Skip to main content

Noble-metal-free dye-sensitized selective oxidation of methane to methanol with green light (550 nm)

Abstract

Developing low-energy input route for conversion of methane (CH4) to value-added methanol (CH3OH) at room temperature is important in environment and industry. Bonding in electron donor-acceptor hybrid can potentially promote charge transfer and photocatalytic efficiency of CH4 conversion. Herein, bonding in electron donor rhodamine B (RhB)-acceptor (TiO2) hybrid (RhB/TiO2) significantly promotes the selectivity of photocatalytic oxidation of CH4 to CH3OH and utilization of visible light (low-energy photons) at ambient condition. Even under green light irradiation (λ = 550 nm), the noble-metal-free RhB/TiO2 hybrid synthesized presents enhanced oxidation of CH4 to CH3OH with a generation rate of 143 µmol·g−1·h−1 and selectivity of 94%. This work demonstrates the possibility and feasibility of noble-metal-free catalysts for activating CH4 under visible light at room temperature.

This is a preview of subscription content, access via your institution.

References

  1. Cui, X. J.; Li, H. B.; Wang, Y.; Hu, Y. L.; Hua, L.; Li, H. Y.; Han, X. W.; Liu, Q. F.; Yang, F.; He, L. M. et al. Room-temperature methane conversion by graphene-confined single iron atoms. Chem 2018, 4, 1902–1910.

    CAS  Google Scholar 

  2. Meng, X. G.; Cui, X. J.; Rajan, N. P.; Yu, L.; Deng, D. H.; Bao, X. H. Direct methane conversion under mild condition by thermo-, electro-, or photocatalysis. Chem 2019, 5, 2296–2325.

    CAS  Google Scholar 

  3. McFarland, E. Unconventional chemistry for unconventional natural gas. Science 2012, 338, 340–342.

    CAS  Google Scholar 

  4. Kanai, M. Photocatalytic upgrading of natural gas. Science 2018, 361, 647–648.

    CAS  Google Scholar 

  5. Kirschke, S.; Bousquet, P.; Ciais, P.; Saunois, M.; Canadell, J. G.; Dlugokencky, E. J.; Bergamaschi, P.; Bergmann, D.; Blake, D. R.; Bruhwiler, L. et al. Three decades of global methane sources and sinks. Nat. Geosci. 2013, 6, 813–823.

    CAS  Google Scholar 

  6. Lashof, D. A.; Ahuja, D. R. Relative contributions of greenhouse gas emissions to global warming. Nature 1990, 344, 529–531.

    CAS  Google Scholar 

  7. Solomon, S.; Qin, D.; Manning, M.; Chen, Z.; Marquis, M.; Averyt, K. B.; Tignor, M.; Miller, H. L. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press: Cambridge, 2007; pp 95–123.

    Google Scholar 

  8. Huang, K. F.; Miller, J. B.; Huber, G. W.; Dumesic, J. A.; Maravelias, C. T. A general framework for the evaluation of direct nonoxidative methane conversion strategies. Joule 2018, 2, 349–365.

    CAS  Google Scholar 

  9. Liao, Y.; Xu, H. M.; Liu, W.; Ni, H. F.; Zhang, X. G.; Zhai, A. P.; Quan, Z. W.; Qu, Z.; Yan, N. Q. One step interface activation of ZnS using cupric ions for mercury recovery from nonferrous smelting flue gas. Environ. Sci. Technol. 2019, 53, 4511–4518.

    CAS  Google Scholar 

  10. Toyoda, S.; Suzuki, Y.; Hattori, S.; Yamada, K.; Fujii, A.; Yoshida, N.; Kouno, R.; Murayama, K.; Shiomi, H. Isotopomer analysis of production and consumption mechanisms of N2O and CH4 in an advanced wastewater treatment system. Environ. Sci. Technol. 2011, 45, 917–922.

    CAS  Google Scholar 

  11. Chen, X. X.; Li, Y. P.; Pan, X. Y.; Cortie, D.; Huang, X. T.; Yi, Z. G. Photocatalytic oxidation of methane over silver decorated zinc oxide nanocatalysts. Nat. Commun. 2016, 7, 12273.

    CAS  Google Scholar 

  12. Choudhary, T. V.; Choudhary, V. R. Energy-efficient syngas production through catalytic oxy-methane reforming reactions. Angew. Chem., Int. Ed. 2008, 47, 1828–1847.

    CAS  Google Scholar 

  13. Tang, P.; Zhu, Q. J.; Wu, Z. X.; Ma, D. Methane activation: The past and future. Energy Environ. Sci. 2014, 7, 2580–2591.

