Skip to main content

A versatile ligand-assisted cooperative template method to synthesize multi-shelled mesoporous hollow metal hydroxide and oxide nanospheres as catalytic reactors


Nowadays, multi-shelled mesoporous hollow metal oxide nanospheres have drawn a lot of attention due to their large internal space, nanometer scaled shell thickness, high specific surface area and well-defined mesopores, of which unique nanostructure endows metallic oxides with enhanced properties. In this thesis, we have studied and proposed a versatile ligand-assisted cooperative template method to synthesize multi-shelled mesoporous hollow metal hydroxides and oxides nanospheres, in which silica nanospheres act as sacrificial templates and the coordination interaction between metal ions and surfactant can be cooperatively amplified by using chelating ligand (ascorbic acid) as a co-template. The synthesized metal hydroxides and oxides nanospheres possess stable hollow structure, uniform spherical morphology and tunable diameter from 270 to 690 nm. All the multi-shelled mesoporous hollow metal hydroxide and metal oxide nanospheres exhibit high surface areas (up to 640 m2/g). The obtained Au nanoparticles loaded composited nanospheres exhibit excellent reactivity for solvent-free aerobic oxidation of ethylbenzene with high activity (28.2%) and selectivity (87%).


  1. [1]

    Fang, X. L.; Zhao, X. J.; Fang, W. J.; Chen, C.; Zheng, N. F. Self-templating synthesis of hollow mesoporous silica and their applications in catalysis and drug delivery. Nanoscale 2013, 5, 2205–2218.

    CAS  Article  Google Scholar 

  2. [2]

    Fang, Y.; Zheng, G. F.; Yang, J. P.; Tang, H. S.; Zhang, Y. F.; Kong, B.; Lv, Y. Y.; Xu, C. J.; Asiri, A. M.; Zi, J. et al. Dual-pore mesoporous carbon@silica composite core-shell nanospheres for multidrug delivery. Angew. Chem., Int. Ed. 2014, 53, 5366–5370.

    CAS  Article  Google Scholar 

  3. [3]

    Lan, K.; Liu, Y.; Zhang, W.; Liu, Y.; Elzatahry, A.; Wang, R. C.; Xia, Y. Y.; Al-Dhayan, D.; Zheng, N. F.; Zhao, D. Y. Uniform ordered two-dimensional mesoporous TiO2 nanosheets from hydrothermal-induced solvent-confined monomicelle assembly. J. Am. Chem. Soc. 2018, 140, 4135–4143.

    CAS  Article  Google Scholar 

  4. [4]

    Qiao, Z. A.; Zhang, L.; Guo, M. Y.; Liu, Y. L.; Huo, Q. S. Synthesis of mesoporous silica nanoparticles via controlled hydrolysis and condensation of silicon alkoxide. Chem. Mater. 2009, 21, 3823–3829.

    CAS  Article  Google Scholar 

  5. [5]

    Zhao, Y. S.; Wan, J. W.; Yao, H. Y.; Zhang, L. J.; Lin, K. F.; Wang, L.; Yang, N. L.; Liu, D. B.; Song, L.; Zhu, J. et al. Few-layer graphdiyne doped with sp-hybridized nitrogen atoms at acetylenic sites for oxygen reduction electrocatalysis. Nat. Chem. 2018, 10, 924–931.

    CAS  Article  Google Scholar 

  6. [6]

    Tong, Y. Y.; Guo, H. P.; Liu, D. L.; Yan, X.; Su, P. P.; Liang, J.; Zhou, S.; Liu, J.; Lu, G. Q.; Dou, S. X. Vacancy engineering of iron-doped W18O49 nanoreactors for low-barrier electrochemical nitrogen reduction. Angew. Chem., Int. Ed. 2020, 59, 7356–7361.

    CAS  Article  Google Scholar 

  7. [7]

    Tian, H.; Wang, S. C.; Zhang, C.; Veder, J. P.; Pan, J.; Jaroniec, M.; Wang, L. Z.; Liu, J. Design and synthesis of porous ZnTiO3/TiO2 nanocages with heterojunctions for enhanced photocatalytic H2 production. J. Mater. Chem. A 2017, 5, 11615–11622.

    CAS  Article  Google Scholar 

  8. [8]

    Wang, T.; Guan, B. Y.; Wang, X.; Li, X.; Zhang, Y.; Qiao, Z. A.; Liu, Y. L.; Huo, Q. S. Mesostructured TiO2 gated periodic mesoporous organosilica-based nanotablets for multistimuli-responsive drug release. Small 2015, 11, 5907–5911.

