Skip to main content
Log in

Limiting current oxygen sensor based on Y, In co-doped SrTiO3 as a dense diffusion barrier layer

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

A novel dense diffusion barrier material (YxSr1−xTi0.9In0.1O3−δ (x = 0.03, 0.05, 0.07)) was prepared by using a sol-gel method. The crystal structure, microstructures, electrical conductivity and ionic conductivity of barrier material were characterized. The results show that the samples exhibit the formation of cubic perovskite structure phase. The increase of Y-doping amount on A-site improved electrical conductivity and sinterability of materials. A limiting current oxygen sensor based on Y0.07Sr0.97Ti0.9In0.1O3−δ as a dense diffusion barrier shows excellent sensing performance. The linear relationship between limiting current logIL and 1000/T can described logIL = 4.6038 − 3.8475·1000/T. At 750 °C, 0.25% ≤ x(O2) ≤ 5.0%, the linear relationship between limiting current (IL) and oxygen amount (x(O2)) can described as IL = 7.0476 + 3.8751 x(O2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Fergus, J. W. Perovskite oxides for semiconductor-based gas sensors. Sens. Actuators B 2007, 123, 1169–1179.

    Article  CAS  Google Scholar 

  2. Tao, L.; Huang, J. C.; Dastan, D.; Wang, T. Y.; Li, J.; Yin, X. T.; Wang, Q. New insight into absorption characteristics of CO2 on the surface of calcite, dolomite, and magnesite. Appl. Surf. Sci. 2021, 540, 148320.

    Article  CAS  Google Scholar 

  3. Tao, L.; Huang, J. C.; Dastan, D.; Wang, T. Y.; Li, J.; Yin, X. T.; Wang, Q. CO2 capture and separation on charge-modulated calcite. Appl. Surf. Sci. 2020, 530, 147265.

    Article  CAS  Google Scholar 

  4. Yin, X. T.; Li, J.; Dastan, D.; Zhou, W. D.; Garmestani, H.; Alamgir, F. M. Ultra-high selectivity of H2 over CO with a p-n nanojunction based gas sensors and its mechanism. Sens. Actuators B 2020, 319, 128330.

    Article  CAS  Google Scholar 

  5. Yin, X. T.; Zhou, W. D.; Li, J.; Lv, P.; Wang, Q.; Wang, D.; Wu, F. Y., Dastan, D.; Garmestani, H.; Shi, Z. C. et al. Tin dioxide nanoparticles with high sensitivity and selectivity for gas sensors at sub-ppm level of hydrogen gas detection. J. Mater. Sci.: Mater. Electron. 2019, 30, 14687–14694.

    CAS  Google Scholar 

  6. Yin, X. T.; Zhou, W. D.; Li, J.; Wang, Q.; Wu, F. Y.; Dastan, D.; Wang, D.; Garmestani, H.; Wang, X. M.; Talu, Ş. A highly sensitivity and selectivity Pt-SnO2 nanoparticles for sensing applications at extremely low level hydrogen gas detection. J. Alloys Compd. 2019, 805, 229–236.

    Article  CAS  Google Scholar 

  7. Korotcenkov, G. Practical aspects in design of one-electrode semiconductor gas sensors: Status report. Sens. Actuators B. 2007, 121, 664–678.

    Article  CAS  Google Scholar 

  8. Tan, G. L.; Tang, D.; Dastan, D.; Jafari, A.; Silva, J. P. B.; Yin, X. T. Effect of heat treatment on electrical and surface properties of tungsten oxide thin films grown by HFCVD technique. Mater. Sci. Semicond. Process. 2021, 122, 105506.

    Article  CAS  Google Scholar 

  9. Yin, X. T.; Lv, P.; Li, J.; Jafari, A.; Wu, F. Y.; Wang, Q.; Dastan, D.; Shi, Z. C.; Yu, S. T. et al. Nanostructured tungsten trioxide prepared at various growth temperatures for sensing applications. J. Alloys Compd. 2020, 825, 154105.

    Article  CAS  Google Scholar 

  10. Yin, X. T.; Dastan, D.; Wu, F. Y.; Li, J. Facile synthesis of SnO2/LaFeO3−XNX composite: Photocatalytic activity and gas sensing performance. Nanomaterials 2019, 9, 1163.

    Article  CAS  Google Scholar 

  11. Dastan, D. Effect of preparation methods on the properties of titania nanoparticles: Solvothermal versus sol-gel. Appl. Phys. A 2017, 123, 699.

    Article  CAS  Google Scholar 

  12. Jafari, A.; Tahani, K.; Dastan, D.; Asgary, S.; Shi, Z. C.; Yin, X. T.; Zhou, W. D.; Garmestani, H.; Ţălu, Ş. Ion implantation of copper oxide thin films; statistical and experimental results. Surf. Interfaces 2020, 18, 100463.