    CAS  Google Scholar 

  14. Zakaria, Z.; Kamarudin, S. K. Direct conversion technologies of methane to methanol: An overview. Renew. Sust. Energ. Rev. 2016, 65, 250–261.

    CAS  Google Scholar 

  15. Kwon, Y.; Kim, T. Y.; Kwon, G.; Yi, J.; Lee, H. Selective activation of methane on single-atom catalyst of rhodium dispersed on zirconia for direct conversion. J. Am. Chem. Soc. 2017, 139, 17694–17699.

    CAS  Google Scholar 

  16. Huang, W. X.; Zhang, S. R.; Tang, Y.; Li, Y. T.; Nguyen, L.; Li, Y. Y.; Shan, J. J.; Xiao, D. Q.; Gagne, R.; Frenkel, A. I. et al. Low-temperature transformation of methane to methanol on Pd1O4 single sites anchored on the internal surface of microporous silicate. Angew. Chem., Int. Ed. 2016, 55, 13441–134

    CAS  Google Scholar 

  17. Zhou, Y. Y.; Zhang, L.; Wang, W. Z. Direct functionalization of methane into ethanol over copper modified polymeric carbon nitride via photocatalysis. Nat. Commun. 2019, 10, 506.

    CAS  Google Scholar 

  18. Hammond, C.; Forde, M. M.; Ab Rahim, M. H.; Thetford, A.; He, Q.; Jenkins, R. L.; Dimitratos, N.; Lopez-Sanchez, J. A.; Dummer, N. F.; Murphy, D. M. et al. Direct catalytic conversion of methane to methanol in an aqueous medium by using copper-promoted Fe-ZSM-5. Angew. Chem., Int. Ed. 2012, 51, 5129–5133.

    CAS  Google Scholar 

  19. Li, D.; Rohani, V.; Fabry, F.; Parakkulam Ramaswamy, A.; Sennour, M.; Fulcheri, L. Direct conversion of CO2 and CH4 into liquid chemicals by plasma-catalysis. Appl. Catal. B: Environ. 2020, 261, 118228.

    CAS  Google Scholar 

  20. Nisbet, E. G.; Dlugokencky, E. J.; Bousquet, P. Methane on the rise—again. Science 2014, 343, 493–495.

    CAS  Google Scholar 

  21. Jackson, R. B.; Solomon, E. I.; Canadell, J. G.; Cargnello, M.; Field, C. B. Methane removal and atmospheric restoration. Nat. Sustain. 2019, 2, 436–438.

    Google Scholar 

  22. Meng, L. S.; Chen, Z. Y.; Ma, Z. Y.; He, S.; Hou, Y. D.; Li, H. H.; Yuan, R. S.; Huang, X. H.; Wang, X. X.; Wang, X. C. et al. Gold plasmon-induced photocatalytic dehydrogenative coupling of methane to ethane on polar oxide surfaces. Energy Environ. Sci. 2018, 11, 294–298.

    CAS  Google Scholar 

  23. Li, L.; Li, G. D.; Yan, C.; Mu, X. Y.; Pan, X. L.; Zou, X. X.; Wang, K. X.; Chen, J. S. Efficient sunlight-driven dehydrogenative coupling of methane to ethane over a Zn+-modified zeolite. Angew. Chem., Int. Ed. 2011, 50, 8299–8303.

    CAS  Google Scholar 

  24. Amano, F.; Shintani, A.; Tsurui, K.; Mukohara, H.; Ohno, T.; Takenaka, S. Photoelectrochemical homocoupling of methane under blue light irradiation. ACS Energy Lett. 2019, 4, 502–507.

    CAS  Google Scholar 

  25. Baek, J.; Rungtaweevoranit, B.; Pei, X. K.; Park, M.; Fakra, S. C.; Liu, Y. S.; Matheu, R.; Alshmimri, S. A.; Alshehri, S.; Trickett, C. A. et al. Bioinspired metal-organic framework catalysts for selective methane oxidation to methanol. J. Am. Chem. Soc. 2018, 140, 18208–18216.

    CAS  Google Scholar 

  26. Zimmermann, T.; Soorholtz, M.; Bilke, M.; Schüth, F. Selective methane oxidation catalyzed by platinum salts in oleum at turnover frequencies of large-scale industrial processes. J. Am. Chem. Soc. 2016, 138, 12395–12400.