    CAS  Article  Google Scholar 

  9. [9]

    Qiao, Z. A.; Guo, B. K.; Binder, A. J.; Chen, J. H.; Veith, G. M.; Dai, S. Controlled synthesis of mesoporous carbon nanostructures via a “silica-assisted” strategy. Nano Lett. 2013, 13, 207–212.

    CAS  Article  Google Scholar 

  10. [10]

    Ma, Y. L.; Zhang, Y.; Wang, X.; Fan, M. H.; Li, K. Q.; Wang, T.; Liu, Y. L.; Huo, Q. S.; Qiao, Z. A.; Dai, S. A chelation-induced cooperative self-assembly methodology for the synthesis of mesoporous metal hydroxide and oxide nanospheres. Nanoscale 2018, 10, 5731–5737.

    CAS  Article  Google Scholar 

  11. [11]

    Wang, L. M.; Tian, B. Z.; Fan, J.; Liu, X. Y.; Yang, H. F.; Yu, C. Z.; Tu, B.; Zhao, D. Y. Block copolymer templating syntheses of ordered large-pore stable mesoporous aluminophosphates and Fe-aluminophosphate based on an “acid-base pair” route. Microporous Mesoporous Mater. 2004, 67, 123–133.

    CAS  Article  Google Scholar 

  12. [12]

    Wang, L.; Wan, J. W.; Zhao, Y. S.; Yang, N. L.; Wang, D. Hollow multi-shelled structures of Co3O4 dodecahedron with unique crystal orientation for enhanced photocatalytic CO2 reduction. J. Am. Chem. Soc. 2019, 141, 2238–2241.

    CAS  Article  Google Scholar 

  13. [13]

    Jiao, C. W.; Wang, Z. M.; Zhao, X. X.; Wang, H.; Wang, J.; Yu, R. B.; Wang, D. Triple-shelled manganese-cobalt oxide hollow dodecahedra with highly enhanced performance for rechargeable alkaline batteries. Angew. Chem., Int. Ed. 2019, 58, 996–1001.

    CAS  Article  Google Scholar 

  14. [14]

    Ren, H.; Yu, R. B.; Qi, J.; Zhang, L. J.; Jin, Q.; Wang, D. Hollow multishelled heterostructured anatase/TiO2(B) with superior rate capability and cycling performance. Adv. Mater. 2019, 31, 1805754.

    Article  CAS  Google Scholar 

  15. [15]

    Huang, Z.; Pan, H. Y.; Yang, W. J.; Zhou, H. H.; Gao, N.; Fu, C. P.; Li, S. C.; Li, H. X.; Kuang, Y. F. In situ self-template synthesis of Fe-N-doped double-shelled hollow carbon microspheres for oxygen reduction reaction. ACS Nano 2018, 12, 208–216.

    CAS  Article  Google Scholar 

  16. [16]

    Zhang, J. T.; Li, M.; Liang, X.; Zhuang, Z. B. Multishelled FeCo@FeCoP@C hollow spheres as highly efficient hydrogen evolution catalysts. ACS Appl. Mater. Interfaces 2019, 11, 1267–1273.

    CAS  Article  Google Scholar 

  17. [17]

    Xu, M.; Yu, Q.; Liu, Z. H.; Lv, J. S.; Lian, S. T.; Hu, B.; Mai, L. Q.; Zhou, L. Tailoring porous carbon spheres for supercapacitors. Nanoscale 2018, 10, 21604–21616.

    CAS  Article  Google Scholar 

  18. [18]

    Guerrero-Martínez, A.; Pérez-Juste, J.; Liz-Marzán, L. M. Recent progress on silica coating of nanoparticles and related nanomaterials. Adv. Mater. 2010, 22, 1182–1195.

    Article  CAS  Google Scholar 

  19. [19]

    Li, W.; Zhao, D. Y. Extension of the Stöber method to construct mesoporous SiO2 and TiO2 shells for uniform multifunctional core-shell structures. Adv. Mater. 2013, 25, 142–149.

    CAS  Article  Google Scholar 

  20. [20]

    Zhuo, S. F.; Shi, Y.; Liu, L. M.; Li, R. Y.; Shi, L.; Anjum, D. H.; Han, Y.; Wang, P. Dual-template engineering of triple-layered nanoarray electrode of metal chalcogenides sandwiched with hydrogen-substituted graphdiyne. Nat. Commun. 2018, 9, 3132.

