Skip to main content
Log in

Synergistic catalysis of cluster and atomic copper induced by copper-silica interface in transfer-hydrogenation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

To data, using strong metal-support interaction (SMSI) effect to improve the catalytic performance of metal catalysts is an important strategy for heterogeneous catalysis, and this effect is basically achieved by using reducible metal oxides. However, the formation of SMSI between metal and inert-support has been so little coverage and remains challenge. In this work, the SMSI effect can be effectively extended to the inert support-metal catalysis system to fabricate a Cu0/Cu-doped SiO2 catalyst with high dispersion and loading (38.5 wt.%) through the interfacial effect of inert silica. In the catalyst, subnanometric composite of Cu cluster and atomic copper (in the configuration of Cu-O-Si) can be consciously formed on the silica interface, and verified by extended X-ray absorption fine structure (EXAFS), in situ X-ray photoelectron spectroscopy (XPS), and high-angle annular dark field-scanning transmission electron microscopy (HAADF-STEM) characterization. The promoting activity in transfer-hydrogenation by the SMSI effect of Cu-silica interface and the synergistic active roles of cluster and atomic Cu have also been revealed from surface interface structure, catalytic activity, and density functional theory (DFT) theoretical calculation at an atomic level. The subnanometric composite of cluster and atomic copper species can be derived from a facile synthesis strategy of metal-inert support SMSI effect and the realistic active site of Cu-based catalyst can also been identified accurately, thus it will help to expand the application of subnanometric materials in industrial catalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Mateen, M.; Shah, K.; Chen, Z.; Chen, C.; Li, Y. D. Selective hydrogenation of N-heterocyclic compounds over rhodium-copper bimetallic nanocrystals under ambient conditions. Nano Res. 2019, 12, 1631–1634.

    Article  CAS  Google Scholar 

  2. Yang, H. H.; Chen, Y. Y.; Cui, X. J.; Wang, G. F.; Cen, Y. L.; Deng, T. S.; Yan, W. J.; Gao, J.; Zhu, S. H.; Olsbye, U. et al. A highly stable copper-based catalyst for clarifying the catalytic roles of Cu0 and Cu+ species in methanol dehydrogenation. Angew. Chem., Int. Ed. 2018, 57, 1836–1840.

    Article  CAS  Google Scholar 

  3. Binder, A. J.; Toops, T. J.; Unocic, R. R.; Parks II, J. E.; Dai, S. Low-temperature CO oxidation over a ternary oxide catalyst with high resistance to hydrocarbon inhibition. Angew. Chem., Int. Ed. 2015, 54, 13263–13267.

    Article  CAS  Google Scholar 

  4. Wang, W. W.; Du, P. P.; Zou, S. H.; He, H. Y.; Wang, R. X.; Jin, Z.; Shi, S.; Huang, Y. Y.; Si, R.; Song, Q. S. et al. Highly dispersed copper oxide clusters as active species in copper-ceria catalyst for preferential oxidation of carbon monoxide. ACS Catal. 2015, 5, 2088–2099.

    Article  CAS  Google Scholar 

  5. Gawande, M. B.; Goswami, A.; Felpin, F. X.; Asefa, T.; Huang, X. X.; Silva, R.; Zou, X. X.; Zboril, R.; Varma, R. S. Cu and Cu-based nanoparticles: Synthesis and applications in catalysis. Chem. Rev. 2016, 116, 3722–3811.

    Article  CAS  Google Scholar 

  6. Chen, K.; Fang, H. H.; Wu, S.; Liu, X.; Zheng, J. W.; Zhou, S.; Duan, X. P.; Zhuang, Y. C.; Tsang, S. C. E.; Yuan, Y. Z. CO2 hydrogenation to methanol over Cu catalysts supported on La-modified SBA-15: The crucial role of Cu-LaOx interfaces. Appl. Catal. B: Environ. 2019, 251, 119–129.

    Article  CAS  Google Scholar 

  7. Qing, S. J.; Hou, X. N.; Liu, Y. J.; Li, L. D.; Wang, X.; Gao, Z. X.; Fan, W. B. Strategic use of CuAlO2 as a sustained release catalyst for production of hydrogen from methanol steam reforming. Chem. Commun. 2018, 54, 12242–12245.