    CAS  Google Scholar 

  27. Dinh, K. T.; Sullivan, M. M.; Narsimhan, K.; Serna, P.; Meyer, R. J.; Dincă, M.; Román-Leshkov, Y. Continuous partial oxidation of methane to methanol catalyzed by diffusion-paired copper dimers in copper-exchanged zeolites. J. Am. Chem. Soc. 2019, 141, 11641–11650.

    CAS  Google Scholar 

  28. Yuliati, L.; Yoshida, H. Photocatalytic conversion of methane. Chem. Soc. Rev. 2008, 37, 1592–1602.

    CAS  Google Scholar 

  29. Sushkevich, V. L.; Palagin, D.; Ranocchiari, M.; van Bokhoven, J. A. Selective anaerobic oxidation of methane enables direct synthesis of methanol. Science 2017, 356, 523–527.

    CAS  Google Scholar 

  30. Agarwal, N.; Freakley, S. J.; McVicker, R. U.; Althahban, S. M.; Dimitratos, N.; He, Q.; Morgan, D. J.; Jenkins, R. L.; Willock, D. J.; Taylor, S. H. et al. Aqueous Au-Pd colloids catalyze selective CH4 oxidation to CH3OH with O2 under mild conditions. Science 2017, 358, 223–227.

    CAS  Google Scholar 

  31. Shan, J. J.; Li, M. W.; Allard, L. F.; Lee, S.; Flytzani-Stephanopoulos, M. Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts. Nature 2017, 551, 605–608.

    CAS  Google Scholar 

  32. Ikuno, T.; Zheng, J.; Vjunov, A.; Sanchez-Sanchez, M.; Ortuño, M. A.; Pahls, D. R.; Fulton, J. L.; Camaioni, D. M.; Li, Z. Y.; Ray, D. et al. Methane oxidation to methanol catalyzed by Cu-Oxo clusters stabilized in NU-1000 metal-organic framework. J. Am. Chem. Soc. 2017, 139, 10294–10301.

    CAS  Google Scholar 

  33. Park, M. B.; Park, E. D.; Ahn, W. S. Recent progress in direct conversion of methane to methanol over copper-exchanged zeolites. Front. Chem. 2019, 7, 514.

    CAS  Google Scholar 

  34. Hu, A. H.; Guo, J. J.; Pan, H.; Zuo, Z. W. Selective functionalization of methane, ethane, and higher alkanes by cerium photocatalysis. Science 2018, 361, 668–672.

    CAS  Google Scholar 

  35. Zhang, K. N.; Chang, L.; An, Q.; Wang, X.; Zuo, Z. W. Dehydroxymethylation of alcohols enabled by cerium photocatalysis. J. Am. Chem. Soc. 2019, 141, 10556–10564.

    CAS  Google Scholar 

  36. Wang, S. L.; Zhu, Y.; Luo, X.; Huang, Y.; Chai, J. W.; Wong, T. I.; Xu, G. Q. 2D WC/WO3 heterogeneous hybrid for photocatalytic decomposition of organic compounds with vis-NIR light. Adv. Funct. Mater. 2018, 28, 1705357.

    Google Scholar 

  37. Wang, S. L.; Luo, X.; Zhou, X.; Zhu, Y.; Chi, X.; Chen, W.; Wu, K.; Liu, Z.; Quek, S. Y.; Xu, G. Q. Fabrication and properties of a freestanding two-dimensional titania. J. Am. Chem. Soc. 2017, 139, 15414–15419.

    CAS  Google Scholar 

  38. Wang, S. L.; Lin, S. H.; Zhang, D. Q.; Li, G. S.; Leung, M. K. H. Controlling charge transfer in quantum-size titania for photocatalytic applications. Appl. Catal. B: Environ. 2017, 215, 85–92.

    CAS  Google Scholar 

  39. Wen, M. C.; Li, G. Y.; Liu, H. L.; Chen, J. Y.; An, T. C.; Yamashita, H. Metal-organic framework-based nanomaterials for adsorption and photocatalytic degradation of gaseous pollutants: Recent progress and challenges. Environ. Sci.: Nano 2019, 6, 1006–1025.

    CAS  Google Scholar 

  40. Kuwahara, Y.; Fujie, Y.; Mihogi, T.; Yamashita, H. Hollow mesoporous organosilica spheres encapsulating PdAg nanoparticles and poly(ethyleneimine) as reusable catalysts for CO2 hydrogenation to formate. ACS Catal. 2020, 10, 6356–6366.

