. E.; Drout, R. J.; Kang, J.; Wang, T. C.; Audu, C. O.; Hersam, M. C.; Chapman, K. W.; Farha, O. K.; Hupp, J. T. Inorganic “conductive glass” approach to rendering mesoporous metal-organic frameworks electronically conductive and chemically responsive. ACS Appl. Mater. Interfaces 2018, 10, 30532–30540.

    CAS  Article  Google Scholar 

  212. [212]

    Dhara, B.; Nagarkar, S. S.; Kumar, J.; Kumar, V.; Jha, P. K.; Ghosh, S. K.; Nair, S.; Ballav, N. Increase in electrical conductivity of MOF to billion-fold upon filling the nanochannels with conducting polymer. J. Phys. Chem. Lett. 2016, 7, 2945–2950.

    CAS  Article  Google Scholar 

  213. [213]

    Zeng, M. H.; Wang, Q. X.; Tan, Y. X.; Hu, S.; Zhao, H. X.; Long, L. S.; Kurmoo, M. Rigid pillars and double walls in a porous metal-organic framework: single-crystal to single-crystal, controlled uptake and release of iodine and electrical conductivity. J. Am. Chem. Soc. 2010, 132, 2561–2563.

    CAS  Article  Google Scholar 

  214. [214]

    Pan, L.; Liu, G.; Shi, W. X.; Shang, J.; Leow, W. R.; Liu, Y. Q.; Jiang, Y.; Li, S. Z.; Chen, X. D.; Li, R. W. Mechano-regulated metal-organic framework nanofilm for ultrasensitive and anti-jamming strain sensing. Nat. Commun. 2018, 9, 3813.

    Article  CAS  Google Scholar 

  215. [215]

    Lee, D. Y.; Kim, E. K.; Shrestha, N. K.; Boukhvalov, D. W.; Lee, J. K.; Han, S. H. Charge transfer-induced molecular hole doping into thin film of metal-organic frameworks. ACS Appl. Mater. Interfaces 2015, 7, 18501–18507.

    CAS  Article  Google Scholar 

  216. [216]

    Talin, A. A.; Centrone, A.; Ford, A. C.; Foster, M. E.; Stavila, V.; Haney, P.; Kinney, R. A.; Szalai, V.; El Gabaly, F.; Yoon, H. P. et al. Tunable electrical conductivity in metal-organic framework thin-film devices. Science 2014, 343, 66–69.

    CAS  Article  Google Scholar 

  217. [217]

    Hosseini, H.; Ahmar, H.; Dehghani, A.; Bagheri, A.; Tadjarodi, A.; Fakhari, A. R. A novel electrochemical sensor based on metal-organic framework for electro-catalytic oxidation of L-cysteine. Biosens. Bioelectron. 2013, 42, 426–429.

    CAS  Article  Google Scholar 

  218. [218]

    Rovira, C. Bis(ethylenethio)tetrathiafulvalene (BET-TTF) and related dissymmetrical electron donors: From the molecule to functional molecular materials and devices (OFETs). Chem. Rev. 2004, 104, 5289–5318.

    CAS  Article  Google Scholar 

  219. [219]

    Iyoda, M.; Hasegawa, M.; Miyake, Y. Bi-TTF, Bis-TTF, and related TTF oligomers. Chem. Rev. 2004, 104, 5085–5114.

    CAS  Article  Google Scholar 

  220. [220]

    Fràre, P.; Skabara, P. J. Salts of extended tetrathiafulvalene analogues: Relationships between molecular structure, electrochemical properties and solid state organisation. Chem. Soc. Rev. 2005, 34, 69–98.

    Article  Google Scholar 

  221. [221]

    Panda, T.; Banerjee, R. High charge carrier mobility in two dimensional indium (III) isophthalic acid based frameworks. Proc. Natl. Acad. Sci. India, Sect. A: Phys. Sci. 2014, 84, 331–336.

    CAS  Article  Google Scholar 

  222. [222]

    Park, S. S.; Hontz, E. R.; Sun, L.; Hendon, C. H.; Walsh, A.; Van Voorhis, T.; Dincă, M. Cation-dependent intrinsic electrical conductivity in isostructural tetrathiafulvalene-based microporous metal-organic frameworks. J. Am. Chem. Soc. 2015, 137, 1774–1777.

    CAS  Article  Google Scholar 

  223. [223]

    Zhou, Y.; Hu, Q.; Yu, F.; Ran, G. Y.; Wang, H. Y.; Shepherd, N. D.; D’Alessandro, D. M.; Kurmoo, M.; Zuo, J. L. A metal-organic framework based on a nickel bis (dithiolene) connector: Synthesis, crystal structure, and application as an electrochemical glucose sensor. J. Am. Chem. Soc. 2020, 142, 20313–20317.

    CAS  Article  Google Scholar 

  224. [224]

    Gándara, F.; Uribe-Romo, F. J.; Britt, D. K.; Furukawa, H.; Lei, L.; Cheng, R.; Duan, X. F.; O’Keeffe, M.; Yaghi, O. M. Porous, conductive metal-triazolates and their structural elucidation by the charge-flipping method. Chem.—Eur. J. 2012, 18, 10595–10601.

    Article  CAS  Google Scholar 

  225. [225]

    Park, J. G.; Aubrey, M. L.; Oktawiec, J.; Chakarawet, K.; Darago, L. E.; Grandjean, F.; Long, G. J.; Long, J. R. Charge delocalization and bulk electronic conductivity in the mixed-valence metal-organic framework fe(1,2,3-triazolate)2(BF4)x. J. Am. Chem. Soc. 2018, 140, 8526–8534.

    CAS  Article  Google Scholar 

  226. [226]

    Xie, L. S.; Sun, L.; Wan, R. M.; Park, S. S.; DeGayner, J. A.; Hendon, C. H.; Dincă, M. Tunable mixed-valence doping toward record electrical conductivity in a three-dimensional metal-organic framework. J. Am. Chem. Soc. 2018, 140, 7411–7414.

    CAS  Article  Google Scholar 

  227. [227]

    Yan, Z.; Li, M.; Gao, H. L.; Huang, X. C.; Li, D. High-spin versus spin-crossover versus low-spin: Geometry intervention in cooperativity in a 3D polymorphic iron(II)-tetrazole MOFs system. Chem. Commun. 2012, 48, 3960–3962.

    CAS  Article  Google Scholar 

  228. [228]

    Wang, X.; Qin, T.; Bao, S. S.; Zhang, Y. C.; Shen, X.; Zheng, L. M.; Zhu, D. R. Facile synthesis of a water stable 3D Eu-MOF showing high proton conductivity and its application as a sensitive luminescent sensor for Cu2+ ions. J. Mater. Chem. A 2016, 4, 16484–16489.

    CAS  Article  Google Scholar 

  229. [229]

    Li, C.; Wang, K. B.; Li, J. Z.; Zhang, Q. C. Recent progress in stimulus-responsive two-dimensional metal-organic frameworks. ACS Mater. Lett. 2020, 2, 779–797.

    CAS  Article  Google Scholar 

  230. [230]

    Jin, Z. W.; Yan, J.; Huang, X.; Xu, W.; Yang, S. Y.; Zhu, D. B.; Wang, J. Z. Solution-processed transparent coordination polymer electrode for photovoltaic solar cells. Nano Energy 2017, 40, 376–381.

    CAS  Article  Google Scholar 

  231. [231]

    Jia, H. X.; Yao, Y. C.; Zhao, J. T.; Gao, Y. Y.; Luo, Z. L.; Du, P. W. A novel two-dimensional nickel phthalocyanine-based metal-organic framework for highly efficient water oxidation catalysis. J. Mater. Chem. A 2018, 6, 1188–1195.

    CAS  Article  Google Scholar 

  232. [232]

    Yang, C. Q.; Dong, R. H.; Wang, M.; Petkov, P. S.; Zhang, Z. T.; Wang, M. C.; Han, P.; Ballabio, M.; Bräuninger, S. A.; Liao, Z. Q. et al. A semiconducting layered metal-organic framework magnet. Nat. Commun. 2019, 10, 3260.

    Article  CAS  Google Scholar 

  233. [233]

    Wang, F. X.; Liu, Z. C.; Yang, C. Q.; Zhong, H. X.; Nam, G.; Zhang, P. P.; Dong, R. H.; Wu, Y. P.; Cho, J.; Zhang, J. et al. Fully conjugated phthalocyanine copper metal-organic frameworks for sodium-iodine batteries with long-time-cycling durability. Adv. Mater. 2020, 32, 1905361.

    CAS  Article  Google Scholar 

  234. [234]

    Meng, Z.; Aykanat, A.; Mirica, K. A. Welding metallophthalocyanin es into bimetallic molecular meshes for ultrasensitive, low-power chemiresistive detection of gases. J. Am. Chem. Soc. 2019, 141, 2046–2053.

    CAS  Article  Google Scholar 

  235. [235]

    Zhong, H. X.; Ly, K. H.; Wang, M. C.; Krupskaya, Y.; Han, X. C.; Zhang, J. C.; Zhang, J.; Kataev, V.; Büchner, B.; Weidinger, I. M. et al. A phthalocyanine-based layered two-dimensional conjugated metal-organic framework as a highly efficient electrocatalyst for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2019, 58, 10677–10682.

    CAS  Article  Google Scholar 

  236. [236]

    Ko, M.; Mendecki, L.; Eagleton, A. M.; Durbin, C. G.; Stolz, R. M.; Meng, Z.; Mirica, K. A. Employing conductive metal-organic frameworks for voltammetric detection of neurochemicals. J. Am. Chem. Soc. 2020, 142, 11717–11733.

