Skip to main content

Metal-support interactions in designing noble metal-based catalysts for electrochemical CO2 reduction: Recent advances and future perspectives

Abstract

Electrochemical CO2 reduction reaction (CO2RR) offers a practical solution to current global greenhouse effect by converting excessive CO2 into value-added chemicals or fuels. Noble metal-based nanomaterials have been considered as efficient catalysts for the CO2RR owing to their high catalytic activity, long-term stability and superior selectivity to targeted products. On the other hand, they are usually loaded on different support materials in order to minimize their usage and maximize the utilization because of high price and limited reserve. The strong metal-support interaction (MSI) between the metal and substrate plays an important role in affecting the CO2RR performance. In this review, we mainly focus on different types of support materials (e.g., oxides, carbons, ligands, alloys and metal carbides) interacting with noble metal as electrocatalysts for CO2RR. Moreover, the positive effects about MSI for boosting the CO2RR performance via regulating the adsorption strength, electronic structure, coordination environment and binding energy are presented. Lastly, emerging challenges and future opportunities on noble metal electrocatalysts with strong MSI are discussed.

References

  1. [1]

    Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.

    CAS  Google Scholar 

  2. [2]

    Gu, J.; Hsu, C. S.; Bai, L. C.; Chen, H. M.; Hu, X. L. Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO. Science 2019, 364, 1091–1094.

    Article  CAS  Google Scholar 

  3. [3]

    Liu, M.; Pang, Y. J.; Zhang, B.; De Luna, P.; Voznyy, O.; Xu, J. X.; Zheng, X. L.; Dinh, C. T.; Fan, F. J.; Cao, C. H. et al. Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature 2016, 537, 382–386.

    Article  CAS  Google Scholar 

  4. [4]

    Fan, L.; Xia, C.; Yang, F. Q.; Wang, J.; Wang, H. T.; Lu, Y. Y. Strategies in catalysts and electrolyzer design for electrochemical CO2 reduction toward C2+ products. Sci. Adv. 2020, 6, eaay3111.

    Article  CAS  Google Scholar 

  5. [5]

    Feng, J. Q.; Gao, H. S.; Zheng, L. R.; Chen, Z. P.; Zeng, S. J.; Jiang, C. Y.; Dong, H. F.; Liu, L. C.; Zhang, S. J.; Zhang, X. P. A Mn-N3 single-atom catalyst embedded in graphitic carbon nitride for efficient CO2 electroreduction. Nat. Commun. 2020, 11, 4341.

    Article  Google Scholar 

  6. [6]

    Jouny, M.; Hutchings, G. S.; Jiao, F. Carbon monoxide electroreduction as an emerging platform for carbon utilization. Nat. Catal. 2019, 2, 1062–1070.

    Article  CAS  Google Scholar 

  7. [7]

    Asadi, M.; Kim, K.; Liu, C.; Addepalli, A. V.; Abbasi, P.; Yasaei, P.; Phillips, P.; Behranginia, A.; Cerrato, J. M.; Haasch, R. et al. Nanostructured transition metal dichalcogenide electrocatalysts for CO2 reduction in ionic liquid. Science 2016, 353, 467–470.

    Article  CAS  Google Scholar 

  8. [8]

    Ross, M. B.; De Luna, P.; Li, Y. F.; Dinh, C. T.; Kim, D.; Yang, P. D.; Sargent, E. H. Designing materials for electrochemical carbon dioxide recycling. Nat. Catal. 2019, 2, 648–658.

    Article  CAS  Google Scholar 

  9. [9]

    Gao, S.; Lin, Y.; Jiao, X. C.; Sun, Y. F.; Luo, Q. Q.; Zhang, W. H.; Li, D. Q.; Yang, J. L.; Xie, Y. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature 2016, 529, 68–71.

    Article  CAS  Google Scholar 

  10. [10]

    Xia, C.; Zhu, P.; Jiang, Q.; Pan, Y.; Liang, W. T.; Stavitski, E.; Alshareef, H. N.; Wang, H. T. Continuous production of pure liquid fuel solutions via electrocatalytic CO2 reduction using solid-electrolyte devices. Nat. Energy 2019, 4, 776–785.