    Article  CAS  Google Scholar 

  8. Xi, H. J.; Hou, X. N.; Liu, Y. J.; Qing, S. J.; Gao, Z. X. Cu-Al spinel oxide as an efficient catalyst for methanol steam reforming. Angew. Chem., Int. Ed. 2014, 53, 11886–11889.

    Article  CAS  Google Scholar 

  9. Ai, Y. J.; Hu, Z. N.; Liu, L.; Zhou, J. J.; Long, Y.; Li, J. F.; Ding, M. Y.; Sun, H. B.; Liang, Q. L. Magnetically hollow Pt nanocages with ultrathin walls as a highly integrated nanoreactor for catalytic transfer hydrogenation reaction. Adv. Sci. 2019, 6, 1802132.

    Article  Google Scholar 

  10. Zhang, J.; Zheng, C. Y.; Zhang, M. L.; Qiu, Y. J.; Xu, Q.; Cheong, W. C.; Chen, W. X.; Zheng, L. R.; Gu, L.; Hu, Z. P. et al. Controlling N-doping type in carbon to boost single-atom site Cu catalyzed transfer hydrogenation of quinoline. Nano Res. 2020, 13, 3082–3087.

    Article  Google Scholar 

  11. Zhang, T.; Zhang, D.; Han, X. H., Dong, T.; Guo, X. W.; Song, C. S.; Si, R.; Liu, W.; Liu, Y. F.; Zhao, Z. K. Preassembly strategy to fabricate porous hollow carbonitride spheres inlaid with single Cu-N3 sites for selective oxidation of benzene to phenol. J. Am. Chem. Soc. 2018, 140, 16936–16940.

    Article  CAS  Google Scholar 

  12. Han, Y. H.; Wang, Z. Y.; Xu, R. R.; Zhang, W.; Chen, W. X.; Zheng, L. R.; Zhang, J.; Luo, J.; Wu, K. L.; Zhu, Y. Q. et al. Ordered porous nitrogen-doped carbon matrix with atomically dispersed cobalt sites as an efficient catalyst for dehydrogenation and transfer hydrogenation of N-heterocycles. Angew. Chem., Int. Ed. 2018, 57, 11262–11266.

    Article  CAS  Google Scholar 

  13. Ge, H. B.; Zhang, B.; Liang, H. J.; Zhang, M. W.; Fang, K. G.; Chen, Y.; Qin. Y. Photocatalytic conversion of CO2 into light olefins over TiO2 nanotube confined Cu clusters with high ratio of Cu+. Appl. Catal. B: Environ. 2020, 263, 118133.

    Article  CAS  Google Scholar 

  14. Wang, H. J.; Li, X. D.; Lan, X. C.; Wang, T. F. Supported ultrafine NiCo bimetallic alloy nanoparticles derived from bimetal-organic frameworks: A highly active catalyst for furfuryl alcohol hydrogenation. ACS Catal. 2018, 8, 2121–2128.

    Article  CAS  Google Scholar 

  15. Yao, S. Y.; Lin, L. L.; Liao, W. J.; Rui, N.; Li, N.; Liu, Z. Y.; Cen, J. J.; Zhang, F.; Li, X.; Song, L. et al. Exploring metal-support interactions to immobilize subnanometer Co clusters on β-Mo2N: A highly selective and stable catalyst for CO2 activation. ACS Catal. 2019, 9, 9087–9097.

    Article  CAS  Google Scholar 

  16. Sun, J. J.; Cheng, J. Solid-to-liquid phase transitions of sub-nanometer clusters enhance chemical transformation. Nat. Commun. 2019, 10, 5400.

    Article  Google Scholar 

  17. Liu, L. C.; Lopez-Haro, M.; Lopes, C. W.; Li, C. G.; Concepcion, P.; Simonelli, L.; Calvino, J. J.; Corma, A. Regioselective generation and reactivity control of subnanometric platinum clusters in zeolites for high-temperature catalysis. Nat. Mater. 2019, 18, 866–873.

    Article  CAS  Google Scholar 

  18. Zhang, L. C.; Jia, C. C.; He, S. R.; Zhu, Y. T.; Wang, Y. N.; Zhao, Z. H.; Gao, X. C.; Zhang, X. M.; Sang, Y. H.; Zhang, D. J. et al. Hot hole enhanced synergistic catalytic oxidation on Pt-Cu alloy clusters. Adv. Sci. 2017, 4, 1600448.