    CAS  Article  Google Scholar 

  237. [237]

    Li, S. M.; Tan, L. F.; Meng, X. W. Nanoscale metal-organic frameworks: Synthesis, biocompatibility, imaging applications, and thermal and dynamic therapy of tumors. Adv. Funct. Mater. 2020, 30, 1908924.

    CAS  Article  Google Scholar 

  238. [238]

    Sajid, M. Toxicity of nanoscale metal organic frameworks: A perspective. Environ. Sci. Pollut. Res. 2016, 23, 14805–14807.

    Article  Google Scholar 

  239. [239]

    Kumar, P.; Anand, B.; Tsang, Y. F.; Kim, K. H.; Khullar, S.; Wang, B. Regeneration, degradation, and toxicity effect of MOFs: Opportunities and challenges. Environ. Res. 2019, 176, 108488.

    CAS  Article  Google Scholar 

  240. [240]

    Suresh, K.; Matzger, A. J. Enhanced drug delivery by dissolution of amorphous drug encapsulated in a water unstable metal-organic framework (MOF). Angew. Chem., Int. Ed. 2019, 58, 16790–16794.

    CAS  Article  Google Scholar 

  241. [241]

    Sharanyakanth, P. S.; Mahendran, R. Synthesis of metal-organic frameworks (MOFs) and its application in food packaging: A critical review. Trends Food Sci. Technol. 2020, 104, 102–116.

    CAS  Article  Google Scholar 

  242. [242]

    Grape, E. S.; Flores, J. G.; Hidalgo, T.; Martínez-Ahumada, E.; Gutiérrez-Alejandre, A.; Hautier, A.; Williams, D. R.; O’Keeffe, M.; Öhrström, L.; Willhammar, T. et al. A robust and biocompatible bismuth ellagate MOF synthesized under green ambient conditions. J. Am. Chem. Soc. 2020, 142, 16795–16804.

    CAS  Article  Google Scholar 

  243. [243]

    Anderson, S. L.; Stylianou, K. C. Biologically derived metal organic frameworks. Coord. Chem. Rev. 2017, 349, 102–128.

    CAS  Article  Google Scholar 

  244. [244]

    Nadar, S. S.; Vaidya, L.; Maurya, S.; Rathod, V. K. Polysaccharide based metal organic frameworks (polysaccharide-MOF): A review. Coord. Chem. Rev. 2019, 396, 1–21.

    CAS  Article  Google Scholar 

  245. [245]

    Wang, H. S.; Wang, Y. H.; Ding, Y. Development of biological metal-organic frameworks designed for biomedical applications: From bio-sensing/bio-imaging to disease treatment. Nanoscale Adv. 2020, 2, 3788–3797.

    CAS  Article  Google Scholar 

  246. [246]

    Tamames-Tabar, C.; Cunha, D.; Imbuluzqueta, E.; Ragon, F.; Serre, C.; Blanco-Prieto, M. J.; Horcajada, P. Cytotoxicity of nanoscaled metal-organic frameworks. J. Mater. Chem. B 2014, 2, 262–271.

    CAS  Article  Google Scholar 

  247. [247]

    Gaumet, M.; Vargas, A.; Gurny, R.; Delie, F. Nanoparticles for drug delivery: The need for precision in reporting particle size parameters. Eur. J. Pharm. Biopharm. 2008, 69, 1–9.

    CAS  Article  Google Scholar 

  248. [248]

    Moghimi, S. M. Mechanisms of splenic clearance of blood cells and particles: Towards development of new splenotropic agents. Adv. Drug Deliv. Rev. 1995, 17, 103–115.

    CAS  Article  Google Scholar 

  249. [249]

    Banerjee, T.; Mitra, S.; Singh, A. K.; Sharma, R. K.; Maitra, A. Preparation, characterization and biodistribution of ultrafine chitosan nanoparticles. Int. J. Pharm. 2002, 243, 93–105.

    CAS  Article  Google Scholar 

  250. [250]

    Dang, Y. T.; Dang, M. H. D.; Mai, N. X. D.; Nguyen, L. H. T.; Phan, T. B.; Le, H. V.; Doan, T. L. H. Room temperature synthesis of biocompatible nano Zn-MOF for the rapid and selective adsorption of curcumin. J. Sci.: Adv. Mater. Dev. 2020, 5, 560–565.

    Google Scholar 

  251. [251]

    Blanco, E.; Shen, H. F.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 2015, 33, 941–951.

    CAS  Article  Google Scholar 

  252. [252]

    Gao, X. C.; Cui, R. X.; Ji, G. F.; Liu, Z. L. Size and surface controllable metal-organic frameworks (MOFs) for fluorescence imaging and cancer therapy. Nanoscale 2018, 10, 6205–6211.

    CAS  Article  Google Scholar 

  253. [253]

    Rocío-Bautista, P.; Pino, V.; Ayala, J. H.; Ruiz-Pérez, C.; Vallcorba, O.; Afonso, A. M.; Pasán, J. A green metal-organic framework to monitor water contaminants. RSC Adv. 2018, 8, 31304–31310.

    Article  Google Scholar 

  254. [254]

    Qian, L. W.; Lei, D.; Duan, X.; Zhang, S. F.; Song, W. Q.; Hou, C.; Tang, R. H. Design and preparation of metal-organic framework papers with enhanced mechanical properties and good antibacterial capacity. Carbohydr. Polym. 2018, 192, 44–51.

    CAS  Article  Google Scholar 

  255. [255]

    Cervantes, B.; López-Huerta, F.; Vega, R.; Hernández-Torres, J.; García-González, L.; Salceda, E.; Herrera-May, A. L.; Soto, E. Cytotoxicity evaluation of anatase and rutile TiO2 thin films on CHO-K1 cells in vitro. Materials 2016, 9, 619.

    Article  CAS  Google Scholar 

  256. [256]

    Chen, D. Q.; Yang, D. Z.; Dougherty, C. A.; Lu, W. F.; Wu, H. W.; He, X. R.; Cai, T.; Van Dort, M. E.; Ross, B. D.; Hong, H. In vivo targeting and positron emission tomography imaging of tumor with intrinsically radioactive metal-organic frameworks nanomaterials. ACS Nano 2017, 11, 4315–4327.

    CAS  Article  Google Scholar 

  257. [257]

    Jarai, B. M.; Stillman, Z.; Attia, L.; Decker, G. E.; Bloch, E. D.; Fromen, C. A. Evaluating UiO-66 metal-organic framework nanoparticles as acid-sensitive carriers for pulmonary drug delivery applications. ACS Appl. Mater. Interfaces 2020, 12, 38989–39004.

    CAS  Article  Google Scholar 

  258. [258]

    Wu, Q.; Niu, M.; Chen, X. W.; Tan, L. F.; Fu, C. H.; Ren, X. L.; Ren, J.; Li, L. F.; Xu, K.; Zhong, H. S. et al. Biocompatible and biodegradable zeolitic imidazolate framework/polydopamine nanocarriers for dual stimulus triggered tumor thermo-chemotherapy. Biomaterials 2018, 162, 132–143.

    CAS  Article  Google Scholar 

  259. [259]

    Zhang, G. Y.; Zhuang, Y. H.; Shan, D.; Su, G. F.; Cosnier, S.; Zhang, X. J. Zirconium-based porphyrinic metal-organic framework (PCN-222): Enhanced photoelectrochemical response and its application for label-free phosphoprotein detection. Anal. Chem. 2016, 88, 11207–11212.

    CAS  Article  Google Scholar 

  260. [260]

    Cai, H.; Lu, W. G.; Yang, C.; Zhang, M.; Li, M.; Che, C. M.; Li, D. Tandem fÆrster resonance energy transfer induced luminescent ratiometric thermometry in dye-encapsulated biological metal-organic frameworks. Adv. Opt. Mater. 2019, 7, 1801149.

    Article  CAS  Google Scholar 

  261. [261]

    Cai, H.; Huang, Y. L.; Li, D. Biological metal-organic frameworks: Structures, host-guest chemistry and bio-applications. Coord. Chem. Rev. 2019, 378, 207–221.

    CAS  Article  Google Scholar 

  262. [262]

    Li, Z.; Peng, Y.; Pang, X. C.; Tang, B. Potential therapeutic effects of Mg/HCOOH metal organic framework on relieving osteoarthritis. ChemMedChem 2020, 15, 13–16.

    CAS  Article  Google Scholar 

  263. [263]

    Wang, J. H.; Fan, Y. D.; Tan, Y. H.; Zhao, X.; Zhang, Y.; Cheng, C. M.; Yang, M. Porphyrinic metal-organic framework PCN-224 nanoparticles for near-infrared-induced attenuation of aggregation and neurotoxicity of Alzheimer’s amyloid-ß peptide. ACS Appl. Mater. Interfaces 2018, 10, 36615–36621.

    CAS  Article  Google Scholar 

  264. [264]

    Su, F. F.; Jia, Q. J.; Li, Z. Z.; Wang, M. H.; He, L. H.; Peng, D. L.; Song, Y. P.; Zhang, Z. H.; Fang, S. M. Aptamer-templated silver nanoclusters embedded in zirconium metal-organic framework for targeted antitumor drug delivery. Microp. Mesop. Mater. 2019, 275, 152–162.