    Article  CAS  Google Scholar 

  11. [11]

    Tian, S. F.; Chen, S. D.; Ren, X. T.; Hu, Y. Q.; Hu, H. Y.; Sun, J. J.; Bai, F. An efficient visible-light photocatalyst for CO2 reduction fabricated by cobalt porphyrin and graphitic carbon nitride via covalent bonding. Nano Res. 2020, 13, 2665–2672.

    Article  CAS  Google Scholar 

  12. [12]

    Li, Q.; Wang, S. C.; Sun, Z. X.; Tang, Q. J.; Liu, Y. Q.; Wang, L. Z.; Wang, H. Q.; Wu, Z. B. Enhanced CH4 selectivity in CO2 photocatalytic reduction over carbon quantum dots decorated and oxygen doping g-C3N4. Nano Res. 2019, 12, 2749–2759.

    Article  CAS  Google Scholar 

  13. [13]

    Zhu, P.; Wang, H. T. Structural evolution of oxide-/hydroxide-derived copper electrodes accounts for the enhanced C2+ product selectivity during electrochemical CO2 reduction. Sci. Bull. 2020, 65, 977–979.

    Article  CAS  Google Scholar 

  14. [14]

    Nam, D. H.; De Luna, P.; Rosas-Hernández, A.; Thevenon, A.; Li, F. W.; Agapie, T.; Peters, J. C.; Shekhah, O.; Eddaoudi, M.; Sargent, E. H. Molecular enhancement of heterogeneous CO2 reduction. Nat. Mater. 2020, 19, 266–276.

    Article  CAS  Google Scholar 

  15. [15]

    Li, M. L.; Zhang, L. X.; Wu, M. Y.; Du, Y. Y.; Fan, X. Q.; Wang, M.; Zhang, L. L.; Kong, Q. L.; Shi, J. L. Mesostructured CeO2/g-C3N4 nanocomposites: Remarkably enhanced photocatalytic activity for CO2 reduction by mutual component activations. Nano Energy 2016, 19, 145–155.

    Article  CAS  Google Scholar 

  16. [16]

    Wang, Y. C.; Liu, Y.; Liu, W.; Wu, J.; Li, Q.; Feng, Q. G.; Chen, Z. Y.; Xiong, X.; Wang, D. S.; Lei, Y. P. Regulating the coordination structure of metal single atoms for efficient electrocatalytic CO2 reduction. Energy Environ. Sci. 2020, 13, 4609–4624.

    Article  CAS  Google Scholar 

  17. [17]

    Wang, H. X.; Tzeng, Y. K.; Ji, Y. F.; Li, Y. B.; Li, J.; Zheng, X. L.; Yang, A. K.; Liu, Y. Y.; Gong, Y. J.; Cai, L. L. et al. Synergistic enhancement of electrocatalytic CO2 reduction to C2 oxygenates at nitrogen-doped nanodiamonds/Cu interface. Nat. Nanotechnol 2020, 15, 131–137.

    Article  CAS  Google Scholar 

  18. [18]

    Liu, H. L.; Zhu, Y. T.; Ma, J. M.; Zhang, Z. C.; Hu, W. P. Recent advances in atomic-level engineering of nanostructured catalysts for electrochemical CO2 reduction. Adv. Funct. Mater. 2020, 30, 1910534.

    Article  CAS  Google Scholar 

  19. [19]

    Corbin, N.; Zeng, J.; Williams, K.; Manthiram, K. Heterogeneous molecular catalysts for electrocatalytic CO2 reduction. Nano Res. 2019, 12, 2093–2125.

    Article  CAS  Google Scholar 

  20. [20]

    Duan, X. C.; Xu, J. T.; Wei, Z. X.; Ma, J. M.; Guo, S. J.; Wang, S. Y.; Liu, H. K.; Dou, S. X. Metal-free carbon materials for CO2 electrochemical reduction. Adv. Mater. 2017, 29, 1701784.

    Article  CAS  Google Scholar 

  21. [21]

    Long, C.; Li, X.; Guo, J.; Shi, Y. N.; Liu, S. Q.; Tang, Z. Y. Electrochemical reduction of CO2 over heterogeneous catalysts in aqueous solution: Recent progress and perspectives. Small Methods 2018, 3, 1800369.

    Article  CAS  Google Scholar 

  22. [22]

    Vasileff, A.; Zheng, Y.; Qiao, S. Z. Carbon solving carbon’s problems: Recent progress of nanostructured carbon-based catalysts for the electrochemical reduction of CO2. Adv. Energy Mater. 2017, 7, 1700759.