    Article  Google Scholar 

  19. Qu, Y. T.; Li, Z. J.; Chen, W. X.; Lin, Y.; Yuan, T. W.; Yang, Z. K.; Zhao, C. M.; Wang, J.; Zhao, C.; Wang, X. et al. Direct transformation of bulk copper into copper single sites via emitting and trapping of atoms. Nat. Catal. 2018, 1, 781–786.

    Article  CAS  Google Scholar 

  20. Tian, S. B.; Hu, M.; Xu, Q.; Gong, W. B.; Chen, W. X.; Yang, J. R.; Zhu, Y. Q.; Chen, C.; He, J.; Liu, Q. et al. Single-atom Fe with Fe1N3 structure showing superior performances for both hydrogenation and transfer hydrogenation of nitrobenzene. Sci. China Mater. 2021, 64, 642–650.

    Article  CAS  Google Scholar 

  21. Wang, Y. F.; Chen, Z.; Han, P.; Du, Y. H.; Gu, Z. X.; Xu, X.; Zheng, G. F. Single-atomic Cu with multiple oxygen vacancies on ceria for electrocatalytic CO2 reduction to CH4. ACS Catal. 2018, 8, 7113–7119.

    Article  CAS  Google Scholar 

  22. Huang, P. C.; Liu, W.; He, Z. H.; Xiao, C.; Yao, T.; Zou, Y. M.; Wang, C. M.; Qi, Z. M.; Tong, W.; Pan, B. C. et al. Single atom accelerates ammonia photosynthesis. Sci. China Chem. 2018, 61, 1187–1196.

    Article  CAS  Google Scholar 

  23. Chen, Y. G.; Yu, Z. J.; Chen, Z.; Shen, R. G.; Wang, Y.; Cao, X.; Peng, Q.; Li, Y. D. Controlled one-pot synthesis of RuCu nanocages and Cu@Ru nanocrystals for the regioselective hydrogenation of quinoline. Nano Res. 2016, 9, 2632–2640.

    Article  CAS  Google Scholar 

  24. Li, X.; Wang, X. X.; Liu, M. C.; Liu, H. Y.; Chen, Q.; Yin, Y. D.; Jin, M. S. Construction of Pd-M (M = Ni, Ag, Cu) alloy surfaces for catalytic applications. Nano Res. 2018, 11, 780–790.

    Article  CAS  Google Scholar 

  25. Wu, K.; Wang, X. Y.; Guo L. L.; Xu, Y. J.; Zhou, L.; Lyu, Z. Y.; Liu, K. Y.; Si, R.; Zhang, Y. W.; Sun, L. D. et al. Facile synthesis of Au embedded CuOx-CeO2 core/shell nanospheres as highly reactive and sinter-resistant catalysts for catalytic hydrogenation of p-nitrophenol. Nano Res. 2020, 13, 2044–2055.

    Article  CAS  Google Scholar 

  26. Ding, K. L.; Cullen, D. A.; Zhang, L. B.; Cao, Z.; Roy, A. D.; Ivanov, I. N.; Cao, D. M. A general synthesis approach for supported bimetallic nanoparticles via surface inorganometallic chemistry. Science 2018, 362, 560–564.

    Article  CAS  Google Scholar 

  27. Wong, A.; Liu, Q.; Griffin, S. Nicholls, A.; Regalbuto, J. R. Synthesis of ultrasmall, homogeneously alloyed, bimetallic nanoparticles on silica supports. Science 2017, 358, 1427–1430.

    Article  CAS  Google Scholar 

  28. Kuai, L.; Chen, Z.; Liu, S. J.; Kan, E. J.; Yu, N.; Ren, Y. M.; Fang, C. H.; Li, X. Y.; Li, Y. D.; Geng, B. Y. Titania supported synergistic palladium single atoms and nanoparticles for room temperature ketone and aldehydes hydrogenation. Nat. Commun. 2020, 11, 48.

    Article  Google Scholar 

  29. Wu, L. B.; Li, B. L.; Zhao, C. Direct synthesis of hydrogen and dimethoxylmethane from methanol on copper/silica catalysts with optimal Cu+/Cu0 sites. ChemCatChem 2018, 10, 1140–1147.