    CAS  Article  Google Scholar 

  265. [265]

    Cheng, Q.; Yu, W. Y.; Ye, J. J.; Liu, M. D.; Liu, W. L.; Zhang, C.; Zhang, C.; Feng, J.; Zhang, X. Z. Nanotherapeutics interfere with cellular redox homeostasis for highly improved photodynamic therapy. Biomaterials 2019, 224, 119500.

    CAS  Article  Google Scholar 

  266. [266]

    Zhu, W.; Zhang, L.; Yang, Z.; Liu, P.; Wang, J.; Cao, J. G.; Shen, A. G.; Xu, Z. S.; Wang, J. An efficient tumor-inducible nanotheranostics for magnetic resonance imaging and enhanced photodynamic therapy. Chem. Eng. J. 2019, 358, 969–979.

    CAS  Article  Google Scholar 

  267. [267]

    Sene, S.; Marcos-Almaraz, M. T.; Menguy, N.; Scola, J.; Volatron, J.; Rouland, R.; Grenàche, J. M.; Miraux, S.; Menet, C.; Guillou, N. et al. Maghemite-nanoMIL-100(Fe) bimodal nanovector as a platform for image-guided therapy. Chem 2017, 3, 303–322.

    CAS  Article  Google Scholar 

  268. [268]

    Hu, Q.; Yu, J. C.; Liu, M.; Liu, A. P.; Dou, Z. S.; Yang, Y. A low cytotoxic cationic metal-organic framework carrier for controllable drug release. J. Med. Chem. 2014, 57, 5679–5685.

    CAS  Article  Google Scholar 

  269. [269]

    Zhang, W.; Lu, J.; Gao, X. N.; Li, P.; Zhang, W.; Ma, Y.; Wang, H.; Tang, B. Enhanced photodynamic therapy by reduced levels of intracellular glutathione obtained by employing a nano-MOF with CuII as the active center. Angew. Chem., Int. Ed. 2018, 57, 4891–4896.

    CAS  Article  Google Scholar 

  270. [270]

    Zhong, X. F.; Zhang, Y. T.; Tan, L.; Zheng, T.; Hou, Y. Y.; Hong, X. Y.; Du, G. S.; Chen, X. Y.; Zhang, Y. D.; Sun, X. An aluminum adjuvant-integrated nano-MOF as antigen delivery system to induce strong humoral and cellular immune responses. J. Control. Release 2019, 300, 81–92.

    CAS  Article  Google Scholar 

  271. [271]

    Cai, M. R.; Qin, L. Y.; You, L. T.; Yao, Y.; Wu, H. M.; Zhang, Z. Q.; Zhang, L.; Yin, X. B.; Ni, J. Functionalization of MOF-5 with mono-substituents: Effects on drug delivery behavior. RSC Adv. 2020, 10, 36862–36872.

    CAS  Article  Google Scholar 

  272. [272]

    Liu, W.; Yan, Z. J.; Zhang, Z. D.; Zhang, Y. X.; Cai, G. Y.; Li, Z. Y. Bioactive and anti-corrosive bio-MOF-1 coating on magnesium alloy for bone repair application. J. Alloys Compd. 2019, 788, 705–711.

    CAS  Article  Google Scholar 

  273. [273]

    Tan, G. Z.; Zhong, Y. T.; Yang, L. L.; Jiang, Y. D.; Liu, J. Q.; Ren, F. A multifunctional MOF-based nanohybrid as injectable implant platform for drug synergistic oral cancer therapy. Chem. Eng. J. 2020, 390, 124446.

    CAS  Article  Google Scholar 

  274. [274]

    Chen, Y. C.; Lin, K. Y. A.; Chen, K. F.; Jiang, X. Y.; Lin, C. H. In vitro renal toxicity evaluation of copper-based metal-organic framework HKUST-1 on human embryonic kidney cells. Environ. Pollut. 2021, 273, 116528.

    CAS  Article  Google Scholar 

  275. [275]

    Xia, T. F.; Zhu, F. L.; Jiang, K.; Cui, Y. J.; Yang, Y.; Qian, G. D. A luminescent ratiometric pH sensor based on a nanoscale and biocompatible Eu/Tb-mixed MOF. Dalton Trans. 2017, 46, 7549–7555.

    CAS  Article  Google Scholar 

  276. [276]

    Huang, S. Z.; Liu, S. S.; Zhang, H. J.; Han, Z.; Zhao, G.; Dong, X. Y.; Zang, S. Q. Dual-functional proton-conducting and pH-sensing polymer membrane benefiting from a Eu-MOF. ACS Appl. Mater. Interfaces 2020, 12, 28720–28726.

    CAS  Article  Google Scholar 

  277. [277]

    Xu, X. Y.; Yan, B. An efficient and sensitive fluorescent pH sensor based on amino functional metal-organic frameworks in aqueous environment. Dalton Trans. 2016, 45, 7078–7084.

    CAS  Article  Google Scholar 

  278. [278]

    Jiang, H. L.; Feng, D. W.; Wang, K. C.; Gu, Z. Y.; Wei, Z. W.; Chen, Y. P.; Zhou, H. C. An exceptionally stable, porphyrinic Zr metal-organic framework exhibiting pH-dependent fluorescence. J. Am. Chem. Soc. 2013, 135, 13934–13938.

    CAS  Article  Google Scholar 

  279. [279]

    Barar, J.; Omidi, Y. Dysregulated pH in Tumor microenvironment checkmates cancer therapy. Bioimpacts 2013, 3, 149–162.

    Google Scholar 

  280. [280]

    Li, H. J.; Du, J. Z.; Liu, J.; Du, X. J.; Shen, S.; Zhu, Y. H.; Wang, X. Y.; Ye, X. D.; Nie, S. M.; Wang, J. Smart superstructures with ultrahigh pH-sensitivity for targeting acidic tumor microenvironment: Instantaneous size switching and improved tumor penetration. ACS Nano 2016, 10, 6753–6761.

    CAS  Article  Google Scholar 

  281. [281]

    Alfarouk, K. O.; Ahmed, S. B. M.; Ahmed, A.; Elliott, R. L.; Ibrahim, M. E.; Ali, H. S.; Wales, C. C.; Nourwali, I.; Aljarbou, A. N.; Bashir, A. H. H. et al. The interplay of dysregulated pH and electrolyte imbalance in cancer. Cancers 2020, 12, 898.

    CAS  Article  Google Scholar 

  282. [282]

    Liu, H. P.; Wang, H. M.; Chu, T. S.; Yu, M. H.; Yang, Y. Y. An electrodeposited lanthanide MOF thin film as a luminescent sensor for carbonate detection in aqueous solution. J. Mater. Chem. C 2014, 2, 8683–8690.

    CAS  Article  Google Scholar 

  283. [283]

    Chen, Y. Q.; Li, G. R.; Chang, Z.; Qu, Y. K.; Zhang, Y. H.; Bu, X. H. A Cu(I) metal-organic framework with 4-fold helical channels for sensing anions. Chem. Sci. 2013, 4, 3678–3682.

    CAS  Article  Google Scholar 

  284. [284]

    Ji, G. F.; Gao, X. C.; Zheng, T. X.; Guan, W. H.; Liu, H. T.; Liu, Z. L. Postsynthetic metalation metal-organic framework as a fluorescent probe for the ultrasensitive and reversible detection of PO43− ions. Inorg. Chem. 2018, 57, 10525–10532.

    CAS  Article  Google Scholar 

  285. [285]

    Abdelhamid, H. N.; Bermejo-Gömez, A.; Martin-Matute, B.; Zou, X. D. A water-stable lanthanide metal-organic framework for fluorimetric detection of ferric ions and tryptophan. Microchim. Acta 2017, 184, 3363–3371.

    CAS  Article  Google Scholar 

  286. [286]

    Zhao, X. L.; Tian, D.; Gao, Q.; Sun, H. W.; Xu, J.; Bu, X. H. A chiral lanthanide metal-organic framework for selective sensing of Fe(III) ions. Dalton Trans. 2016, 45, 1040–1046.

    CAS  Article  Google Scholar 

  287. [287]

    Zhao, D.; Liu, X. H.; Zhao, Y.; Wang, P.; Liu, Y.; Azam, M.; Al-Resayes, S. I.; Lu, Y.; Sun, W. Y. Luminescent Cd(II)-organic frameworks with chelating NH2 sites for selective detection of Fe(III) and antibiotics. J. Mater. Chem. A 2017, 5, 15797–15807.

    CAS  Article  Google Scholar 

  288. [288]

    Xu, H.; Gao, J. K.; Qian, X. F.; Wang, J. P.; He, H. J.; Cui, Y. J.; Yang, Y.; Wang, Z. Y.; Qian, G. D. Metal-organic framework nanosheets for fast-response and highly sensitive luminescent sensing of Fe3+. J. Mater. Chem. A 2016, 4, 10900–10905.

    CAS  Article  Google Scholar 

  289. [289]

    Wang, Z. Y.; Liu, T.; Jiang, L. P.; Asif, M.; Qiu, X. Y.; Yu, Y.; Xiao, F.; Liu, H. F. Assembling metal-organic frameworks into the fractal scale for sweat sensing. ACS Appl. Mater. Interfaces 2019, 11, 32310–32319.

    CAS  Article  Google Scholar 

  290. [290]

    Zhao, Z. H.; Huang, Y. J.; Liu, W. R.; Ye, F. G.; Zhao, S. L. Immobilized glucose oxidase on boronic acid-functionalized hierarchically porous MOF as an integrated nanozyme for one-step glucose detection. ACS Sustain. Chem. Eng. 2020, 8, 4481–4488.