    Article  CAS  Google Scholar 

  23. [23]

    Zhang, S.; Fan, Q.; Xia, R.; Meyer, T. J. CO2 reduction: From homogeneous to heterogeneous electrocatalysis. Acc. Chem. Res. 2020, 53, 255–264.

    Article  CAS  Google Scholar 

  24. [24]

    Luo, W.; Zhang, J.; Li, M.; Züttel, A. Boosting CO production in electrocatalytic CO2 reduction on highly porous Zn catalysts. ACS Catal. 2019, 9, 3783–3791.

    Article  CAS  Google Scholar 

  25. [25]

    Won, D. H.; Shin, H.; Koh, J.; Chung, J.; Lee, H. S.; Kim, H.; Woo, S. I. Highly efficient, selective, and stable CO2 electroreduction on a hexagonal Zn catalyst. Angew. Chem., Int. Ed. 2016, 55, 9297–9300.

    Article  CAS  Google Scholar 

  26. [26]

    Zhou, J. H.; Yuan, K.; Zhou, L.; Guo, Y.; Luo, M. Y.; Guo, X. Y.; Meng, Q. Y.; Zhang, Y. W. Boosting electrochemical reduction of CO2 at a low overpotential by amorphous Ag-Bi-S-O decorated Bi0 nanocrystals. Angew. Chem., Int. Ed. 2019, 58, 14197–14201.

    Article  CAS  Google Scholar 

  27. [27]

    Han, N.; Ding, P.; He, L.; Li, Y. Y.; Li, Y. G. Promises of main group metal-based nanostructured materials for electrochemical CO2 reduction to formate. Adv. Energy Mater. 2019, 10, 1902338.

    Article  CAS  Google Scholar 

  28. [28]

    Wang, Y. R.; Yang, R. X.; Chen, Y. F.; Gao, G. K.; Wang, Y. J.; Li, S. L.; Lan, Y. Q. Chloroplast-like porous bismuth-based core-shell structure for high energy efficiency CO2 electroreduction. Sci. Bull. 2020, 65, 1635–1642.

    Article  CAS  Google Scholar 

  29. [29]

    Zhang, J. B.; Yin, R. G.; Shao, Q.; Zhu, T.; Huang, X. Q. Oxygen vacancies in amorphous InOx nanoribbons enhance CO2 adsorption and activation for CO2 electroreduction. Angew. Chem., Int. Ed. 2019, 58, 5609–5613.

    Article  CAS  Google Scholar 

  30. [30]

    Yang, H.; Han, N.; Deng, J.; Wu, J. H.; Wang, Y.; Hu, Y. P.; Ding, P.; Li, Y. F.; Li, Y. G.; Lu, J. Selective CO2 reduction on 2D mesoporous Bi nanosheets. Adv. Energy Mater. 2018, 8, 1801536.

    Article  CAS  Google Scholar 

  31. [31]

    Deng, P. L.; Wang, H. M.; Qi, R. J.; Zhu, J. X.; Chen, S. H.; Yang, F.; Zhou, L.; Qi, K.; Liu, H. F.; Xia, B. Y. Bismuth oxides with enhanced bismuth-oxygen structure for efficient electrochemical reduction of carbon dioxide to formate. ACS Catal. 2019, 10, 743–750.

    Article  CAS  Google Scholar 

  32. [32]

    Fan, K.; Jia, Y. F.; Ji, Y. F.; Kuang, P. Y.; Zhu, B. C.; Liu, X. Y.; Yu, J. G. Curved surface boosts electrochemical CO2 reduction to formate via bismuth nanotubes in a wide potential window. ACS Catal. 2020, 10, 358–364.

    Article  CAS  Google Scholar 

  33. [33]

    He, J.; Liu, X. J.; Liu, H. X.; Zhao, Z.; Ding, Y.; Luo, J. Highly selective electrocatalytic reduction of CO2 to formate over Tin(IV) sulfide monolayers. J. Catal. 2018, 364, 125–130.

    Article  CAS  Google Scholar 

  34. [34]

    Liu, S. B.; Lu, X. F.; Xiao, J.; Wang, X.; Lou, X. W. Bi2O3 Nanosheets grown on multi-channel carbon matrix to catalyze efficient CO2 electroreduction to HCOOH. Angew. Chem., Int. Ed. 2019, 58, 13828–13833.