    Article  CAS  Google Scholar 

  21. [21]

    Xu, S. M.; Hessel, C. M.; Ren, H.; Yu, R. B.; Jin, Q.; Yang, M.; Zhao, H. J.; Wang, D. α-Fe2O3 multi-shelled hollow microspheres for lithium ion battery anodes with superior capacity and charge retention. Energy Environ. Sci. 2014, 7, 632–637.

    CAS  Article  Google Scholar 

  22. [22]

    Wang, P. Y.; Sun, S. M.; Jiang, Y.; Cai, Q.; Zhang, Y. H.; Zhou, L. M.; Fang, S. M.; Liu, J.; Yu, Y. Hierarchical microtubes constructed by MoS2 nanosheets with enhanced sodium storage performance. ACS Nano 2020, 14, 15577–15586.

    Article  CAS  Google Scholar 

  23. [23]

    You, F. F.; Wan, J. W.; Qi, J.; Mao, D.; Yang, N. L.; Zhang, Q. H.; Gu, L.; Wang, D. Lattice distortion in hollow multi-shelled structures for efficient visible-light CO2 reduction with a SnS2/SnO2 junction. Angew. Chem., Int. Ed. 2020, 59, 721–724.

    CAS  Article  Google Scholar 

  24. [24]

    Jin, R. X.; Yang, Y.; Xing, Y.; Chen, L.; Song, S. Y.; Jin, R. C. Facile synthesis and properties of hierarchical double-walled copper silicate hollow nanofibers assembled by nanotubes. ACS Nano 2014, 8, 3664–3670.

    CAS  Article  Google Scholar 

  25. [25]

    Bi, R. Y.; Xu, N.; Ren, H.; Yang, N. L.; Sun, Y. G.; Cao, A. M.; Yu, R. B.; Wang, D. A hollow multi-shelled structure for charge transport and active sites in lithium-ion capacitors. Angew. Chem., Int. Ed. 2020, 59, 4865–4868.

    CAS  Article  Google Scholar 

  26. [26]

    Luo, D.; Deng, Y. P.; Wang, X. L.; Li, G. R.; Wu, J.; Fu, J.; Lei, W.; Liang, R. L.; Liu, Y. S.; Ding, Y. L. et al. Tuning shell numbers of transition metal oxide hollow microspheres toward durable and superior lithium storage. ACS Nano 2017, 11, 11521–11530.

    CAS  Article  Google Scholar 

  27. [27]

    Wang, M. F.; Deng, K. R.; Lü, W.; Deng, X. R.; Li, K.; Shi, Y. S.; Ding, B. B.; Cheng, Z. Y.; Xing, B. G.; Han, G. et al. Rational design of multifunctional Fe@γ-Fe2O3@H-TiO2 nanocomposites with enhanced magnetic and photoconversion effects for wide applications: From photocatalysis to imaging-guided photothermal cancer therapy. Adv. Mater. 2018, 30, 1706747.

    Article  CAS  Google Scholar 

  28. [28]

    Lu, A. H.; Salabas, E. L.; Schüth, F. Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angew. Chem., Int. Ed. 2007, 46, 1222–1244.

    CAS  Article  Google Scholar 

  29. [29]

    Alagarasi, A.; Rajalakshmi, P. U.; Shanthi, K.; Selvam, P. Solar-light driven photocatalytic activity of mesoporous nanocrystalline TiO2, SnO2, and TiO2-SnO2 composites. Mater. Today Sustain. 2019, 5, 100016.

    Article  Google Scholar 

  30. [30]

    Dong, Z. H.; Lai, X. Y.; Halpert, J. E.; Yang, N. L.; Yi, L. X.; Zhai, J.; Wang, D.; Tang, Z. Y.; Jiang, L. Accurate control of multishelled ZnO hollow microspheres for dye-sensitized solar cells with high efficiency. Adv. Mater. 2012, 24, 1046–1049.

    CAS  Article  Google Scholar 

  31. [31]

    Gong, F. L.; Ye, S.; Liu, M. M.; Zhang, J. W.; Gong, L. H.; Zeng, G.; Meng, E. C.; Su, P. P.; Xie, K. F.; Zhang, Y. H. et al. Boosting electrochemical oxygen evolution over yolk-shell structured O-MoS2 nanoreactors with sulfur vacancy and decorated Pt nanoparticles. Nano Energy 2020, 78, 105284.