    CAS  Article  Google Scholar 

  291. [291]

    Wang, F.; Chen, X. Q.; Chen, L.; Yang, J. L.; Wang, Q. X. Highperformance non-enzymatic glucose sensor by hierarchical flowerlike nickel(II)-based MOF/carbon nanotubes composite. Mater. Sci. Eng.: C 2019, 96, 41–50.

    CAS  Article  Google Scholar 

  292. [292]

    Qu, S. M.; Li, Z.; Jia, Q. Detection of purine metabolite uric acid with picolinic-acid-functionalized metal-organic frameworks. ACS Appl. Mater. Interfaces 2019, 11, 34196–34202.

    CAS  Article  Google Scholar 

  293. [293]

    Ling, P. H.; Lei, J. P.; Zhang, L.; Ju, H. X. Porphyrin-encapsulated metal-organic frameworks as mimetic catalysts for electrochemical DNA sensing via allosteric switch of hairpin DNA. Anal. Chem. 2015, 87, 3957–3963.

    CAS  Article  Google Scholar 

  294. [294]

    Ou, D.; Sun, D. P.; Liang, Z. X.; Chen, B. W.; Lin, X. G.; Chen, Z. G. A novel cytosensor for capture, detection and release of breast cancer cells based on metal organic framework PCN-224 and DNA tetrahedron linked dual-aptamer. Sens. Actuators B: Chem. 2019, 285, 398–404.

    CAS  Article  Google Scholar 

  295. [295]

    Nery, E. W.; Kundys, M.; Jelán, P. S.; Jönsson-Niedziólka, M. Electrochemical glucose sensing: Is there still room for improvement. Anal. Chem. 2016, 88, 11271–11282.

    Article  CAS  Google Scholar 

  296. [296]

    Holade, Y.; Lehoux, A.; Remita, H.; Kokoh, K. B.; Napporn, T. W. Au@Pt core-shell mesoporous nanoballs and nanoparticles as efficient electrocatalysts toward formic acid and glucose oxidation. J. Phys. Chem. C 2015, 119, 27529–27539.

    CAS  Article  Google Scholar 

  297. [297]

    Zhang, L.; Ye, C.; Li, X.; Ding, Y. R.; Liang, H. B.; Zhao, G. Y.; Wang, Y. A CuNi/C nanosheet array based on a metal-organic framework derivate as a supersensitive non-enzymatic glucose sensor. Nano-Micro Lett. 2018, 10, 28.

    Article  CAS  Google Scholar 

  298. [298]

    Ma, W. J.; Jiang, Q.; Yu, P.; Yang, L. F.; Mao, L. Q. Zeolitic imidazolate framework-based electrochemical biosensor for in vivo electrochemical measurements. Anal. Chem. 2013, 85, 7550–7557.

    CAS  Article  Google Scholar 

  299. [299]

    Khan, I. A.; Badshah, A.; Nadeem, M. A.; Haider, N.; Nadeem, M. A. A copper based metal-organic framework as single source for the synthesis of electrode materials for high-performance supercapacitors and glucose sensing applications. Int. J. Hydrogen Energy 2014, 39, 19609–19620.

    CAS  Article  Google Scholar 

  300. [300]

    Lian, X. Z.; Fang, Y.; Joseph, E.; Wang, Q.; Li, J. L.; Banerjee, S.; Lollar, C.; Wang, X.; Zhou, H. C. Enzyme-MOF (metal-organic framework) composites. Chem. Soc. Rev. 2017, 46, 3386–3401.

    CAS  Article  Google Scholar 

  301. [301]

    Zhao, Z. H.; Lin, T. R.; Liu, W. R.; Hou, L.; Ye, F. G.; Zhao, S. L. Colorimetric detection of blood glucose based on GOx@ZIF-8@Fe-polydopamine cascade reaction. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 2019, 219, 240–247.

    CAS  Article  Google Scholar 

  302. [302]

    Zhao, Z. H.; Pang, J. H.; Liu, W. R.; Lin, T. R.; Ye, F. G.; Zhao, S. L. A bifunctional metal organic framework of type Fe(III)-BTC for cascade (enzymatic and enzyme-mimicking) colorimetric determination of glucose. Microchim. Acta 2019, 186, 295.

    Article  CAS  Google Scholar 

  303. [303]

    Xu, W. Q.; Jiao, L.; Yan, H. Y.; Wu, Y.; Chen, L. J.; Gu, W. L.; Du, D.; Lin, Y. H.; Zhu, C. Z. Glucose oxidase-integrated metal-organic framework hybrids as biomimetic cascade nanozymes for ultrasensitive glucose biosensing. ACS Appl. Mater. Interfaces 2019, 11, 22096–22101.

    CAS  Article  Google Scholar 

  304. [304]

    Han, Y. H.; Tian, C. B.; Li, Q. H.; Du, S. W. Highly chemical and thermally stable luminescent EuxTb1-x MOF materials for broad-range pH and temperature sensors. J. Mater. Chem. C 2014, 2, 8065–8070.

    CAS  Article  Google Scholar 

  305. [305]

    Thanh, T. D.; Balamurugan, J.; Lee, S. H.; Kim, N. H.; Lee, J. H. Effective seed-assisted synthesis of gold nanoparticles anchored nitrogen-doped graphene for electrochemical detection of glucose and dopamine. Biosens. Bioelectron. 2016, 81, 259–267.

    CAS  Article  Google Scholar 

  306. [306]

    Ye, J. S.; Hong, B. D.; Wu, Y. S.; Chen, H. R.; Lee, C. L. Heterostructured palladium-platinum core-shell nanocubes for use in a nonenzymatic amperometric glucose sensor. Microchim. Acta 2016, 183, 3311–3320.

    CAS  Article  Google Scholar 

  307. [307]

    Juang, F. R.; Kao, C. Glucose sensing performance of CuO nanoparticles and indium tin oxide surface modification on potassium-doped ZnO nanorods. Thin Solid Films 2020, 708, 138114.

    CAS  Article  Google Scholar 

  308. [308]

    Wanderley, M. M.; Wang, C.; Wu, C. D.; Lin, W. B. A chiral porous metal-organic framework for highly sensitive and enantioselective fluorescence sensing of amino alcohols. J. Am. Chem. Soc. 2012, 134, 9050–9053.

    CAS  Article  Google Scholar 

  309. [309]

    Zhao, Y. F.; Wan, M. Y.; Bai, J. P.; Zeng, H.; Lu, W. G.; Li, D. pH-Modulated luminescence switching in a Eu-MOF: Rapid detection of acidic amino acids. J. Mater. Chem. A 2019, 7, 11127–11133.

    CAS  Article  Google Scholar 

  310. [310]

    Zhang, W. Q.; Duan, D. W.; Liu, S. Q.; Zhang, Y. S.; Leng, L. P.; Li, X. L.; Chen, N.; Zhang, Y. P. Metal-organic framework-based molecularly imprinted polymer as a high sensitive and selective hybrid for the determination of dopamine in injections and human serum samples. Biosens. Bioelectron. 2018, 118, 129–136.

    CAS  Article  Google Scholar 

  311. [311]

    Liu, C. S.; Zhang, Z. H.; Chen, M.; Zhao, H.; Duan, F. H.; Chen, D. M.; Wang, M. H.; Zhang, S.; Du, M. Pore modulation of zirconium-organic frameworks for high-efficiency detection of trace proteins. Chem. Commun. 2017, 53, 3941–3944.

    CAS  Article  Google Scholar 

  312. [312]

    Qin, L.; Lin, L. X.; Fang, Z. P.; Yang, S. P.; Qiu, G H.; Chen, J. X.; Chen, W. H. A water-stable metal-organic framework of a zwitterionic carboxylate with dysprosium: A sensing platform for Ebolavirus RNA sequences. Chem. Commun. 2016, 52, 132–135.

    CAS  Article  Google Scholar 

  313. [313]

    Zhang, H. T.; Zhang, J. W.; Huang, G.; Du, Z. Y.; Jiang, H. L. An amine-functionalized metal-organic framework as a sensing platform for DNA detection. Chem. Commun. 2014, 50, 12069–12072.

    CAS  Article  Google Scholar 

  314. [314]

    Wang, H.; Jian, Y. N.; Kong, Q. K.; Liu, H. Y.; Lan, F. F.; Liang, L. L.; Ge, S. G.; Yu, J. H. Ultrasensitive electrochemical paper-based biosensor for microRNA via strand displacement reaction and metal-organic frameworks. Sens. Actuators B: Chem. 2018, 257, 561–569.

    CAS  Article  Google Scholar 

  315. [315]

    Du, L. P.; Chen, W.; Wang, J.; Cai, W.; Kong, S.; Wu, C. S. Folic acid-functionalized zirconium metal-organic frameworks based electrochemical impedance biosensor for the cancer cell detection. Sens. ActuatorsB: Chem. 2019, 301, 127073.

    CAS  Article  Google Scholar 

  316. [316]

    Wang, M.; Hu, M.; Li, Z.; He, L.; Song, Y.; Jia, Q.; Zhang, Z.; Du, M. Construction of Tb-MOF-on-Fe-MOF conjugate as a novel platform for ultrasensitive detection of carbohydrate antigen 125 and living cancer cells. Biosens. Bioelectron. 2019, 142, 111536.

    Article  CAS  Google Scholar 

  317. [317]

    Wu, H.; Yildirim, T.; Zhou, W. Exceptional mechanical stability of highly porous zirconium metal-organic framework UiO-66 and its important implications. J. Phys. Chem. Lett. 2013, 4, 925–930.