    Article  CAS  Google Scholar 

  30. Jiao, J. Q.; Lin, R.; Liu, S. J.; Cheong, W. C.; Zhang, C.; Chen, Z.; Pan, Y.; Tang, J. G.; Wu, K. L.; Hung, S. F. et al. Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO2. Nat. Chem. 2019, 11, 222–228.

    Article  CAS  Google Scholar 

  31. Abdel-Mageed, A. M.; Rungtaweevoranit, B.; Parlinska-Wojtan, M.; Pei, X. K.; Yaghi, O. M.; Behm, R. J. Highly active and stable single-atom Cu catalysts supported by a metal-organic framework. J. Am. Chem. Soc. 2019, 141, 5201–5210.

    Article  CAS  Google Scholar 

  32. Graciani, J.; Mudiyanselage, K.; Xu, F.; Baber, A. E.; Evans, J.; Senanayake, S. D.; Stacchiola, D. J.; Liu, P.; Hrbek, J.; Sanz, J. F. et al. Highly active copper-ceria and copper-ceria-titania catalysts for methanol synthesis from CO2. Science 2014, 345, 546–550.

    Article  CAS  Google Scholar 

  33. Tauster, S. J.; Fung, S. C.; Garten, R. L. Strong metal-support interactions. Group 8 noble metals supported on titanium dioxide. J. Am. Chem. Soc. 1978, 100, 170–175.

    Article  CAS  Google Scholar 

  34. Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842–1855.

    Article  CAS  Google Scholar 

  35. Chen, A. L.; Yu, X. J.; Zhou, Y.; Miao, S.; Li, Y.; Kuld, S.; Sehested, J.; Liu, J. Y.; Aoki, T.; Hong, S. et al. Structure of the catalytically active copper-ceria interfacial perimeter. Nat. Catal. 2019, 2, 334–341.

    Article  CAS  Google Scholar 

  36. Xu, C. F.; Chen, G. X.; Zhao, Y.; Liu, P. X.; Duan, X. P.; Gu, L.; Fu, G.; Yuan, Y. Z.; Zheng, N. F. Interfacing with silica boosts the catalysis of copper. Nat. Commun. 2018, 9, 3367.

    Article  Google Scholar 

  37. Lopez, N.; Illas, F.; Pacchioni, G. Adsorption of Cu, Pd, and Cs atoms on regular and defect sites of the SiO2 surface. J. Am. Chem. Soc. 1999, 121, 813–821.

    Article  CAS  Google Scholar 

  38. Arnal, P. M.; Weidenthaler, C.; Schüth, F. Highly monodisperse zirconia-coated silica spheres and zirconia/silica hollow spheres with remarkable textural properties. Chem. Mater. 2006, 18, 2733–2739.

    Article  CAS  Google Scholar 

  39. Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev. 1964, 136, B864–B871.

    Article  Google Scholar 

  40. Kohn, W.; Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133–A1138.

  41. Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.

    Article  CAS  Google Scholar 

  42. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  CAS  Google Scholar 

  43. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

    Article  Google Scholar 

  44. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

    Article  CAS  Google Scholar 

  45. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  CAS  Google Scholar 

  46. Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465.

    Article  CAS  Google Scholar 

  47. Levien. L.; Prewitt. C. T.; Weidner, D. J. Structure and elastic properties of quartz at pressure. Am. Mineral. 1980, 65, 920–930.

    CAS  Google Scholar 

  48. Rignanese, G. M.; De Vita, A.; Charlier, J. C.; Gonze, X.; Car, R. First-principles molecular-dynamics study of the (0001) α-quartz surface. Phys. Rev. B. 2000, 61, 13250–13255.

    Article  CAS  Google Scholar 

  49. Deng, Y. C.; Gao, R.; Lin, L. L.; Liu, T.; Wen, X. D.; Wang, S.; Ma, D. Solvent tunes the selectivity of hydrogenation reaction over α-MoC catalyst. J. Am. Chem. Soc. 2018, 140, 14481–14489.

    Article  CAS  Google Scholar 

  50. Wang, X.; Liu, D. P.; Song, S. Y.; Zhang, H. J. Pt@CeO2 multicore@shell self-assembled nanospheres: Clean synthesis, structure optimization, and catalytic applications. J. Am. Chem. Soc. 2013, 135, 15864–15872.