    CAS  Google Scholar 

  41. Zhu, S.; Chen, X. F.; Li, Z. C.; Ye, X. Y.; Liu, Y.; Chen, Y.; Yang, L.; Chen, M.; Zhang, D. Q.; Li, G. S. et al. Cooperation between inside and outside of TiO2: Lattice Cu+ accelerates carrier migration to the surface of metal copper for photocatalytic CO2 reduction. Appl. Catal. B: Environ. 2020, 264, 118515.

    Google Scholar 

  42. Zhang, Y. X.; Kuwahara, Y.; Mori, K.; Yamashita, H. Construction of hybrid MoS2 phase coupled with sic heterojunctions with promoted photocatalytic activity for 4-nitrophenol degradation. Langmuir 2020, 36, 1174–1182.

    CAS  Google Scholar 

  43. Xie, J. J.; Jin, R. X.; Li, A.; Bi, Y. P.; Ruan, Q. S.; Deng, Y. C.; Zhang, Y. J.; Yao, S. Y.; Sankar, G.; Ma, D. et al. Highly selective oxidation of methane to methanol at ambient conditions by titanium dioxide-supported iron species. Nat. Catal. 2018, 1, 889–896.

    CAS  Google Scholar 

  44. Karimi Estahbanati, M. R.; Feilizadeh, M.; Babin, A.; Mei, B.; Mul, G.; Iliuta, M. C. Selective photocatalytic oxidation of cyclohexanol to cyclohexanone: A spectroscopic and kinetic study. Chem. Eng. J. 2020, 382, 122732.

    Google Scholar 

  45. Zhang, J. L.; Zhai, C. Y.; Zhao, W.; Chen, Y. X.; Yin, R. L.; Zeng, L. X.; Zhu, M. S. Insight into combining visible-light photocatalysis with transformation of dual metal ions for enhancing peroxymonosulfate activation over dibismuth copper oxide. Chem. Eng. J. 2020, 397, 125310.

    CAS  Google Scholar 

  46. Zhang, S.; Yi, J. J.; Chen, J. R.; Yin, Z. L.; Tang, T.; Wei, W. X.; Cao, S. S.; Xu, H. Spatially confined Fe2O3 in hierarchical SiO2@TiO2 hollow sphere exhibiting superior photocatalytic efficiency for degrading antibiotics. Chem. Eng. J. 2020, 380, 122583.

    CAS  Google Scholar 

  47. Yu, X.; De Waele, V.; Löfberg, A.; Ordomsky, V.; Khodakov, A. Y. Selective photocatalytic conversion of methane into carbon monoxide over zinc-heteropolyacid-titania nanocomposites. Nat. Commun. 2019, 10, 700.

    CAS  Google Scholar 

  48. Yu, X.; Zholobenko, V. L.; Moldovan, S.; Hu, D.; Wu, D.; Ordomsky, V. V.; Khodakov, A. Y. Stoichiometric methane conversion to ethane using photochemical looping at ambient temperature. Nat. Energy 2020, 5, 511–519.

    CAS  Google Scholar 

  49. Farrell, B. L.; Igenegbai, V. O.; Linic, S. A viewpoint on direct methane conversion to ethane and ethylene using oxidative coupling on solid catalysts. ACS Catal. 2016, 6, 4340–4346.

    CAS  Google Scholar 

  50. Zhou, W. C.; Qiu, X. Y.; Jiang, Y. H.; Fan, Y. Y.; Wei, S. L.; Han, D. X.; Niu, L.; Tang, Z. Y. Highly selective aerobic oxidation of methane to methanol over gold decorated zinc oxide via photocatalysis. J. Mater. Chem. A 2020, 8, 13277–13284.

    CAS  Google Scholar 

  51. Li, Z. H.; Pan, X. Y.; Yi, Z. G. Photocatalytic oxidation of methane over cuo-decorated ZnO nanocatalysts. J. Mater. Chem. A 2019, 7, 469–475.

    Google Scholar 

  52. Palkovits, R.; Antonietti, M.; Kuhn, P.; Thomas, A.; Schüth, F. Solid catalysts for the selective low-temperature oxidation of methane to methanol. Angew. Chem., Int. Ed. 2009, 48, 6909–6912.

    CAS  Google Scholar 

  53. Pan, L.; Zou, J. J.; Zhang, X. W.; Wang, L. Water-mediated promotion of dye sensitization of TiO2 under visible light. J. Am. Chem. Soc. 2011, 133, 10000–10002.

    CAS  Google Scholar 

  54. Miller, K. L.; Lee, C. W.; Falconer, J. L.; Medlin, J. W. Effect of water on formic acid photocatalytic decomposition on TiO2 and Pt/TiO2. J. Catal. 2010, 275, 294–299.