    Article  CAS  Google Scholar 

  13. Dastan, D. Nanostructured anatase Titania thin films prepared by sol-gel dip coating technique. J. At. Mol. Condens. Nano Phys. 2015, 2, 109–114.

    Google Scholar 

  14. Nie, S.; Dastan, D.; Li, J.; Zhou, W. D.; Wu, S. S.; Zhou, Y. W.; Yin, X. T. Gas-sensing selectivity of n-ZnO/p-Co3O4 sensors for homogeneous reducing gas. J. Phys. Chem. Solids 2021, 150, 109864.

    Article  CAS  Google Scholar 

  15. Zhou, W. D.; Dastan, D.; Yin, X. T.; Nie, S.; Wu, S. S.; Wang, Q.; Li, J. Optimization of gas sensing properties of n-SnO2/p-xCuO sensors for homogenous gases and the sensing mechanism. J. Mater. Sci.: Mater. Electron. 2020, 31, 18412–18426.

    Google Scholar 

  16. Zhou, W. D.; Dastan, D.; Li, J.; Yin, X. T.; Wang, Q. Discriminable Sensing response behavior to homogeneous gases based on n-ZnO/p-NiO Composites. Nanomaterials 2020, 10, 785.

    Article  CAS  Google Scholar 

  17. Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38.

    Article  CAS  Google Scholar 

  18. Li, H. Y.; Yang, H.; Guo, X. Oxygen sensors based on SrTi0.65Fe0.35O3−δ thick film with MgO diffusion barrier for automotive emission control. Sens. Actuators B 2015, 213, 102–110.

    Article  CAS  Google Scholar 

  19. Shan, K.; Yi, Z. Z. Yin, X. T.; Dastan, D.; Garmestani, H. Conductivity and mixed conductivity of a novel dense diffusion barrier and the sensing properties of limiting current oxygen sensors. Dalton Trans. 2020, 49, 6682–6692.

    Article  CAS  Google Scholar 

  20. Brailsford, A. D.; Yussouff, M.; Logothetis, E. M.; Wang, T.; Soltis, R. E. Experimental and theoretical study of the response of ZrO2 oxygen sensors to simple one-reducing-gas mixtures. Sens. Actuators B 1997, 42, 15–26.

    Article  CAS  Google Scholar 

  21. Boivin, J. C.; Mairesse, G. Recent material developments in fast oxide ion conductors. Chem. Mater. 1998, 10, 2870–2888.

    Article  CAS  Google Scholar 

  22. Dastan, D.; Banpurkar, A. G. Solution processable sol-gel derived titania gate dielectric for organic field effect transistors. J. Mater. Sci.: Mater. Electron. 2017, 28, 3851–3859.

    CAS  Google Scholar 

  23. Shi, L.; Tin, K. C.; Wong, N. B. Thermal stability of zirconia membranes. J. Mater. Sci. 1999, 34, 3367–3374.

    Article  CAS  Google Scholar 

  24. Ivers-Tiffee, E.; Härdtl, K. H.; Menesklou, W.; Riegel, J. Principles of solid state oxygen sensors for lean combustion gas control. Electrochim. Acta 2001, 47, 807–814.

    Article  CAS  Google Scholar 

  25. Gerblinger, J.; Haerdtl, K. H.; Meixner, H.; Aigner, R. High-temperature microsensors. In Sensors: Micro- and Nanosensor Technology-Trends in Sensor Markets; Meixner, H.; Jones, R., Eds.; VCH: New York, 1995; Vol. 8, p 181.

    Google Scholar 

  26. Rothschild, A.; Litzelman, S. J.; Tuller, H. L.; Menesklou, W.; Schneider, T.; Ivers-Tiffee, E. Temperature-independent resistive oxygen sensors based on SrTi1−xFexO3−δ solid solution. Sens. Actuators B. 2005, 108, 223–230.

    Article  CAS  Google Scholar 

  27. Moos, R.; Menesklou, W.; Schreiner, H. J.; Härdtl, K. H. Materials for temperature independent resistive oxygen sensors for combustion exhaust gas control. Sens. Actuators B. 2000, 67, 178–183.

    Article  CAS  Google Scholar 

  28. Moos, R.; Rettig, F.; Hürland, A.; Plog, C. Temperature-independent resistive oxygen exhaust gas sensor for lean-burn engines in thick-film technology. Sens. Actuators B 2003, 93, 43–50.

