Skip to main content

Flexible organic solar cells for biomedical devices

Abstract

Organic solar cells (OSCs), particularly made based on solution processing methods, have made significant progress over the past decades through the concurrent evolution of organic photovoltaic materials and device engineering. Recently, high power conversion efficiencies around 18% and over 16% have been demonstrated in both rigid and flexible OSCs, respectively. While most of the OSC research has centered on efficiency and cost, their emerging and potential usages in many critical applications, particularly in biomedical fields have been rising. In this mini-review, we will briefly discuss the high-performance organic photovoltaic materials and the representative flexible OSCs to give a scope on the recent rapid development of OSCs. Besides, we will review some progress on the applications of OSCs in biomedical devices and integrated systems. The potential challenges associated with integrating OSCs for biomedical devices will be put forward.

References

  1. [1]

    Service, R. F. Outlook brightens for plastic solar cells. Science 2011, 332, 293.

    CAS  Article  Google Scholar 

  2. [2]

    Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 1995, 270, 1789–1791.

    CAS  Article  Google Scholar 

  3. [3]

    Proctor, C. M.; Kuik, M.; Nguyen, T. Q. Charge carrier recombination in organic solar cells. Prog. Polym. Sci. 2013, 38, 1941–1960.

    CAS  Article  Google Scholar 

  4. [4]

    Deibel, C.; Dyakonov, V. Polymer-fullerene bulk heterojunction solar cells. Rep. Prog. Phys. 2010, 73, 096401.

    Article  CAS  Google Scholar 

  5. [5]

    Dou, L. T.; You, J. B.; Hong, Z. R.; Xu, Z.; Li, G.; Street, R. A.; Yang, Y. 25th anniversary article: A decade of organic/polymeric photovoltaic research. Adv. Mater. 2013, 25, 6642–6671.

    CAS  Article  Google Scholar 

  6. [6]

    Heeger, A. J. 25th anniversary article: Bulk heterojunction solar cells: Understanding the mechanism of operation. Adv. Mater. 2014, 26, 10–28.

    CAS  Article  Google Scholar 

  7. [7]

    Lu, L. Y.; Zheng, T. Y.; Wu, Q. H.; Schneider, A. M.; Zhao, D. L.; Yu, L. P. Recent advances in bulk heterojunction polymer solar cells. Chem. Rev. 2015, 115, 12666–12731.

    CAS  Article  Google Scholar 

  8. [8]

    Gurney, R. S.; Lidzey, D. G.; Wang, T. A review of non-fullerene polymer solar cells: From device physics to morphology control. Rep. Prog. Phys. 2019, 82, 036601.

    CAS  Article  Google Scholar 

  9. [9]

    Cui, Y.; Yao, H. F.; Zhang, J. Q.; Xian, K. H.; Zhang, T.; Hong, L.; Wang, Y. M.; Xu, Y.; Ma, K. Q.; An, C. B. et al. Single-junction organic photovoltaic cells with approaching 18% efficiency. Adv. Mater. 2020, 32, 1908205.

    CAS  Article  Google Scholar 

  10. [10]

    Liu, Q. S.; Jiang, Y. F.; Jin, K.; Qin, J. Q.; Xu, J. G.; Li, W. T.; Xiong, J.; Liu, J. F.; Xiao, Z.; Sun, K. et al. 18% Efficiency organic solar cells. Sci. Bull. 2020, 65, 272–275.

    CAS  Article  Google Scholar 

  11. [11]

    Lin, Y. B.; Firdaus, Y.; Isikgor, F. H.; Nugraha, M. I.; Yengel, E.; Harrison, G. T.; Hallani, R.; El-Labban, A.; Faber, H.; Ma, C. et al. Self-assembled monolayer enables hole transport layer-free organic solar cells with 18% efficiency and improved operational stability. ACS Energy Lett. 2020, 5, 2935–2944.

    CAS  Article  Google Scholar 

  12. [12]

    Meng, L. X.; Zhang, Y. M.; Wan, X. J.; Li, C. X.; Zhang, X.; Wang, Y. B.; Ke, X.; Xiao, Z.; Ding, L. M.; Xia, R. X. et al. Organic and solution-processed tandem solar cells with 17.3% efficiency. Science 2018, 361, 1094–1098.

    CAS  Article  Google Scholar 

  13. [13]

    Zhang, G. Y.; Zhao, J. B.; Chow, P. C. Y.; Jiang, K.; Zhang, J. Q.; Zhu, Z. L.; Zhang, J.; Huang, F.; Yan, H. Nonfullerene acceptor molecules for bulk heterojunction organic solar cells. Chem. Rev. 2018, 118, 3447–3507.

    CAS  Article  Google Scholar 

  14. [14]

    Yan, C. Q.; Barlow, S.; Wang, Z. H.; Yan, H.; Jen, A. K. Y.; Marder, S. R.; Zhan, X. W. Non-fullerene acceptors for organic solar cells. Nat. Rev. Mater. 2018, 3, 18003.