    CAS  Article  Google Scholar 

  318. [318]

    Yuan, S.; Sun, X.; Pang, J.; Lollar, C.; Qin, J. S.; Perry, Z.; Joseph, E.; Wang, X.; Fang, Y.; Bosch, M. et al. PCN-250 under pressure: Sequential phase transformation and the implications for MOF densification. Joule 2017, 1, 806–815.

    CAS  Article  Google Scholar 

  319. [319]

    Ling, W.; Hao, Y. F.; Wang, H. J.; Xu, H.; Huang, X. A novel Cu-metal-organic framework with two-dimensional layered topology for electrochemical detection using flexible sensors. Nanotechnology 2019, 30, 424002.

    CAS  Article  Google Scholar 

  320. [320]

    Babu, D. J.; He, G. W.; Villalobos, L. F.; Agrawal, K. V. Crystal engineering of metal-organic framework thin films for gas separations. ACS Sustain. Chem. Eng. 2019, 7, 49–69.

    CAS  Article  Google Scholar 

  321. [321]

    Szilágyi, P. Á.; Westerwaal, R. J.; van de Krol, R.; Geerlings, H.; Dam, B. Metal-organic framework thin films for protective coating of Pd-based optical hydrogen sensors. J. Mater. Chem. C 2013, 1, 8146–8155.

    Article  CAS  Google Scholar 

  322. [322]

    Yue, Y. F.; Mehio, N.; Binder, A. J.; Dai, S. Synthesis of metal-organic framework particles and thin films via nanoscopic metal oxide precursors. CrystEngComm 2015, 17, 1728–1735.

    CAS  Article  Google Scholar 

  323. [323]

    Tan, J. C.; Cheetham, A. K. Mechanical properties of hybrid inorganic-organic framework materials: Establishing fundamental structure-property relationships. Chem. Soc. Rev. 2011, 40, 1059–1080.

    CAS  Article  Google Scholar 

  324. [324]

    Jung, J. Y.; Karadas, F.; Zulfiqar, S.; Deniz, E.; Aparicio, S.; Atilhan, M.; Yavuz, C. T.; Han, S. M. Limitations and high pressure behavior of MOF-5 for CO2 capture. Phys. Chem. Chem. Phys. 2013, 15, 14319–14327.

    CAS  Article  Google Scholar 

  325. [325]

    Tan, J. C.; Bennett, T. D.; Cheetham, A. K. Chemical structure, network topology, and porosity effects on the mechanical properties of Zeolitic Imidazolate Frameworks. Proc. Natl. Acad. Sci. USA 2010, 107, 9938–9943.

    CAS  Article  Google Scholar 

  326. [326]

    Bundschuh, S.; Kraft, O.; Arslan, H. K.; Gliemann, H.; Weidler, P. G.; WÖll, C. Mechanical properties of metal-organic frameworks: An indentation study on epitaxial thin films. Appl. Phys. Lett. 2012, 101, 101910.

    Article  CAS  Google Scholar 

  327. [327]

    Van de Voorde, B.; Ameloot, R.; Stassen, I.; Everaert, M.; De Vos, D.; Tan, J. C. Mechanical properties of electrochemically synthesised metal-organic framework thin films. J. Mater. Chem. C 2013, 1, 7716–7724.

    CAS  Article  Google Scholar 

  328. [328]

    Coudert, F. X. Responsive metal-organic frameworks and framework materials: Under pressure, taking the heat, in the spotlight, with friends. Chem. Mater. 2015, 27, 1905–1916.

    CAS  Article  Google Scholar 

  329. [329]

    Nix, F. C.; MacNair, D. The thermal expansion of pure metals: Copper, gold, aluminum, nickel, and iron. Phys. Rev. 1941, 60, 597–605.

    CAS  Article  Google Scholar 

  330. [330]

    Thornton, J. A.; Hoffman, D. W. Stress-related effects in thin films. Thin Solid Films 1989, 171, 5–31.

    Article  Google Scholar 

  331. [331]

    Numata, S. I.; Oohara, S.; Fujisaki, K.; Imaizumi, J. I.; Kinjo, N. Thermal expansion behavior of various aromatic polyimides. J. Appl. Polym. Sci. 1986, 31, 101–110.

    CAS  Article  Google Scholar 

  332. [332]

    Müller, A.; Wapler, M. C.; Wallrabe, U. A quick and accurate method to determine the Poisson’s ratio and the coefficient of thermal expansion of PDMS. Soft Matter 2019, 15, 779–784.

    Article  Google Scholar 

  333. [333]

    Coburn, J. C.; Boyd, R. H. Dielectric relaxation in poly (ethylene terephthalate). Macromolecules 1986, 19, 2238–2245.

    CAS  Article  Google Scholar 

  334. [334]

    Zhou, W.; Wu, H.; Yildirim, T.; Simpson, J. R.; Walker, A. R. H. Origin of the exceptional negative thermal expansion in metal-organic framework-5 Zn4O (1,4-benzenedicarboxylate)3. Phys. Rev. B 2008, 78, 054114.

    Article  CAS  Google Scholar 

  335. [335]

    Lock, N.; Wu, Y.; Christensen, M.; Cameron, L. J.; Peterson, V. K.; Bridgeman, A. J.; Kepert, C. J.; Iversen, B. B. Elucidating negative thermal expansion in MOF-5. J. Phys. Chem. C 2010, 114, 16181–16186.

    CAS  Article  Google Scholar 

  336. [336]

    Schneider, C.; Bodesheim, D.; Ehrenreich, M. G.; Crocellà, V.; Mink, J.; Fischer, R. A.; Butler, K. T.; Kieslich, G. Tuning the negative thermal expansion behavior of the metal-organic framework Cu3BTC2 by retrofitting. J. Am. Chem. Soc. 2019, 141, 10504–10509.

    CAS  Article  Google Scholar 

  337. [337]

    Wu, Y.; Kobayashi, A.; Halder, G. J.; Peterson, V. K.; Chapman, K. W.; Lock, N.; Southon, P. D.; Kepert, C. J. Negative thermal expansion in the metal-organic framework material Cu3(1,3,5-benzenetricarboxylate)2. Angew. Chem., Int. Ed. 2008, 47, 8929–8932.

    CAS  Article  Google Scholar 

  338. [338]

    Lama, P.; Das, R. K.; Smith, V. J.; Barbour, L. J. A combined stretching-tilting mechanism produces negative, zero and positive linear thermal expansion in a semi-flexible Cd(II)-MOF. Chem. Commun. 2014, 50, 6464–6467.

    CAS  Article  Google Scholar 

  339. [339]

    Stassen, I.; Burtch, N.; Talin, A.; Falcaro, P.; Allendorf, M.; Ameloot, R. An updated roadmap for the integration of metal-organic frameworks with electronic devices and chemical sensors. Chem. Soc. Rev. 2017, 46, 3185–3241.

    CAS  Article  Google Scholar 

  340. [340]

    Pan, L.; Ji, Z. H.; Yi, X. H.; Zhu, X. J.; Chen, X. X.; Shang, J.; Liu, G.; Li, R. W. Metal-organic framework nanofilm for mechanically flexible information storage applications. Adv. Funct. Mater. 2015, 25, 2677–2685.

    CAS  Article  Google Scholar 

  341. [341]

    Kim, S.; Jeong, H. Y.; Kim, S. K.; Choi, S. Y.; Lee, K. J. Flexible memristive memory array on plastic substrates. Nano Lett. 2011, 11, 5438–5442.

    CAS  Article  Google Scholar 

  342. [342]

    Liu, Y. Q.; Wang, H.; Shi, W. X.; Zhang, W. N.; Yu, J. C.; Chandran, B. K.; Cui, C. L.; Zhu, B. W.; Liu, Z. Y.; Li, B. et al. Alcohol-mediated resistance-switching behavior in metal-organic framework-based electronic devices. Angew. Chem., Int. Ed. 2016, 55, 8884–8888.

    CAS  Article  Google Scholar 

  343. [343]

    Zhu, X. F.; Yuan, S.; Ju, Y H.; Yang, J.; Zhao, C.; Liu, H. Water splittingassisted electrocatalytic oxidation of glucose with a metal-organic framework for wearable nonenzymatic perspiration sensing. Anal. Chem. 2019, 91, 10764–10771.

    CAS  Article  Google Scholar 

  344. [344]

    Zhou, K.; Zhang, C.; Xiong, Z. Y.; Chen, H. Y.; Li, T.; Ding, G. L.; Yang, B. D.; Liao, Q. F.; Zhou, Y.; Han, S. T. Template-directed growth of hierarchical MOF hybrid arrays for tactile sensor. Adv. Funct. Mater. 2020, 30, 2001296.

    CAS  Article  Google Scholar 

  345. [345]

    Zhang, X.; Zhang, Q.; Yue, D.; Zhang, J.; Wang, J. T.; Li, B.; Yang, Y.; Cui, Y. J.; Qian, G. D. Flexible metal-organic framework-based mixed-matrix membranes: A new platform for H2S sensors. Small 2018, 14, 1801563.

    Article  CAS  Google Scholar 

  346. [346]

    Xu, X. Y.; Yan, B. A fluorescent wearable platform for sweat Cl analysis and logic smart-device fabrication based on color adjustable lanthanide MOFs. J. Mater. Chem. C 2018, 6, 1863–1869.

    CAS  Article  Google Scholar 

  347. [347]

    Xu, X. Y.; Yan, B.; Lian, X. Wearable glove sensor for non-invasive organophosphorus pesticide detection based on a double-signal fluorescence strategy. Nanoscale 2018, 10, 13722–13729.