    CAS  Article  Google Scholar 

  32. [32]

    Boyjoo, Y.; Wang, M. W.; Pareek, V. K.; Liu, J.; Jaroniec, M. Synthesis and applications of porous non-silica metal oxide submicrospheres. Chem. Soc. Rev. 2016, 45, 6013–6047.

    CAS  Article  Google Scholar 

  33. [33]

    Wang, H.; Qi, J.; Yang, N. L.; Cui, W.; Wang, J. Y.; Li, Q. H.; Zhang, Q. H.; Yu, X. Q.; Gu, L.; Li, J. et al. Dual-defects adjusted crystal-field splitting of LaCo1−xNi,O3−δ hollow multishelled structures for efficient oxygen evolution. Angew. Chem., Int. Ed. 2020, 59, 19691–19695.

    CAS  Article  Google Scholar 

  34. [34]

    Wang, H.; Mao, D.; Qi, J.; Zhang, Q. H.; Ma, X. H.; Song, S. Y.; Gu, L.; Yu, R. B.; Wang, D. Hollow multishelled structure of heterogeneous Co3O4-CeO2−x nanocomposite for CO catalytic oxidation. Adv. Funct. Mater. 2019, 29, 1806588.

    Article  CAS  Google Scholar 

  35. [35]

    Li, B. T.; Huang, J.; Wang, X. J. Copper-cobalt bimetallic oxides-doped alumina hollow spheres: A highly efficient catalyst for epoxidation of styrene. Chem. Res. Chin. Univ. 2019, 35, 125–132.

    CAS  Article  Google Scholar 

  36. [36]

    Zhang, P. F.; Liu, H.; Liang, H. O.; Bai, J.; Li, C. P. Enhanced charge separation of α-Bi2O3-BiOI hollow nanotube for photodegradation antibiotic under visible light. Chem. Res. Chin. Univ. 2020, 36, 1227–1233.

    CAS  Article  Google Scholar 

  37. [37]

    Wang, H. H.; Zhu, X. H.; Yang, Y. L.; Chen, C. Y.; Lin, Q. Y.; He, Y.; Yin, X. F.; Lu, C. H.; Yang, H. H. Rational design of hollow multilayer heterogeneous organic framework for photochemical applications. Mater. Chem. Front. 2020, 4, 2646.

    CAS  Article  Google Scholar 

  38. [38]

    Wei, Y. Z.; Wan, J. W.; Yang, N. L.; Yang, Y.; Ma, Y. W.; Wang, S. C.; Wang, J. Y.; Yu, R. B.; Gu, L.; Wang, L. H. et al. Efficient sequential harvesting of solar light by heterogeneous hollow shells with hierarchical pores. Natl. Sci. Rev. 2020, 7, 1638–1646.

    CAS  Article  Google Scholar 

  39. [39]

    Florent, M.; Xue, C. F.; Zhao, D. Y.; Goldfarb, D. Formation mechanism of cubic mesoporous carbon monolith synthesized by evaporation-induced self-assembly. Chem. Mater. 2012, 24, 383–392.

    CAS  Article  Google Scholar 

  40. [40]

    Wei, H.; Lv, Y. Y.; Han, L.; Tu, B.; Zhao, D. Y. Facile synthesis of transparent mesostructured composites and corresponding crack-free mesoporous carbon/silica monoliths. Chem. Mater. 2011, 23, 2353–2360.

    CAS  Article  Google Scholar 

  41. [41]

    Yang, P. D.; Zhao, D. Y.; Margolese, D. L.; Chmelka, B. F.; Stucky, G. D. Block copolymer templating syntheses of mesoporous metal oxides with large ordering lengths and semicrystalline framework. Chem. Mater. 1999, 11, 2813–2826.

    CAS  Article  Google Scholar 

  42. [42]

    Guan, B. Y.; Wang, T.; Zeng, S. J.; Wang, X.; An, D.; Wang, D. M.; Cao, Y.; Ma, D. X.; Liu, Y. L.; Huo, Q. S. A versatile cooperative template-directed coating method to synthesize hollow and yolk-shell mesoporous zirconium titanium oxide nanospheres as catalytic reactors. Nano Res. 2014, 7, 246–262.