    CAS  Article  Google Scholar 

  15. [15]

    Wadsworth, A.; Moser, M.; Marks, A.; Little, M. S.; Gasparini, N.; Brabec, C. J.; Baran, D.; McCulloch, I. Critical review of the molecular design progress in non-fullerene electron acceptors towards commercially viable organic solar cells. Chem. Soc. Rev. 2019, 48, 1596–1625.

    CAS  Article  Google Scholar 

  16. [16]

    Zhang, X.; Ding, Y. Q.; Feng, H. R.; Gao, H. H.; Ke, X.; Zhang, H. T.; Li, C. X.; Wan, X. J.; Chen, Y. S. Side chain engineering investigation of non-fullerene acceptors for photovoltaic device with efficiency over 15%. Sci. China Chem. 2020, 63, 1799–1806.

    CAS  Article  Google Scholar 

  17. [17]

    Inganäs, O. Organic photovoltaics over three decades. Adv. Mater. 2018, 30, 1800388.

    Article  CAS  Google Scholar 

  18. [18]

    Li, S. X.; Zhan, L. L.; Jin, Y. Z.; Zhou, G. Q.; Lau, T. K.; Qin, R.; Shi, M. M.; Li, C. Z.; Zhu, H. M.; Lu, X. H. et al. Asymmetric electron acceptors for high-efficiency and low-energy-loss organic photovoltaics. Adv. Mater. 2020, 32, 2001160.

    CAS  Article  Google Scholar 

  19. [19]

    Hou, J. H.; Inganäs, O.; Friend, R. H.; Gao, F. Organic solar cells based on non-fullerene acceptors. Nat. Mater. 2018, 17, 119–128.

    CAS  Article  Google Scholar 

  20. [20]

    Xu, G. Y.; Li, Y. W. Metal-microstructure based flexible transparent electrodes and their applications in electronic devices. Nano Select 2020, 1, 169–182.

    Article  Google Scholar 

  21. [21]

    Qin, J. Q.; Lan, L. K.; Chen, S. S.; Huang, F. N.; Shi, H. R.; Chen, W. J.; Xia, H. B.; Sun, K.; Yang, C. Recent progress in flexible and stretchable organic solar cells. Adv. Funct. Mater. 2020, 30, 2002529.

    CAS  Article  Google Scholar 

  22. [22]

    Sun, Y. N.; Chang, M. J.; Meng, L. X.; Wan, X. J.; Gao, H. H.; Zhang, Y. M.; Zhao, K.; Sun, Z. H.; Li, C. X.; Liu, S. R. et al. Flexible organic photovoltaics based on water-processed silver nanowire electrodes. Nat. Electron. 2019, 2, 513–520.

    CAS  Article  Google Scholar 

  23. [23]

    Qu, T. Y.; Zuo, L. J.; Chen, J. D.; Shi, X. L.; Zhang, T.; Li, L.; Shen, K. C.; Ren, H.; Wang, S.; Xie, F. M. et al. Biomimetic electrodes for flexible organic solar cells with efficiencies over 16%. Adv. Opt. Mater. 2020, 8, 2000669.

    CAS  Article  Google Scholar 

  24. [24]

    Qin, F.; Wang, W.; Sun, L. L.; Jiang, X. S.; Hu, L.; Xiong, S. X.; Liu, T. F.; Dong, X. Y.; Li, J.; Jiang, Y. Y. et al. Robust metal ionchelated polymer interfacial layer for ultraflexible non-fullerene organic solar cells. Nat. Commun. 2020, 11, 4508.

    Article  CAS  Google Scholar 

  25. [25]

    Chen, X. B.; Xu, G. Y.; Zeng, G.; Gu, H. W.; Chen, H. Y.; Xu, H. T.; Yao, H. F.; Li, Y. W.; Hou, J. H.; Li, Y. F. Realizing ultrahigh mechanical flexibility and >15% efficiency of flexible organic solar cells via a “welding” flexible transparent electrode. Adv. Mater. 2020, 32, 1908478.

    CAS  Article  Google Scholar 

  26. [26]

    Koo, D.; Jung, S.; Seo, J.; Jeong, G.; Choi, Y.; Lee, J.; Lee, S. M.; Cho, Y.; Jeong, M.; Lee, J. et al. Flexible organic solar cells over 15% efficiency with polyimide-integrated graphene electrodes. Joule 2020, 4, 1021–1034.

    CAS  Article  Google Scholar 

  27. [27]

    Sullivan, P.; Schumann, S.; Da Campo, R.; Howells, T.; Duraud, A.; Shipman, M.; Hatton, R. A.; Jones, T. S. Ultra-high voltage multijunction organic solar cells for low-power electronic applications. Adv. Energy Mater. 2013, 3, 239–244.

    CAS  Article  Google Scholar 

  28. [28]

    Schmidt, D.; Hager, M. D.; Schubert, U. S. Photo-rechargeable electric energy storage systems. Adv. Energy Mater. 2016, 6, 1500369.