    Article  CAS  Google Scholar 

  51. Bindwal, A. B.; Vaidya, P. D. Reaction kinetics of vanillin hydrogenation in aqueous solutions using a Ru/C catalyst. Energy Fuels 2014, 28, 3357–3362.

    Article  CAS  Google Scholar 

  52. Liu, P.; Hensen, E. J. M. Highly efficient and robust Au/MgCuCr2O4 catalyst for gas-phase oxidation of ethanol to acetaldehyde. J. Am. Chem. Soc. 2013, 135, 14032–14035.

    Article  CAS  Google Scholar 

  53. Espinós, J. P.; Morales, J.; Barranco, A.; Caballero, A.; Holgado, J. P.; González-Elipe, A. R. Interface effects for Cu, CuO, and Cu2O deposited on SiO2 and ZrO2. XPS determination of the valence state of copper in Cu/SiO2 and Cu/ZrO2 catalysts. J. Phys. Chem. B 2002, 106, 6921–6929.

    Article  Google Scholar 

  54. Yang, J. R.; Li, W. H.; Wang, D. S.; Li, Y. D. Electronic metal-support interaction of single-atom catalysts and applications in electrocatalysis. Adv. Mater. 2020, 32, 2003300.

    Article  CAS  Google Scholar 

  55. Gurevich, S. A.; Zaraiskaya, T. A.; Konnikov, S. G.; Mikushkin, V. M.; Nikonov, S. Y.; Sitnikova, A. A.; Sysoev, S. E.; Khorenko, V. V.; Shnitov, V. V.; Gordeev, Y. S. Investigation of the chemical state of copper in Cu/SiO2 composite films by x-ray photoelectron spectros-copy. Phys. Solid State 1997, 39, 1691–1695.

    Article  Google Scholar 

  56. Chang, X. X.; Wang, T.; Zhao, Z. J.; Yang, P. P.; Greeley, J.; Mu, R. T.; Zhang, G.; Gong, Z. M.; Luo, Z. B.; Chen, J.; Cui, Y.; Ozin, G. A.; Gong, J. L. Tuning Cu/Cu2O interfaces for the reduction of carbon dioxide to methanol in aqueous solutions. Angew. Chem., Int. Ed. 2018, 57, 15415–15419.

    Article  CAS  Google Scholar 

  57. Nie, R. F.; Peng, X. L.; Zhang, H. F.; Yu, X. L.; Lu, X. H.; Zhou, D.; Xia, Q. H. Transfer hydrogenation of bio-fuel with formic acid over biomass-derived N-doped carbon supported acid-resistant Pd catalyst. Catal. Sci. Technol. 2017, 7, 627–634.

    Article  CAS  Google Scholar 

  58. Singuru, R.; Dhanalaxmi, K.; Shit, S. C.; Reddy, B. M.; Mondal, J. Palladium nanoparticles Encaged in a nitrogen-rich porous organic polymer: Constructing a promising robust nanoarchitecture for catalytic biofuel upgrading. ChemCatChem 2017, 9, 2550–2564.

    Article  CAS  Google Scholar 

  59. Tang, X.; Chen, H. W.; Hu, L.; Hao, W. W.; Sun, Y.; Zeng, X. H.; Lin, L.; Liu, S. J. Conversion of biomass to β-valerolactone by catalytic transfer hydrogenation of ethyl levulinate over metal hydroxides. Appl. Catal. B: Environ. 2014, 147, 827–834.

    Article  CAS  Google Scholar 

  60. Sitthisa, S.; Sooknoi, T.; Ma, Y. G.; Balbuena, P. B.; Resasco, D. E. Kinetics and mechanism of hydrogenation of furfural on Cu/SiO2 catalysts. J. Catal. 2011, 277, 1–13.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 52072371, 51871209, and 51502297), key technologies research and development program of Anhui province (No. 006153430011), and instrument developing project of the Chinese Academy of Sciences (No. yz201421).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chun Chen, Huijun Zhao or Guozhong Wang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, R., Zhang, Y., Hu, Z. et al. Synergistic catalysis of cluster and atomic copper induced by copper-silica interface in transfer-hydrogenation. Nano Res. 14, 4601–4609 (2021). https://doi.org/10.1007/s12274-021-3384-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3384-1

Keywords

Navigation