    Article  CAS  Google Scholar 

  29. Filatova, E. O.; Egorova, Y. V.; Galdina, K. A.; Scherb, T.; Schumacher, G.; Bouwmeester, H. J. M.; Baumann, S. Effect of Fe content on atomic and electronicstructure of complex oxides Sr(Ti,Fe)O3−δ. Solid State Ionics 2017, 308, 27–33.

    Article  CAS  Google Scholar 

  30. Song, J. L.; Guo, X. SrTi0.65Fe0.35O3 nanofibers for oxygen sensing. Solid State Ionics 2015, 278, 26–31.

    Article  CAS  Google Scholar 

  31. Chow, C. L.; Ang, W. C.; Tse, M. S.; Tan, O. K. Oxygen-sensing property of sol-gel-derived SrTi1−xFe,O3−δ thin films with different iron concentrations (x = 0.2−0.8). Thin Solid Films 2013, 542, 393–398.

    Article  CAS  Google Scholar 

  32. Ding, T. Z.; Jia, W. G. Electrophoretic deposition of SrTi1−xMgxO3−δ films in oxygen sensor. Sens. Actuators B 2002, 82, 284–286.

    Article  CAS  Google Scholar 

  33. Trabelsi, H.; Bejar, M.; Dhahri, E.; Valente, M. A.; Graça, M. P. F. Oxygen-vacancy-related giant permittivity and ethanol sensing response in SrTiO3−δ ceramics. Phys. E 2019, 108, 317–325.

    Article  CAS  Google Scholar 

  34. Fagg, D. P.; Kharton, V. V.; Frade, J. R.; Ferreira, A. A. L. Stability and mixed ionic-electronic conductivity of (Sr,La)(Ti,Fe)O3−δ perovskites. Solid State Ionics 2003, 156, 45–57.

    Article  CAS  Google Scholar 

  35. Shan, K.; Zhai, F. R.; Yi, Z. Z.; Yin, X. T.; Dastan, D.; Tajabadi, F.; Jafari, A.; Abbasi, S. Mixed conductivity and the conduction mechanism of the orthorhombic CaZrO3 based materials. Surf. Interfaces 2021, 23, 100905.

    Article  CAS  Google Scholar 

  36. Shan, K.; Yi, Z.; Yin, X. T.; Dastan, D.; Altaf, F.; Garmestani, H.; Alamgir, F. M. Mixed conductivity evaluation and sensing characteristics of limiting current oxygen sensors. Surf. Interfaces 2020, 21, 100762.

    Article  CAS  Google Scholar 

  37. Shan, K.; Yi, Z. Z.; Yin, X. T.; Cui, L. R.; Dastan, D.; Garmestani, H.; Alamgir, F. M. Diffusion kinetics mechanism of oxygen ion in dense diffusion barrier limiting current oxygen sensors. J. Alloys Compd. 2021, 855, 157465.

    Article  CAS  Google Scholar 

  38. Shan, K.; Yi, Z. Z.; Yin, X. T.; Dastan, D.; Garmestani, H. Y-doped CaZrO3/Co3O4 as novel dense diffusion barrier materials for a limiting current oxygen sensor. Dalton Trans. 2020, 49, 8549–8556.

    Article  CAS  Google Scholar 

  39. Shan, K.; Yi, Z. Z. Synthesis and ionic-electronic conductivity of A-site deficient (Y, In)co-doped SrTiO3 as novel materials for mixed conductor. Scr. Mater. 2015, 107, 119–122.

    Article  CAS  Google Scholar 

  40. Liu, L.; Sheng, Y. Y.; Liu, M.; Dienwiebel, M.; Zhang, Z. C.; Dastan, D. Formation of the third bodies of steel sliding against brass under lubricated conditions. Tribol. Int. 2019, 140, 105727.

    Article  CAS  Google Scholar 

  41. Shan, K.; Yi, Z. Z.; Yin, X. T.; Dastan, D.; Dadkhah, S.; Coates, B. T.; Garmestani, H. Mixed conductivities of A-site deficient Y, Cr-doubly doped SrTiO3 as novel dense diffusion barrier and temperature-independent limiting current oxygen sensors. Adv. Powder Technol. 2020, 31, 4657–4664.

    Article  CAS  Google Scholar 

  42. Garzon, F.; Raistrick, I.; Brosha, E.; Houlton, R.; Chung, B. W. Dense diffusion barrier limiting current oxygen sensors. Sens. Actuators B. 1998, 50, 125–130.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was kindly supported by the National Natural Science Foundation of China (Nos. 51962004 and 51562009).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ke Shan or Jing Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shan, K., Yi, Z. & Wang, J. Limiting current oxygen sensor based on Y, In co-doped SrTiO3 as a dense diffusion barrier layer. Nano Res. 15, 4880–4885 (2022). https://doi.org/10.1007/s12274-021-3379-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3379-y

Keywords

Navigation