    Article  CAS  Google Scholar 

  29. [29]

    Zeng, Q.; Lai, Y. Q.; Jiang, L. X.; Liu, F. Y.; Hao, X. J.; Wang, L. Z.; Green, M. A. Integrated photorechargeable energy storage system: Next-generation power source driving the future. Adv. Energy Mater. 2020, 10, 1903930.

    CAS  Article  Google Scholar 

  30. [30]

    Liu, R. Y.; Takakuwa, M.; Li, A. L.; Inoue, D.; Hashizume, D.; Yu, K.; Umezu, S.; Fukuda, K.; Someya, T. An efficient ultra-flexible photo-charging system integrating organic photovoltaics and supercapacitors. Adv. Energy Mater. 2020, 10, 2000523.

    CAS  Article  Google Scholar 

  31. [31]

    Yao, L.; Rahmanudin, A.; Guijarro, N.; Sivula, K. Organic semiconductor based devices for solar water splitting. Adv. Energy Mater. 2018, 8, 1802585.

    Article  CAS  Google Scholar 

  32. [32]

    Ghobadi, A.; Ulusoy Ghobadi, T. G.; Karadas, F.; Ozbay, E. Semiconductor thin film based metasurfaces and metamaterials for photovoltaic and photoelectrochemical water splitting applications. Adv. Opt. Mater. 2019, 7, 1900028.

    Article  CAS  Google Scholar 

  33. [33]

    Wang, D. G.; Hu, J.; Sherman, B. D.; Sheridan, M. V.; Yan, L.; Dares, C. J.; Zhu, Y.; Li, F.; Huang, Q.; You, W. et al. A molecular tandem cell for efficient solar water splitting. Proc. Natl. Acad. Sci. USA 2020, 117, 13256–13260.

    CAS  Article  Google Scholar 

  34. [34]

    Chen, F. C. Emerging organic and organic/inorganic hybrid photovoltaic devices for specialty applications: Low-level-lighting energy conversion and biomedical treatment. Adv. Opt. Mater. 2019, 7, 1800662.

    Article  CAS  Google Scholar 

  35. [35]

    Yu, K.; Rich, S.; Lee, S.; Fukuda, K.; Yokota, T.; Someya, T. Organic photovoltaics: Toward self-powered wearable electronics. Proc. IEEE 2019, 107, 2137–2154.

    CAS  Article  Google Scholar 

  36. [36]

    Hashemi, S. A.; Ramakrishna, S.; Aberle, A. G. Recent progress in flexible-wearable solar cells for self-powered electronic devices. Energy Environ. Sci. 2020, 13, 685–743.

    CAS  Article  Google Scholar 

  37. [37]

    Mühl, S.; Beyer, B. Bio-organic electronics—overview and prospects for the future. Electronics 2014, 3, 444–461.

    Article  CAS  Google Scholar 

  38. [38]

    Yokota, T.; Zalar, P.; Kaltenbrunner, M.; Jinno, H.; Matsuhisa, N.; Kitanosako, H.; Tachibana, Y.; Yukita, W.; Koizumi, M.; Someya, T. Ultraflexible organic photonic skin. Sci. Adv. 2016, 2, e1501856.

    Article  CAS  Google Scholar 

  39. [39]

    Chen, Z. Y.; Obaid, S. N.; Lu, L. Y. Recent advances in organic optoelectronic devices for biomedical applications. Opt. Mater. Express 2019, 9, 3843–3856.

    CAS  Article  Google Scholar 

  40. [40]

    Ershad, F.; Sim, K.; Thukral, A.; Zhang, Y. S.; Yu, C. J. Invited Article: Emerging soft bioelectronics for cardiac health diagnosis and treatment. APL Mater. 2019, 7, 031301.

    Article  CAS  Google Scholar 

  41. [41]

    Wangatia, L. M.; Yang, S. Y.; Zabihi, F.; Zhu, M. F.; Ramakrishna, S. Biomedical electronics powered by solar cells. Curr. Opin. Biomed. Eng. 2020, 13, 25–31.

    Article  Google Scholar 

  42. [42]

    Lee, G. H.; Moon, H.; Kim, H.; Lee, G. H.; Kwon, W.; Yoo, S.; Myung, D.; Yun, S. H.; Bao, Z. N.; Hahn, S. K. Multifunctional materials for implantable and wearable photonic healthcare devices. Nat. Rev. Mater. 2020, 5, 149–165.

    Article  Google Scholar 

  43. [43]

    Rao, Z. L.; Ershad, F.; Almasri, A.; Gonzalez, L.; Wu, X. Y.; Yu, C. J. Soft electronics for the skin: From health monitors to human-machine interfaces. Adv. Mater. Technol. 2020, 5, 2000233.

    CAS  Article  Google Scholar 

  44. [44]

    Park, S.; Heo, S. W.; Lee, W.; Inoue, D.; Jiang, Z.; Yu, K.; Jinno, H.; Hashizume, D.; Sekino, M.; Yokota, T. et al. Self-powered ultraflexible electronics via nano-grating-patterned organic photovoltaics. Nature 2018, 561, 516–521.