    CAS  Article  Google Scholar 

  348. [348]

    Moghadam, B. H.; Hasanzadeh, M.; Simchi, A. Self-powered wearable piezoelectric sensors based on polymer nanofiber-metal-organic framework nanoparticle composites for arterial pulse monitoring. ACS Appl. Nano Mater. 2020, 3, 8742–8752.

    CAS  Article  Google Scholar 

  349. [349]

    Fu, X. L.; Dong, H. L.; Zhen, Y. G.; Hu, W. P. Solution-processed large-area nanocrystal arrays of metal-organic frameworks as wearable, ultrasensitive, electronic skin for health monitoring. Small 2015, 11, 3351–3356.

    CAS  Article  Google Scholar 

  350. [350]

    Wang, Y. G.; Chao, M. Y.; Wan, P. B.; Zhang, L. Q. A wearable breathable pressure sensor from metal-organic framework derived nanocomposites for highly sensitive broad-range healthcare monitoring. Nano Energy 2020, 70, 104560.

    CAS  Article  Google Scholar 

  351. [351]

    Smith, M. K.; Mirica, K. A. Self-organized frameworks on textiles (SOFT): Conductive fabrics for simultaneous sensing, capture, and filtration of gases. J. Am. Chem. Soc. 2017, 139, 16759–16767.

    CAS  Article  Google Scholar 

  352. [352]

    Rui, K.; Wang, X. S.; Du, M.; Zhang, Y.; Wang, Q. Q.; Ma, Z. Y.; Zhang, Q.; Li, D. S.; Huang, X.; Sun, G. Z. et al. Dual-function metal-organic framework-based wearable fibers for gas probing and energy storage. ACS Appl. Mater. Interfaces 2018, 10, 2837–2842.

    CAS  Article  Google Scholar 

  353. [353]

    Wang, Z. Y.; Liu, T.; Yu, Y.; Asif, M.; Xu, N.; Xiao, F.; Liu, H. F. Coffee ring-inspired approach toward oriented self-assembly of biomimetic murray MOFs as sweat biosensor. Small 2018, 14, 1802670.

    Article  CAS  Google Scholar 

  354. [354]

    Lewis, J. Material challenge for flexible organic devices. Mater. Today 2006, 9, 38–45.

    CAS  Article  Google Scholar 

  355. [355]

    Phan, H. P.; Zhong, Y. S.; Nguyen, T. K.; Park, Y.; Dinh, T.; Song, E. M.; Vadivelu, R. K.; Masud, M. K.; Li, J. H.; Shiddiky, M. J. A. et al. Long-lived, transferred crystalline silicon carbide nanomembranes for implantable flexible electronics. ACS Nano 2019, 13, 11572–11581.

    CAS  Article  Google Scholar 

  356. [356]

    Bai, W. B.; Yang, H. J.; Ma, Y. J.; Chen, H.; Shin, J.; Liu, Y. H.; Yang, Q. S.; Kandela, I.; Liu, Z. H.; Kang, S. K. et al. Flexible transient optical waveguides and surface-wave biosensors constructed from monocrystalline silicon. Adv. Mater. 2018, 30, 1801584.

    Article  CAS  Google Scholar 

  357. [357]

    Li, J. H.; Song, E. M.; Chiang, C. H.; Yu, K. J.; Koo, J.; Du, H. N.; Zhong, Y. S.; Hill, M.; Wang, C.; Zhang, J. Z. et al. Conductively coupled flexible silicon electronic systems for chronic neural electrophysiology. Proc. Natl. Acad. Sci. USA 2018, 115, E9542–E9549.

    CAS  Article  Google Scholar 

  358. [358]

    Zhou, M. X.; Wu, Z. Y.; Zhao, Y. C.; Yang, Q.; Ling, W.; Li, Y.; Xu, H.; Wang, C.; Huang, X. Droplets as carriers for flexible electronic devices. Adv. Sci. 2019, 6, 1901862.

    CAS  Article  Google Scholar 

  359. [359]

    Cheng, T.; Zhang, Y. Z.; Lai, W. Y.; Huang, W. Stretchable thin-film electrodes for flexible electronics with high deformability and stretchability. Adv. Mater. 2015, 27, 3349–3376.

    CAS  Article  Google Scholar 

  360. [360]

    Dai, W. T.; Xu, H.; Zhang, C. N.; Li, Y.; Pan, H. Z.; Wang, H. J.; Wei, G. F.; Huang, X. Flexible magnetoelectrical devices with intrinsic magnetism and electrical conductivity. Adv. Electron. Mater. 2019, 5, 1900111.

    Article  CAS  Google Scholar 

  361. [361]

    Zhao, Y. C.; Gao, S. H.; Zhang, X.; Huo, W. X.; Xu, H.; Chen, C.; Li, J.; Xu, K. X.; Huang, X. Fully flexible electromagnetic vibration sensors with annular field confinement origami magnetic membranes. Adv. Funct. Mater. 2020, 30, 2001553.

    CAS  Article  Google Scholar 

  362. [362]

    Li, Y.; Qi, Z. J.; Yang, J. X.; Zhou, M. X.; Zhang, X.; Ling, W.; Zhang, Y. Y.; Wu, Z. Y.; Wang, H. J.; Ning, B. A. et al. Origami NdFeB flexible magnetic membranes with enhanced magnetism and programmable sequences of polarities. Adv. Funct. Mater. 2019, 29, 1904977.

    CAS  Article  Google Scholar 

  363. [363]

    Bétard, A.; Fischer, R. A. Metal-organic framework thin films: From fundamentals to applications. Chem. Rev. 2012, 112, 1055–1083.

    Article  CAS  Google Scholar 

  364. [364]

    Falcaro, P.; Ricco, R.; Doherty, C. M.; Liang, K.; Hill, A. J.; Styles, M. J. MOF positioning technology and device fabrication. Chem. Soc. Rev. 2014, 43, 5513–5560.

    CAS  Article  Google Scholar 

  365. [365]

    Ruiz-Zambrana, C. L.; Malankowska, M.; Coronas, J. Metal organic framework top-down and bottom-up patterning techniques. Dalton Trans. 2020, 49, 15139–15148.

    CAS  Article  Google Scholar 

  366. [366]

    Yao, J. F.; Wang, H. T. Zeolitic imidazolate framework composite membranes and thin films: Synthesis and applications. Chem. Soc. Rev. 2014, 43, 4470–4493.

    CAS  Article  Google Scholar 

  367. [367]

    Usman, K. A. S.; Maina, J. W.; Seyedin, S.; Conato, M. T.; Payawan, L. M.; Dumée, L. F.; Razal, J. M. Downsizing metal-organic frameworks by bottom-up and top-down methods. NPG Asia Mater. 2020, 12, 58.

    CAS  Article  Google Scholar 

  368. [368]

    Kundu, T.; Mitra, S.; Patra, P.; Goswami, A.; Diaz, D. D.; Banerjee, R. Mechanical downsizing of a gadolinium(III)-based metal-organic framework for anticancer drug delivery. Chem.—Eur. J. 2014, 20, 10514–10518.

    CAS  Article  Google Scholar 

  369. [369]

    Van Ngo, T.; Moussa, M.; Tung, T. T.; Coghlan, C.; Losic, D. Hybridization of MOFs and graphene: A new strategy for the synthesis of porous 3D carbon composites for high performing supercapacitors. Electrochim. Acta 2020, 329, 135104.

    CAS  Article  Google Scholar 

  370. [370]

    Sakaida, S.; Otsubo, K.; Sakata, O.; Song, C.; Fujiwara, A.; Takata, M.; Kitagawa, H. Crystalline coordination framework endowed with dynamic gate-opening behaviour by being downsized to a thin film. Nat. Chem. 2016, 8, 377–383.

    CAS  Article  Google Scholar 

  371. [371]

    Duan, J. J.; Sun, Y. T.; Chen, S.; Chen, X. J.; Zhao, C. A zero-dimensional nickel, iron-metal-organic framework (MOF) for synergistic N2 electrofixation. J. Mater. Chem. A 2020, 8, 18810–18815.

    CAS  Article  Google Scholar 

  372. [372]

    Li, R.; Ren, X. Q.; Zhao, J. S.; Feng, X.; Jiang, X.; Fan, X. X.; Lin, Z. G.; Li, X. G.; Hu, C. W.; Wang, B. Polyoxometallates trapped in a zeolitic imidazolate framework leading to high uptake and selectivity of bioactive molecules. J. Mater. Chem. A 2014, 2, 2168–2173.

    CAS  Article  Google Scholar 

  373. [373]

    Peng, Y.; Li, Y. S.; Ban, Y. J.; Jin, H.; Jiao, W. M.; Liu, X. L.; Yang, W. S. Metal-organic framework nanosheets as building blocks for molecular sieving membranes. Science 2014, 346, 1356–1359.

    CAS  Article  Google Scholar 

  374. [374]

    Ciesielski, A.; Samori, P. Graphene via sonication assisted liquid-phase exfoliation. Chem. Soc. Rev. 2014, 43, 381–398.

    CAS  Article  Google Scholar 

  375. [375]

    Wang, Y. Z.; Chen, T.; Gao, X. F.; Liu, H. H.; Zhang, X. X. Liquid phase exfoliation of graphite into few-layer graphene by sonication and microfluidization. Mater. Express 2017, 7, 491–499.

    CAS  Article  Google Scholar 

  376. [376]

    Malaki, M.; Maleki, A.; Varma, R. S. MXenes and ultrasonication. J. Mater. Chem. A 2019, 7, 10843–10857.