    CAS  Article  Google Scholar 

  43. [43]

    Yuan, C. H.; Wu, T.; Mao, J.; Chen, T.; Li, Y. T.; Li, M.; Xu, Y. T.; Zeng, B. R.; Luo, W. A.; Yu, L. K. et al. Predictable particle engineering: Programming the energy level, carrier generation, and conductivity of core-shell particles. J. Am. Chem. Soc. 2018, 140, 7629–7636.

    CAS  Article  Google Scholar 

  44. [44]

    Liu, Y. L.; Zhang, P. F.; Liu, J. M.; Wang, T.; Huo, Q. S.; Yang, L.; Sun, L.; Qiao, Z. A.; Dai, S. Gold cluster-CeO2 nanostructured hybrid architectures as catalysts for selective oxidation of inert hydrocarbons. Chem. Mater. 2018, 30, 8579–8586.

    CAS  Article  Google Scholar 

  45. [45]

    Zhang, P. F.; Qiao, Z. A.; Jiang, X. G.; Veith, G. M.; Dai, S. Nanoporous ionic organic networks: Stabilizing and supporting gold nanoparticles for catalysis. Nano Lett. 2015, 15, 823–828.

    CAS  Article  Google Scholar 

  46. [46]

    Gao, J.; Tong, X. L.; Li, X. Q.; Miao, H.; Xu, J. The efficient liquid-phase oxidation of aromatic hydrocarbons by molecular oxygen in the presence of MnCO3. J. Chem. Technol. Biotechnol. 2007, 82, 620–625.

    CAS  Article  Google Scholar 

  47. [47]

    Fu, L. L.; Zhao, S. F.; Chen, Y.; Liu, Z. G. One-pot synthesis of mesoporous silica hollow spheres with Mn-N-C integrated into the framework for ethylbenzene oxidation. Chem. Commun. 2016, 52, 5577–5580.

    CAS  Article  Google Scholar 

  48. [48]

    Wang, L.; Zhu, Y. H.; Wang, J. Q.; Liu, F. D.; Huang, J. F.; Meng, X. J.; Basset, J. M.; Han, Y.; Xiao, F. S. Two-dimensional gold nanostructures with high activity for selective oxidation of carbon-hydrogen bonds. Nat. Commun. 2015, 6, 6957.

    CAS  Article  Google Scholar 

  49. [49]

    Xu, S. D.; Li, H. X.; Du, J.; Tang, J. H.; Wang, L. Subnanometric gold clusters on CeO2 with maximized strong metal-support interactions for aerobic oxidation of carbon-hydrogen bonds. ACS Sustain. Chem. Eng. 2018, 6, 6418–6424.

    CAS  Article  Google Scholar 

  50. [50]

    Zhang, P. F.; Lu, H. F.; Zhou, Y.; Zhang, L.; Wu, Z. L.; Yang, S. Z.; Shi, H. L.; Zhu, Q. L.; Chen, Y. F.; Dai, S. Mesoporous MnCeOx solid solutions for low temperature and selective oxidation of hydrocarbons. Nat. Commun. 2015, 6, 8446.

    CAS  Article  Google Scholar 

  51. [51]

    Zhang, P. F.; Gong, Y. T.; Li, H. R.; Chen, Z. R.; Wang, Y. Solvent-free aerobic oxidation of hydrocarbons and alcohols with Pd@N-doped carbon from glucose. Nat. Commun. 2013, 4, 1593.

    Article  CAS  Google Scholar 

  52. [52]

    Brutchey, R. L.; Drake, I. J.; Bell, A. T.; Tilley, T. D. Liquid-phase oxidation of alkylaromatics by a H-atom transfer mechanism with a new heterogeneous CoSBA-15 catalyst. Chem. Commun. 2005, 3736–3738.

Download references


This work was supported by the National Natural Science Foundation of China (Nos. 21671073 and 21621001), the “111” Project of the Ministry of Education of China (No. B17020), and Program for JLU Science and Technology Innovative Research Team.

Author information



Corresponding authors

Correspondence to Feng Wei or Zhen-An Qiao.

Electronic Supplementary Material


A versatile ligand-assisted cooperative template method to synthesize multi-shelled mesoporous hollow metal hydroxide and oxide nanospheres as catalytic reactors

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Ma, Y., Zhang, L. et al. A versatile ligand-assisted cooperative template method to synthesize multi-shelled mesoporous hollow metal hydroxide and oxide nanospheres as catalytic reactors. Nano Res. 14, 3260–3266 (2021).

Download citation


  • mesoporous materials
  • multi-shelled structure
  • hollow
  • metal oxide nanospheres
  • aerobic catalytic oxidation