    CAS  Article  Google Scholar 

  45. [45]

    Clarke, T. M.; Durrant, J. R. Charge photogeneration in organic solar cells. Chem. Rev. 2010, 110, 6736–6767.

    CAS  Article  Google Scholar 

  46. [46]

    Pfannmöller, M.; Kowalsky, W.; Schröder, R. R. Visualizing physical, electronic, and optical properties of organic photovoltaic cells. Energy Environ. Sci. 2013, 6, 2871–2891.

    Article  CAS  Google Scholar 

  47. [47]

    Tong, Y.; Xiao, Z.; Du, X. Y.; Zuo, C. T.; Li, Y. L.; Lv, M. L.; Yuan, Y. B.; Yi, C. Y.; Hao, F.; Hua, Y. et al. Progress of the key materials for organic solar cells. Sci. China Chem. 2020, 63, 758–765.

    CAS  Article  Google Scholar 

  48. [48]

    Dang, M. T.; Hirsch, L.; Wantz, G.; Wuest, J. D. Controlling the morphology and performance of bulk heterojunctions in solar cells. Lessons learned from the benchmark poly(3-hexylthiophene): [6,6]-phenyl-C61-butyric acid methyl ester system. Chem. Rev. 2013, 113, 3734–3765.

    CAS  Article  Google Scholar 

  49. [49]

    Zhang, L.; Colella, N. S.; Cherniawski, B. P.; Mannsfeld, S. C. B.; Briseno, A. L. Oligothiophene semiconductors: Synthesis, characterization, and applications for organic devices. ACS Appl. Mater. Interfaces 2014, 6, 5327–5343.

    CAS  Article  Google Scholar 

  50. [50]

    Ye, L.; Zhang, S. Q.; Huo, L. J.; Zhang, M. J.; Hou, J. H. Molecular design toward highly efficient photovoltaic polymers based on two-dimensional conjugated benzodithiophene. Acc. Chem. Res. 2014, 47, 1595–1603.

    CAS  Article  Google Scholar 

  51. [51]

    Lu, L. Y.; Yu, L. P. Understanding low bandgap polymer PTB7 and optimizing polymer solar cells based on it. Adv. Mater. 2014, 26, 4413–4430.

    CAS  Article  Google Scholar 

  52. [52]

    Chen, Y. S.; Wan, X. J.; Long, G. K. High performance photovoltaic applications using solution-processed small molecules. Acc. Chem. Res. 2013, 46, 2645–2655.

    CAS  Article  Google Scholar 

  53. [53]

    Kan, B.; Li, M. M.; Zhang, Q.; Liu, F.; Wan, X. J.; Wang, Y. C.; Ni, W.; Long, G. K.; Yang, X.; Feng, H. R. et al. A series of simple oligomer-like small molecules based on oligothiophenes for solution-processed solar cells with high efficiency. J. Am. Chem. Soc. 2015, 137, 3886–3893.

    CAS  Article  Google Scholar 

  54. [54]

    Coughlin, J. E.; Henson, Z. B.; Welch, G. C.; Bazan, G. C. Design and synthesis of molecular donors for solution-processed high-efficiency organic solar cells. Acc. Chem. Res. 2014, 47, 257–270.

    CAS  Article  Google Scholar 

  55. [55]

    Li, M. M.; Gao, K.; Wan, X. J.; Zhang, Q.; Kan, B.; Xia, R. X.; Liu, F.; Yang, X.; Feng, H. R.; Ni, W. et al. Solution-processed organic tandem solar cells with power conversion efficiencies >12%. Nat. Photon. 2017, 11, 85–90.

    CAS  Article  Google Scholar 

  56. [56]

    Kumari, T.; Lee, S. M.; Kang, S. H.; Chen, S. S.; Yang, C. Ternary solar cells with a mixed face-on and edge-on orientation enable an unprecedented efficiency of 12.1%. Energy Environ. Sci. 2017, 10, 258–265.

    CAS  Article  Google Scholar 

  57. [57]

    Chen, W. Q.; Zhang, Q. C. Recent progress in non-fullerene small molecule acceptors in organic solar cells (OSCs). J. Mater. Chem. C 2017, 5, 1275–1302.

    CAS  Article  Google Scholar 

  58. [58]

    Li, S. X.; Li, C. Z.; Shi, M. M.; Chen, H. Z. New phase for organic solar cell research: Emergence of Y-series electron acceptors and their perspectives. ACS Energy Lett. 2020, 5, 1554–1567.

    CAS  Article  Google Scholar 

  59. [59]

    Lin, Y. Z.; Zhan, X. W. Designing efficient non-fullerene acceptors by tailoring extended fused-rings with electron-deficient groups. Adv. Energy Mater. 2015, 5, 1501063.

    Article  CAS  Google Scholar 

  60. [60]

    Jia, T.; Zhang, J. B.; Zhong, W. K.; Liang, Y. Y.; Zhang, K.; Dong, S.; Ying, L.; Liu, F.; Wang, X. H.; Huang, F. et al. 14.4% efficiency all-polymer solar cell with broad absorption and low energy loss enabled by a novel polymer acceptor. Nano Energy 2020, 72, 104718.