    CAS  Google Scholar 

  55. Zhao, D.; Chen, C. C.; Wang, Y. F.; Ma, W. H.; Zhao, J. C.; Rajh, T.; Zang, L. Enhanced photocatalytic degradation of dye pollutants under visible irradiation on Al(III)-modified TiO2: Structure, interaction, and interfacial electron transfer. Environ. Sci. Technol. 2008, 42, 308–314.

    CAS  Google Scholar 

  56. Weng, Y. X.; Li, L.; Liu, Y.; Wang, L.; Yang, G. Z. Surface-binding forms of carboxylic groups on nanoparticulate TiO2 surface studied by the interface-sensitive transient triplet-state molecular probe. J. Phys. Chem. B 2003, 107, 4356–4363.

    CAS  Google Scholar 

  57. Boettcher, S. W.; Bartl, M. H.; Hu, J. G.; Stucky, G. D. Structural analysis of hybrid titania-based mesostructured composites. J. Am. Chem. Soc. 2005, 127, 9721–9730.

    CAS  Google Scholar 

  58. Hu, Y.; Anpo, M.; Wei, C. H. Effect of the local structures of V-oxides in MCM-41 on the photocatalytic properties for the partial oxidation of methane to methanol. J. Photochem. Photobiol. A 2013, 264, 48–55.

    CAS  Google Scholar 

  59. Murcia-López, S.; Villa, K.; Andreu, T.; Morante, J. R. Improved selectivity for partial oxidation of methane to methanol in the presence of nitrite ions and BiVO4 photocatalyst. Chem. Commun. 2015, 51, 7249–7252.

    Google Scholar 

  60. Villa, K.; Murcia-López, S.; Morante, J. R.; Andreu, T. An insight on the role of La in mesoporous WO3 for the photocatalytic conversion of methane into methanol. Appl. Catal. B: Environ. 2016, 187, 30–36.

    CAS  Google Scholar 

  61. Hameed, A.; Ismail, I. M. I.; Aslam, M.; Gondal, M. A. Photocatalytic conversion of methane into methanol: Performance of silver impregnated WO3. Appl. Catal. A: Gen. 2014, 470, 327–335.

    CAS  Google Scholar 

  62. Li, Y.; Li, J.; Zhang, G. K.; Wang, K.; Wu, X. Y. Selective photocatalytic oxidation of low concentration methane over graphitic carbon nitride-decorated tungsten bronze cesium. ACS Sustain. Chem. Eng. 2019, 7, 4382–4389.

    CAS  Google Scholar 

  63. Murcia-López, S.; Villa, K.; Andreu, T.; Morante, J. R. Partial oxidation of methane to methanol using bismuth-based photocatalysts. ACS Catal. 2014, 4, 3013–3019.

    Google Scholar 

  64. Murcia-López, S.; Bacariza, M. C.; Villa, K.; Lopes, J. M.; Henriques, C.; Morante, J. R.; Andreu, T. Controlled photocatalytic oxidation of methane to methanol through surface modification of beta zeolites. ACS Catal. 2017, 7, 2878–2885.

    Google Scholar 

  65. Zhu, W. L.; Shen, M. K.; Fan, G. Z.; Yang, A.; Meyer, J. R.; Ou, Y. N.; Yin, B.; Fortner, J.; Foston, M.; Li, Z. S. et al. Facet-dependent enhancement in the activity of bismuth vanadate microcrystals for the photocatalytic conversion of methane to methanol. ACS Appl. Nano Mater. 2018, 71, 6683–6691.

    Google Scholar 

  66. Villa, K.; Murcia-López, S.; Andreu, T.; Morante, J. R. Mesoporous WO3 photocatalyst for the partial oxidation of methane to methanol using electron scavengers. Appl. Catal. B: Environ. 2015, 163, 150–155.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was sponsored by Shanghai Pujiang Program (No. 19PJ1405200) and the Startup Fund for Youngman Research at SJTU (SFYR at SJTU, No. WF220516003). We acknowledge Prof. Xin Luo of Sun Yat-Sen University for help to draw molecule structures.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tierui Zhang or Song Ling Wang.

Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Zeng, Y., Liu, H. et al. Noble-metal-free dye-sensitized selective oxidation of methane to methanol with green light (550 nm). Nano Res. 14, 4584–4590 (2021). https://doi.org/10.1007/s12274-021-3380-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3380-5

Keywords

  • photocatalysis
  • solar energy
  • dye sensitization
  • methane oxidation
  • methanol