    CAS  Article  Google Scholar 

  377. [377]

    Seyedin, S.; Zhang, J. Z.; Usman, K. A. S.; Qin, S.; Glushenkov, A. M.; Yanza, E. R. S.; Jones, R. T.; Razal, J. M. Facile solution processing of stable mxene dispersions towards conductive composite fibers. Glob. Chall. 2019, 3, 1900037.

    Article  Google Scholar 

  378. [378]

    Li, P. Z.; Maeda, Y.; Xu, Q. Top-down fabrication of crystalline metal-organic framework nanosheets. Chem. Commun. 2011, 47, 8436–8438.

    CAS  Article  Google Scholar 

  379. [379]

    Quah, H. S.; Ng, L. T.; Donnadieu, B.; Tan, G. K.; Vittal, J. J. Molecular scissoring: Facile 3D to 2D conversion of lanthanide metal organic frameworks via solvent exfoliation. Inorg. Chem. 2016, 55, 10851–10854.

    CAS  Article  Google Scholar 

  380. [380]

    Xu, L. L.; Wang, Y.; Xu, T. T.; Liu, S. J.; Tong, J.; Chu, R. R.; Hou, X. D.; Liu, B. Exfoliating polyoxometalate-encapsulating metal-organic framework into two-dimensional nanosheets for superior oxidative desulfurization. ChemCatChem 2018, 10, 5386–5390.

    CAS  Article  Google Scholar 

  381. [381]

    Chalati, T.; Horcajada, P.; Gref, R.; Couvreur, P.; Serre, C. Optimisation of the synthesis of MOF nanoparticles made of flexible porous iron fumarate MIL-88A. J. Mater. Chem. 2011, 21, 2220- 2227.

    CAS  Article  Google Scholar 

  382. [382]

    Jhung, S. H.; Lee, J. H.; Yoon, J. W.; Serre, C.; Férey, G.; Chang, J. S. Microwave synthesis of chromium terephthalate MIL-101 and its benzene sorption ability. Adv. Mater. 2007, 19, 121–124.

    CAS  Article  Google Scholar 

  383. [383]

    Lv, D. F.; Chen, Y. W.; Li, Y. J.; Shi, R. F.; Wu, H. X.; Sun, X. J.; Xiao, J.; Xi, H. X.; Xia, Q. B.; Li, Z. Efficient mechanochemical synthesis of MOF-5 for linear alkanes adsorption. J. Chem. Eng. Data 2017, 62, 2030–2036.

    CAS  Article  Google Scholar 

  384. [384]

    Flügel, E. A.; Ranft, A.; Haase, F.; Lotsch, B. V. Synthetic routes toward MOF nanomorphologies. J. Mater. Chem. 2012, 22, 10119–10133.

    Article  CAS  Google Scholar 

  385. [385]

    Khan, N. A.; Jhung, S. H. Synthesis of metal-organic frameworks (MOFs) with microwave or ultrasound: Rapid reaction, phase-selectivity, and size reduction. Coord. Chem. Rev. 2015, 285, 11–23.

    CAS  Article  Google Scholar 

  386. [386]

    Wang, K.; Gu, J. W.; Yin, N. Efficient removal of Pb(II) and Cd(II) using NH2-functionalized Zr-MOFs via rapid microwave-promoted synthesis. Ind. Eng. Chem. Res. 2017, 56, 1880–1887.

    CAS  Article  Google Scholar 

  387. [387]

    Qiu, L. G.; Li, Z. Q.; Wu, Y.; Wang, W.; Xu, T.; Jiang, X. Facile synthesis of nanocrystals of a microporous metal-organic framework by an ultrasonic method and selective sensing of organoamines. Chem. Commun. (Camb.) 2008, 3642–3644.

  388. [388]

    Jung, D. W.; Yang, D. A.; Kim, J.; Kim, J.; Ahn, W. S. Facile synthesis of MOF-177 by a sonochemical method using 1-methyl-2-pyrrolidinone as a solvent. Dalton Trans. 2010, 39, 2883–2887.

    CAS  Article  Google Scholar 

  389. [389]

    Cheng, X. Q.; Zhang, A. F.; Hou, K. K.; Liu, M.; Wang, Y. X.; Song, C. S.; Zhang, G. L.; Guo, X. W. Size- and morphology-controlled NH2-MIL-53(Al) prepared in DMF-water mixed solvents. Dalton Trans. 2013, 42, 13698–13705.

    CAS  Article  Google Scholar 

  390. [390]

    Zhang, B. X.; Zhang, J. L.; Liu, C. C.; Sang, X. X.; Peng, L.; Ma, X.; Wu, T. B.; Han, B. X.; Yang, G. Y. Solvent determines the formation and properties of metal-organic frameworks. RSC Adv. 2015, 5, 37691–37696.

    CAS  Article  Google Scholar 

  391. [391]

    Schaate, A.; Roy, P.; Godt, A.; Lippke, J.; Waltz, F.; Wiebcke, M.; Behrens, P. Modulated synthesis of Zr-based metal-organic frameworks: From nano to single crystals. Chem.—Eur. J. 2011, 17, 6643- 6651.

    CAS  Article  Google Scholar 

  392. [392]

    Morris, W.; Wang, S. Z.; Cho, D.; Auyeung, E.; Li, P.; Farha, O. K.; Mirkin, C. A. Role of modulators in controlling the colloidal stability and polydispersity of the UiO-66 metal-organic framework. ACS Appl. Mater. Interfaces 2017, 9, 33413–33418.

    CAS  Article  Google Scholar 

  393. [393]

    Venna, S. R.; Jasinski, J. B.; Carreon, M. A. Structural evolution of zeolitic imidazolate framework-8. J. Am. Chem. Soc. 2010, 132, 18030–18033.

    CAS  Article  Google Scholar 

  394. [394]

    Rojas, S.; Carmona, F. J.; Maldonado, C. R.; Horcajada, P.; Hidalgo, T.; Serre, C.; Navarro, J. A. R.; Barea, E. Nanoscaled zinc pyrazolate metal-organic frameworks as drug-delivery systems. Inorg. Chem. 2016, 55, 2650–2663.

    CAS  Article  Google Scholar 

  395. [395]

    Xia, W.; Zhu, J. H.; Guo, W. H.; An, L.; Xia, D. G.; Zou, R. Q. Well-defined carbon polyhedrons prepared from nano metal-organic frameworks for oxygen reduction. J. Mater. Chem. A 2014, 2, 11606–11613.

    CAS  Article  Google Scholar 

  396. [396]

    Feng, D. W.; Wang, K. C.; Wei, Z. W.; Chen, Y. P.; Simon, C. M.; Arvapally, R. K.; Martin, R. L.; Bosch, M.; Liu, T. F.; Fordham, S. et al. Kinetically tuned dimensional augmentation as a versatile synthetic route towards robust metal-organic frameworks. Nat. Commun. 2014, 5, 5723.

    CAS  Article  Google Scholar 

  397. [397]

    Liu, Y.; Yang, Y.; Sun, Y. J.; Song, J. B.; Rudawski, N. G.; Chen, X. Y.; Tan, W. H. Ostwald ripening-mediated grafting of metal-organic frameworks on a single colloidal nanocrystal to form uniform and controllable MXF. J. Am. Chem. Soc. 2019, 141, 7407–7413.

    CAS  Article  Google Scholar 

  398. [398]

    Dang, Y. T.; Hoang, H. T.; Dong, H. C.; Bui, K. B. T.; Nguyen, L. H. T.; Phan, T. B.; Kawazoe, Y.; Doan, T. L. H. Microwave-assisted synthesis of nano Hf- and Zr-based metal-organic frameworks for enhancement of curcumin adsorption. Microp. Mesop. Mater. 2020, 298, 110064.

    CAS  Article  Google Scholar 

  399. [399]

    Majewski, M. B.; Noh, H.; Islamoglu, T.; Farha, O. K. NanoMOFs: Little crystallites for substantial applications. J. Mater. Chem. A 2018, 6, 7338–7350.

    CAS  Article  Google Scholar 

  400. [400]

    Armstrong, M. R.; Senthilnathan, S.; Balzer, C. J.; Shan, B. H.; Chen, L.; Mu, B. Particle size studies to reveal crystallization mechanisms of the metal organic framework HKUST-1 during sonochemical synthesis. Ultrason. Sonochem. 2017, 34, 365–370.

    CAS  Article  Google Scholar 

  401. [401]

    Joharian, M.; Morsali, A. Ultrasound-assisted synthesis of two new fluorinated metal-organic frameworks (F-MOFs) with the high surface area to improve the catalytic activity. J. Solid State Chem. 2019, 270, 135–146.

    CAS  Article  Google Scholar 

  402. [402]

    Laybourn, A.; Katrib, J.; Ferrari-John, R. S.; Morris, C. G.; Yang, S. H.; Udoudo, O.; Easun, T. L.; Dodds, C.; Champness, N. R.; Kingman, S. W. et al. Metal-organic frameworks in seconds via selective microwave heating. J. Mater. Chem. A 2017, 5, 7333–7338.

    CAS  Article  Google Scholar 

  403. [403]

    Pichon, A.; Lazuen-Garay, A.; James, S. L. Solvent-free synthesis of a microporous metal-organic framework. CrystEngComm 2006, 8, 211–214.

    CAS  Article  Google Scholar 

  404. [404]

    Chen, D.; Zhao, J. H.; Zhang, P. F.; Dai, S. Mechanochemical synthesis of metal-organic frameworks. Polyhedron 2019, 162, 59–64.