    CAS  Article  Google Scholar 

  61. [61]

    Yao, H. F.; Wang, J. W.; Xu, Y.; Zhang, S. Q.; Hou, J. H. Recent progress in chlorinated organic photovoltaic materials. Acc. Chem. Res. 2020, 53, 822–832.

    CAS  Article  Google Scholar 

  62. [62]

    Fu, H. T.; Wang, Z. H.; Sun, Y. M. Polymer donors for high-performance non-fullerene organic solar cells. Angew. Chem., Int. Ed. 2019, 58, 4442–4453.

    CAS  Article  Google Scholar 

  63. [63]

    Zhao, W. C.; Qian, D. P.; Zhang, S. Q.; Li, S. S.; Inganäs, O.; Gao, F.; Hou, J. H. Fullerene-free polymer solar cells with over 11% efficiency and excellent thermal stability. Adv. Mater. 2016, 28, 4734–4739.

    CAS  Article  Google Scholar 

  64. [64]

    Zhang, M. J.; Guo, X.; Ma, W.; Ade, H.; Hou, J. H. A large-bandgap conjugated polymer for versatile photovoltaic applications with high performance. Adv. Mater. 2015, 27, 4655–4660.

    CAS  Article  Google Scholar 

  65. [65]

    Fan, Q. P.; Su, W. Y.; Wang, Y.; Guo, B.; Jiang, Y. F.; Guo, X.; Liu, F.; Russell, T. P.; Zhang, M.; Li, Y. F. Synergistic effect of fluorination on both donor and acceptor materials for high performance non-fullerene polymer solar cells with 13.5% efficiency. Sci. China Chem. 2018, 61, 531–537.

    CAS  Article  Google Scholar 

  66. [66]

    Yuan, J.; Zhang, Y. Q.; Zhou, L. Y.; Zhang, G. C.; Yip, H. L.; Lau, T. K.; Lu, X. H.; Zhu, C.; Peng, H. J.; Johnson, P. A. et al. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule 2019, 3, 1140–1151.

    CAS  Article  Google Scholar 

  67. [67]

    Zhang, M.; Zhu, L.; Zhou, G. Q.; Hao, T. Y.; Qiu, C. Q.; Zhao, Z.; Hu, Q.; Larson, B. W.; Zhu, H. M.; Ma, Z. F. et al. Single-layered organic photovoltaics with double cascading charge transport pathways: 18% effciencies. Nat. Commun. 2021, 12, 309.

    CAS  Article  Google Scholar 

  68. [68]

    Wei, Q. Y.; Liu, W.; Leclerc, M.; Yuan, J.; Chen, H. G.; Zou, Y. P. A-DA′D-A non-fullerene acceptors for high-performance organic solar cells. Sci. China Chem. 2020, 63, 1352–1366.

    CAS  Article  Google Scholar 

  69. [69]

    Walker, B.; Kim, C.; Nguyen, T. Q. Small molecule solution-processed bulk heterojunction solar cells. Chem. Mater. 2011, 23, 470–482.

    CAS  Article  Google Scholar 

  70. [70]

    Mishra, A.; Bäuerle, P. Small molecule organic semiconductors on the move: Promises for future solar energy technology. Angew. Chem., Int. Ed. 2012, 51, 2020–2067.

    CAS  Article  Google Scholar 

  71. [71]

    Lin, Y. Z.; Zhan, X. W. Oligomer molecules for efficient organic photovoltaics. Acc. Chem. Res. 2016, 49, 175–183.

    CAS  Article  Google Scholar 

  72. [72]

    Huo, Y.; Zhang, H. L.; Zhan, X. W. Nonfullerene all-small-molecule organic solar cells. ACS Energy Lett. 2019, 4, 1241–1250.

    CAS  Article  Google Scholar 

  73. [73]

    Liang, N. N.; Meng, D.; Ma, Z. T.; Kan, B.; Meng, X. Y.; Zheng, Z.; Jiang, W.; Li, Y.; Wan, X. J.; Hou, J. H. et al. Triperylene hexaimides based all-small-molecule solar cells with an efficiency over 6% and open circuit voltage of 1.04 V. Adv. Energy Mater. 2017, 7, 1601664.

    Article  CAS  Google Scholar 

  74. [74]

    Lin, Y. Z.; He, Q.; Zhao, F. W.; Huo, L. J.; Mai, J. Q.; Lu, X. H.; Su, C. J.; Li, T. F.; Wang, J. Y.; Zhu, J. S. et al. A Facile planar fused-ring electron acceptor for as-cast polymer solar cells with 8.71% efficiency. J. Am. Chem. Soc. 2016, 138, 2973–2976.

    CAS  Article  Google Scholar 

  75. [75]

    Yang, L. Y.; Zhang, S. Q.; He, C.; Zhang, J. Q.; Yao, H. F.; Yang, Y.; Zhang, Y.; Zhao, W. C.; Hou, J. H. New wide band gap donor for efficient fullerene-free all-small-molecule organic solar cells. J. Am. Chem. Soc. 2017, 139, 1958–1966.

    CAS  Article  Google Scholar 

  76. [76]

    Zhang, H.; Wang, X. H.; Yang, L. Y.; Zhang, S. Q.; Zhang, Y.; He, C.; Ma, W.; Hou, J. H. Improved domain size and purity enables efficient all-small-molecule ternary solar cells. Adv. Mater. 2017, 29, 1703777.

    Article  CAS  Google Scholar 

  77. [77]

    Guo, J.; Bin, H. J.; Wang, W.; Chen, B. C.; Guo, J.; Sun, R.; Zhang, Z. G.; Jiao, X. C.; Li, Y. F.; Min, J. All-small molecule solar cells based on donor molecule optimization with highly enhanced efficiency and stability. J. Mater. Chem. A 2018, 6, 15675–15683.

    CAS  Article  Google Scholar 

  78. [78]

    Wang, Y. C.; Wang, Y. B.; Kan, B.; Ke, X.; Wan, X. J.; Li, C. X.; Chen, Y. S. High-performance all-small-molecule solar cells based on a new type of small molecule acceptors with chlorinated end groups. Adv. Energy Mater. 2018, 8, 1802021.

    Article  CAS  Google Scholar 

  79. [79]

    Chen, H. Y.; Hu, D. Q.; Yang, Q. G.; Gao, J.; Fu, J. H.; Yang, K.; He, H.; Chen, S. S.; Kan, Z. P.; Duan, T. N. et al. All-small-molecule organic solar cells with an ordered liquid crystalline donor. Joule 2019, 3, 3034–3047.

    CAS  Article  Google Scholar 

  80. [80]

    Qin, J. Z.; An, C. B.; Zhang, J. Q.; Ma, K.; Yang, Y.; Zhang, T.; Li, S.; Xian, K. H.; Cui, Y.; Tang, Y. B. et al. 15.3% efficiency all-small-molecule organic solar cells enabled by symmetric phenyl substitution. Sci. China Mater. 2020, 63, 1142–1150.

    CAS  Article  Google Scholar 

  81. [81]

    Lee, C.; Lee, S.; Kim, G. U.; Lee, W.; Kim, B. J. Recent advances, design guidelines, and prospects of all-polymer solar cells. Chem. Rev. 2019, 119, 8028–8086.

    CAS  Article  Google Scholar 

  82. [82]

    Fan, Q. P.; Su, W. Y.; Chen, S. S.; Kim, W. S.; Chen, X. B.; Lee, B.; Liu, T.; Méndez-Romero, U. A.; Ma, R. J.; Yang, T. et al. Mechanically robust all-polymer solar cells from narrow band gap acceptors with hetero-bridging atoms. Joule 2020, 4, 658–672.

    CAS  Article  Google Scholar 

  83. [83]

    Yan, H.; Chen, Z. H.; Zheng, Y.; Newman, C.; Quinn, J. R.; Dötz, F.; Kastler, M.; Facchetti, A. A high-mobility electron-transporting polymer for printed transistors. Nature 2009, 457, 679–686.

    CAS  Article  Google Scholar 

  84. [84]

    Fabiano, S.; Chen, Z.; Vahedi, S.; Facchetti, A.; Pignataro, B.; Loi, M. A. Role of photoactive layer morphology in high fill factor all-polymer bulk heterojunction solar cells. J. Mater. Chem. 2011, 21, 5891–5896.

    CAS  Article  Google Scholar 

  85. [85]

    Li, Z. J.; Xu, X. F.; Zhang, W.; Meng, X. Y.; Ma, W.; Yartsev, A.; Inganäs, O.; Andersson, M. R.; Janssen, R. A. J.; Wang, E. G. High performance all-polymer solar cells by synergistic effects of fine-tuned crystallinity and solvent annealing. J. Am. Chem. Soc. 2016, 138, 10935–10944.

    CAS  Article  Google Scholar 

  86. [86]

    Fan, B. B.; Ying, L.; Zhu, P.; Pan, F. L.; Liu, F.; Chen, J. W.; Huang, F.; Cao, Y. All-polymer solar cells based on a conjugated polymer containing siloxane-functionalized side chains with efficiency over 10%. Adv. Mater. 2017, 29, 1703906.

    Article  CAS  Google Scholar 

  87. [87]

    Gao, L.; Zhang, Z. G.; Xue, L. W.; Min, J.; Zhang, J. Q.; Wei, Z. X.; Li, Y. F. All-polymer solar cells based on absorption-complementary polymer donor and acceptor with high power conversion efficiency of 8.27%. Adv. Mater. 2016, 28, 1884–1890.

    CAS  Article  Google Scholar 

  88. [88]

    Zhang, Z. G.; Yang, Y. K.; Yao, J.; Xue, L. W.; Chen, S. S.; Li, X. J.; Morrison, W.; Yang, C.; Li, Y. F. Constructing a strongly absorbing low-bandgap polymer acceptor for high-performance all-polymer solar cells. Angew. Chem., Int. Ed. 2017, 56, 13503–13507.