    CAS  Article  Google Scholar 

  405. [405]

    Klimakow, M.; Klobes, P.; Thünemann, A. F.; Rademann, K.; Emmerling, F. Mechanochemical synthesis of metal-organic frameworks: A fast and facile approach toward quantitative yields and high specific surface areas. Chem. Mater. 2010, 22, 5216–5221.

    CAS  Article  Google Scholar 

  406. [406]

    Demessence, A.; Horcajada, P.; Serre, C.; Boissière, C.; Grosso, D.; Sanchez, C.; Férey, G. Elaboration and properties of hierarchically structured optical thin films of MIL-101(Cr). Chem. Commun. (Camb.) 2009, 7149–7151.

  407. [407]

    Boissiere, C.; Grosso, D.; Lepoutre, S.; Nicole, L.; Bruneau, A. B.; Sanchez, C. Porosity and mechanical properties of mesoporous thin films assessed by environmental ellipsometric porosimetry. Langmuir 2005, 21, 12362–12371.

    CAS  Article  Google Scholar 

  408. [408]

    Horcajada, P.; Serre, C.; Grosso, D.; Boissière, C.; Perruchas, S.; Sanchez, C.; Férey, G. Colloidal route for preparing optical thin films of nanoporous metal-organic frameworks. Adv. Mater. 2009, 21, 1931–1935.

    CAS  Article  Google Scholar 

  409. [409]

    Hinterholzinger, F. M.; Ranft, A.; Feckl, J. M.; Rühle, B.; Bein, T.; Lotsch, B. V. One-dimensional metal-organic framework photonic crystals used as platforms for vapor sorption. J. Mater. Chem. 2012, 22, 10356–10362.

    CAS  Article  Google Scholar 

  410. [410]

    Kim, D. Y.; Joshi, B. N.; Lee, J. G.; Lee, J. H.; Lee, J. S.; Hwang, Y. K.; Chang, J. S.; Al-Deyab, S.; Tan, J. C.; Yoon, S. S. Supersonic cold spraying for zeolitic metal-organic framework films. Chem. Eng. J. 2016, 295, 49–56.

    CAS  Article  Google Scholar 

  411. [411]

    Huang, X.; Sheng, P.; Tu, Z. Y.; Zhang, F. J.; Wang, J. H.; Geng, H.; Zou, Y.; Di, C. A.; Yi, Y. P.; Sun, Y. M. et al. A two-dimensional n-d conjugated coordination polymer with extremely high electrical conductivity and ambipolar transport behaviour. Nat. Commun. 2015, 6, 7408.

    CAS  Article  Google Scholar 

  412. [412]

    Wu, G. D.; Huang, J. H.; Zang, Y.; He, J.; Xu, G. Porous field-effect transistors based on a semiconductive metal-organic framework. J. Am. Chem. Soc. 2017, 139, 1360–1363.

    CAS  Article  Google Scholar 

  413. [413]

    Lu, G.; Farha, O. K.; Zhang, W. N.; Huo, F. W.; Hupp, J. T. Engineering ZIF-8 thin films for hybrid MOF-based devices. Adv. Mater. 2012, 24, 3970–3974.

    CAS  Article  Google Scholar 

  414. [414]

    Tao, J. F.; Wang, X. R.; Sun, T.; Cai, H.; Wang, Y. X.; Lin, T.; Fu, D. L.; Ting, L. L. Y.; Gu, Y. D.; Zhao, D. Hybrid Photonic cavity with metal-organic framework coatings for the ultra-sensitive detection of volatile organic compounds with high immunity to humidity. Sci. Rep. 2017, 7, 41640.

    CAS  Article  Google Scholar 

  415. [415]

    Zhuang, J. L.; Ar, D.; Yu, X. J.; Liu, J. X.; Terfort, A. Patterned deposition of metal-organic frameworks onto plastic, paper, and textile substrates by inkjet printing of a precursor solution. Adv. Mater. 2013, 25, 4631–4635.

    CAS  Article  Google Scholar 

  416. [416]

    da Luz, L. L.; Milani, R.; Felix, J. F.; Ribeiro, I. R. B.; Talhavini, M.; Neto, B. A. D.; Chojnacki, J.; Rodrigues, M. O.; Júnior, S. A. Inkjet printing of lanthanide-organic frameworks for anti-counterfeiting applications. ACS Appl. Mater. Interfaces 2015, 7, 27115–27123.

    CAS  Article  Google Scholar 

  417. [417]

    Fang, S. Y.; Zhang, P.; Gong, J. L.; Tang, L.; Zeng, G. M.; Song, B.; Cao, W. C.; Li, J.; Ye, J. Construction of highly water-stable metal-organic framework UiO-66 thin-film composite membrane for dyes and antibiotics separation. Chem. Eng. J. 2020, 385, 123400.

    CAS  Article  Google Scholar 

  418. [418]

    Jeazet, H. B. T.; Staudt, C.; Janiak, C. A method for increasing permeability in O2/N2 separation with mixed-matrix membranes made of water-stable MIL-101 and polysulfone. Chem. Commun. (Camb.) 2012, 48, 2140–2142.

    CAS  Article  Google Scholar 

  419. [419]

    Wang, Q. J.; Ke, T.; Yang, L. F.; Zhang, Z. Q.; Cui, X. L.; Bao, Z. B.; Ren, Q. L.; Yang, Q. W.; Xing, H. B. Separation of xe from kr with record selectivity and productivity in anion-pillared ultramicroporous materials by inverse size-sieving. Angew. Chem., Int. Ed. 2020, 59, 3423–3428.

    CAS  Article  Google Scholar 

  420. [420]

    Li, C.; Wu, R. J.; Zou, J. C.; Zhang, T. T.; Zhang, S. F.; Zhang, Z. Q.; Hu, X.; Yan, Y. Q.; Ling, X. M. MNPs@anionic MOFs/ERGO with the size selectivity for the electrochemical determination of H2O2 released from living cells. Biosens. Bioelectron. 2018, 116, 81–88.

    CAS  Article  Google Scholar 

  421. [421]

    Du, L. T.; Lu, Z. Y.; Zheng, K. Y.; Wang, J. Y.; Zheng, X.; Pan, Y.; You, X. Z.; Bai, J. F. Fine-tuning pore size by shifting coordination sites of ligands and surface polarization of metal-organic frameworks to sharply enhance the selectivity for CO2. J. Am. Chem. Soc. 2013, 135, 562–565.

    CAS  Article  Google Scholar 

  422. [422]

    Sharma, S.; Ghosh, S. K. Metal-organic framework-based selective sensing of biothiols via chemidosimetric approach in water. ACS Omega 2018, 3, 254–258.

    CAS  Article  Google Scholar 

  423. [423]

    Chen, C. H.; Wang, X. S.; Li, L.; Huang, Y. B.; Cao, R. Highly selective sensing of Fe3+ by an anionic metal-organic framework containing uncoordinated nitrogen and carboxylate oxygen sites. Dalton Trans. 2018, 47, 3452–3458.

    CAS  Article  Google Scholar 

  424. [424]

    Baati, T.; Njim, L.; Neffati, F.; Kerkeni, A.; Bouttemi, M.; Gref, R.; Najjar, M. F.; Zakhama, A.; Couvreur, P.; Serre, C. et al. In depth analysis of the in vivo toxicity of nanoparticles of porous iron(III) metal-organic frameworks. Chem. Sci. 2013, 4, 1597–1607.

    CAS  Article  Google Scholar 

  425. [425]

    Grall, R.; Hidalgo, T.; Delic, J.; Garcia-Marquez, A.; Chevillard, S.; Horcajada, P. In vitro biocompatibility of mesoporous metal (III; Fe, Al, Cr) trimesate MOF nanocarriers. J. Mater. Chem. B 2015, 3, 8279–8292.

    CAS  Article  Google Scholar 

  426. [426]

    Abazari, R.; Mahjoub, A. R.; Ataei, F.; Morsali, A.; Carpenter-Warren, C. L.; Mehdizadeh, K.; Slawin, A. M. Z. Chitosan immobilization on Bio-MOF nanostructures: A biocompatible pH-responsive nanocarrier for doxorubicin release on MCF-7 cell lines of human breast cancer. Inorg. Chem. 2018, 57, 13364–13379.

    CAS  Article  Google Scholar 

  427. [427]

    Neisi, Z.; Ansari-Asl, Z.; Jafarinejad-Farsangi, S.; Tarzi, M. E.; Sedaghat, T.; Nobakht, V. Synthesis, characterization and biocompatibility of polypyrrole/Cu(II) metal-organic framework nanocomposites. Colloids Surf. B: Biointerfaces 2019, 178, 365–376.

    CAS  Article  Google Scholar 

  428. [428]

    Zheng, Q. Y.; Li, J.; Yuan, W.; Liu, X. M.; Tan, L.; Zheng, Y. F.; Yeung, K. W. K.; Wu, S. L. Metal-organic frameworks incorporated polycaprolactone film for enhanced corrosion resistance and biocompatibility of mg alloy. ACS Sustain. Chem. Eng. 2019, 7, 18114–18124.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Key Research and Development Project of Zhejiang province (No. 2021C05005).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xian Huang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Ling, W., Liu, X. et al. Metal-organic frameworks as functional materials for implantable flexible biochemical sensors. Nano Res. 14, 2981–3009 (2021). https://doi.org/10.1007/s12274-021-3421-0

Download citation

Keywords

  • flexible electronics
  • metal-organic frameworks
  • biosensors
  • chemical sensing
  • implantable devices