    CAS  Article  Google Scholar 

  89. [89]

    Wu, Q.; Wang, W.; Wang, T.; Sun, R.; Guo, J.; Wu, Y.; Jiao, X. C.; Brabec, C. J.; Li, Y. F.; Min, J. High-performance all-polymer solar cells with only 0.47 eV energy loss. Sci. China Chem. 2020, 63, 1449–1460.

    CAS  Article  Google Scholar 

  90. [90]

    Zhang, Z. J.; Miao, J. H.; Ding, Z. C.; Kan, B.; Lin, B. J.; Wan, X. J.; Ma, W.; Chen, Y. S.; Long, X. J.; Dou, C. D. et al. Efficient and thermally stable organic solar cells based on small molecule donor and polymer acceptor. Nat. Commun. 2019, 10, 3271.

    CAS  Article  Google Scholar 

  91. [91]

    Lu, S. D.; Sun, Y.; Ren, K. K.; Liu, K.; Wang, Z. J.; Qu, S. C. Recent development in ITO-free flexible polymer solar cells. Polymers 2018, 10, 5.

    Article  CAS  Google Scholar 

  92. [92]

    Fukuda, K.; Yu, K.; Someya, T. The future of flexible organic solar cells. Adv. Energy Mater. 2020, 10, 2000765.

    CAS  Article  Google Scholar 

  93. [93]

    Chen, J. Y.; Zhou, W. X.; Chen, J.; Fan, Y.; Zhang, Z. Q.; Huang, Z. D.; Feng, X. M.; Mi, B. X.; Ma, Y. W.; Huang, W. Solution-processed copper nanowire flexible transparent electrodes with PEDOT: PSS as binder, protector and oxide-layer scavenger for polymer solar cells. Nano Res. 2015, 8, 1017–1025.

    CAS  Article  Google Scholar 

  94. [94]

    Zhai, H. T.; Li, Y.; Chen, L. W.; Wang, X.; Shi, L. J.; Wang, R. R.; Sun, J. Semi-transparent polymer solar cells with all-copper nanowire electrodes. Nano Res. 2018, 11, 1956–1966.

    CAS  Article  Google Scholar 

  95. [95]

    Xiong, S. X.; Hu, L.; Hu, L.; Sun, L. L.; Qin, F.; Liu, X. J.; Fahlman, M.; Zhou, Y. H. 12.5% flexible nonfullerene solar cells by passivating the chemical interaction between the active layer and polymer interfacial layer. Adv. Mater. 2019, 31, 1806616.

    Article  CAS  Google Scholar 

  96. [96]

    Jinno, H.; Fukuda, K.; Xu, X. M.; Park, S.; Suzuki, Y.; Koizumi, M.; Yokota, T.; Osaka, I.; Takimiya, K.; Someya, T. Stretchable and waterproof elastomer-coated organic photovoltaics for washable electronic textile applications. Nat. Energy 2017, 2, 780–785.

    CAS  Article  Google Scholar 

  97. [97]

    Xu, X. M.; Fukuda, K.; Karki, A.; Park, S.; Kimura, H.; Jinno, H.; Watanabe, N.; Yamamoto, S.; Shimomura, S.; Kitazawa, D. et al. Thermally stable, highly efficient, ultraflexible organic photovoltaics. Proc. Natl. Acad. Sci. USA 2018, 115, 4589–4594.

    CAS  Article  Google Scholar 

  98. [98]

    Morales-Masis, M.; De Wolf, S.; Woods-Robinson, R.; Ager, J. W.; Ballif, C. Transparent electrodes for efficient optoelectronics. Adv. Electron. Mater. 2017, 3, 1300529.

    Article  CAS  Google Scholar 

  99. [99]

    Basarir, F.; Irani, F. S.; Kosemen, A.; Camic, B. T.; Oytun, F.; Tunaboylu, B.; Shin, H. J.; Nam, K. Y.; Choi, H. Recent progresses on solution-processed silver nanowire based transparent conducting electrodes for organic solar cells. Mater. Today Chem. 2017, 3, 60–72.

    Article  Google Scholar 

  100. [100]

    Park, H.; Brown, P. R.; Bulović, V.; Kong, J. Graphene as transparent conducting electrodes in organic photovoltaics: Studies in graphene morphology, hole transporting layers, and counter electrodes. Nano Lett. 2012, 12, 133–140.

    CAS  Article  Google Scholar 

  101. [101]

    Lee, H. B.; Jin, W. Y.; Ovhal, M. M.; Kumar, N.; Kang, J. W. Flexible transparent conducting electrodes based on metal meshes for organic optoelectronic device applications: A review. J. Mater. Chem. C 2019, 7, 1087–1110.

    CAS  Article  Google Scholar 

  102. [102]

    Lee, J. Y.; Connor, S. T.; Cui, Y.; Peumans, P. Solution-processed metal nanowire mesh transparent electrodes. Nano Lett. 2008, 8, 689–692.

    CAS  Article  Google Scholar 

  103. [103]

    Yang, L. Q.; Zhang, T.; Zhou, H. X.; Price, S. C.; Wiley, B. J.; You, W. Solution-processed flexible polymer solar cells with silver nanowire electrodes. ACS Appl. Mater. Interfaces 2011, 3, 4075–4084.

    CAS  Article  Google Scholar 

  104. [104]

    Fan, X.; Nie, W. Y.; Tsai, H.; Wang, N. X.; Huang, H. H.; Cheng, Y. J.; Wen, R. J.; Ma, L. J.; Yan, F.; Xia, Y. G. PEDOT: PSS for flexible and stretchable electronics: Modifications, strategies, and applications. Adv. Sci. 2019, 6, 1900813.

    CAS  Article  Google Scholar 

  105. [105]

    Kim, S. M.; Kim, C. H.; Kim, Y.; Kim, N.; Lee, W. J.; Lee, E. H.; Kim, D.; Park, S.; Lee, K.; Rivnay, J. et al. Influence of PEDOT: PSS crystallinity and composition on electrochemical transistor performance and long-term stability. Nat. Commun. 2018, 9, 3858.

    Article  CAS  Google Scholar 

  106. [106]

    Sun, K.; Zhang, S. P.; Li, P. C.; Xia, Y. J.; Zhang, X.; Du, D. H.; Isikgor, F. H.; Ouyang, J. Y. Review on application of PEDOTs and PEDOT: PSS in energy conversion and storage devices. J. Mater. Sci. Mater. Electron. 2015, 26, 4438–4462.

    CAS  Article  Google Scholar 

  107. [107]

    Jiang, Y. Y.; Liu, T. F.; Zhou, Y. H. Recent advances of synthesis, properties, film fabrication methods, modifications of poly(3,4-ethylenedioxythiophene), and applications in solution-processed photovoltaics. Adv. Funct. Mater. 2020 30, 2006213.

    CAS  Article  Google Scholar 

  108. [108]

    Xia, Y. J.; Dai, S. Y. Review on applications of PEDOTs and PEDOT:PSS in perovskite solar cells. J. Mater. Sci. Mater. Electron. 2020, DOI: https://doi.org/10.1007/s10854-020-03473-w.

  109. [109]

    Song, W.; Fan, X.; Xu, B. G.; Yan, F.; Cui, H. Q.; Wei, Q.; Peng, R. X.; Hong, L.; Huang, J. M.; Ge, Z. Y. All-solution-processed metal-oxide-free flexible organic solar cells with over 10% efficiency. Adv. Mater. 2018, 30, 1800075.

    Article  CAS  Google Scholar 

  110. [110]

    Yan, T. T.; Song, W.; Huang, J. M.; Peng, R. X.; Huang, L. K.; Ge, Z. Y. 16.67% Rigid and 14.06% flexible organic solar cells enabled by ternary heterojunction strategy. Adv. Mater. 2019, 31, 1902210.

    Article  CAS  Google Scholar 

  111. [111]

    Wong, K. W.; Yip, H. L.; Luo, Y.; Wong, K. Y.; Lau, W. M.; Low, K. H.; Chow, H. F.; Gao, Z. Q.; Yeung, W. L.; Chang, C. C. Blocking reactions between indium-tin oxide and poly (3,4-ethylene dioxythiophene): Poly(styrene sulphonate) with a self-assembly monolayer. Appl. Phys. Lett. 2002, 80, 2788–2790.

    CAS  Article  Google Scholar 

  112. [112]

    Jørgensen, M.; Norrman, K.; Krebs, F. C. Stability/degradation of polymer solar cells. Sol. Energy Mater. Sol. Cells 2008, 92, 686–714.

    Article  CAS  Google Scholar 

  113. [113]

    Hsiao, Y. S.; Liao, Y. H.; Chen, H. L.; Chen, P. L.; Chen, F. C. Organic photovoltaics and bioelectrodes providing electrical stimulation for PC12 cell differentiation and neurite outgrowth. ACS Appl. Mater. Interfaces 2016, 8, 9275–9284.

    CAS  Article  Google Scholar 

  114. [114]

    Choi, J.; Kwon, D.; Kim, B.; Kang, K.; Gu, J. M.; Jo, J.; Na, K.; Ahn, J.; Del Orbe, D.; Kim, K. et al. Wearable self-powered pressure sensor by integration of piezo-transmittance microporous elastomer with organic solar cell. Nano Energy 2020, 74, 104749.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

C. Y. would like to acknowledge the funding support by the National Institute of Health (R21EB026175, 1R21EB030257-01) and the Office of Naval Research (N00014-18-1-2338) under the Young Investigator Program.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Cunjiang Yu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kan, B., Ershad, F., Rao, Z. et al. Flexible organic solar cells for biomedical devices. Nano Res. 14, 2891–2903 (2021). https://doi.org/10.1007/s12274-021-3386-z

Download citation

Keywords

  • organic solar cells
  • photovoltaic
  • flexible
  • biomedical
  • bioelectronics