    Article  CAS  Google Scholar 

  35. [35]

    Zhang, A.; Liang, Y. X.; Li, H. P.; Zhao, X. Y.; Chen, Y. L.; Zhang, B. Y.; Zhu, W. G.; Zeng, J. Harmonizing the electronic structures of the adsorbate and catalysts for efficient CO2 reduction. Nano Lett. 2019, 19, 6547–6553.

    Article  CAS  Google Scholar 

  36. [36]

    Zheng, X. L.; Luna, D.; de Arquer, F. P. G.; Zhang, B.; Becknell, N.; Ross, M. B.; Li, Y. F.; Banis, M. N.; Li, Y. Z.; Liu, M. et al. Sulfur-modulated tin sites enable highly selective electrochemical reduction of CO2 to formate. Joule 2017, 1, 794–805.

    Article  CAS  Google Scholar 

  37. [37]

    Jiang, Z. L.; Wang, T.; Pei, J. J.; Shang, H. S.; Zhou, D. N.; Li, H. J.; Dong, J. C.; Wang, Y.; Cao, R.; Zhuang, Z. B. et al. Discovery of main group single Sb-N4 active sites for CO2 electroreduction to formate with high efficiency. Energy Environ. Sci. 2020, 13, 2856–2863.

    Article  CAS  Google Scholar 

  38. [38]

    Shang, H. S.; Wang, T.; Pei, J. J.; Jiang, Z. L.; Zhou, D. N.; Wang, Y.; Li, H. J.; Dong, J. C.; Zhuang, Z. B.; Chen, W. X. et al. Design of a single-atom Indiumδ+-N4 interface for efficient electroreduction of CO2 to formate. Angew. Chem., Int. Ed. 2020, 59, 22465–22469.

    Article  CAS  Google Scholar 

  39. [39]

    Xie, H.; Wang, T. Y.; Liang, J. S.; Li, Q.; Sun, S. H. Cu-based nanocatalysts for electrochemical reduction of CO2. Nano Today 2018, 21, 41–54.

    Article  CAS  Google Scholar 

  40. [40]

    Pan, F. P.; Li, B. Y.; Sarnello, E.; Fei, Y. H.; Feng, X. H.; Gang, Y.; Xiang, X. M.; Fang, L. Z.; Li, T.; Hu, Y. H. et al. Pore-edge tailoring of single-atom iron-nitrogen sites on graphene for enhanced CO2 reduction. ACS Catal. 2020, 10, 10803–10811.

    Article  CAS  Google Scholar 

  41. [41]

    Adli, N. M.; Shan, W. T.; Hwang, S.; Samarakoon, W.; Karakalos, S.; Li, Y.; Cullen, D. A.; Su, D.; Feng, Z. X.; Wang, G. F.; et al. Engineering atomically dispersed FeN4 active sites for CO2 electroreduction. Angew. Chem., Int. Ed. 2021, 60, 1022–1032.

    Article  CAS  Google Scholar 

  42. [42]

    Li, Z. D.; He, D.; Yan, X. X.; Dai, S.; Younan, S.; Ke, Z. J.; Pan, X. Q.; Xiao, X. H.; Wu, H. J.; Gu, J. Size-dependent nickel-based electrocatalysts for selective CO2 reduction. Angew. Chem. 2020, 132, 18731–18736.

    Article  Google Scholar 

  43. [43]

    Cao, L.; Raciti, D.; Li, C. Y.; Livi, K. J. T.; Rottmann, P. F.; Hemker, K. J.; Mueller, T.; Wang, C. Mechanistic insights for low-overpotential electroreduction of CO2 to CO on copper nanowires. ACS Catal. 2017, 7, 8578–8587.

    Article  CAS  Google Scholar 

  44. [44]

    Peterson, A. A.; Nørskov, J. K. Activity descriptors for CO2 electroreduction to methane on transition-metal catalysts. J. Phys. Chem. Lett. 2012, 3, 251–258.

    Article  CAS  Google Scholar 

  45. [45]

    Han, Z.; Hu, Q.; Cheng, Z.; Li, G. M.; Huang, X. W.; Wang, Z. Y.; Yang, H. P.; Ren, X. Z.; Zhang, Q. L.; Liu, J. H. et al. Highperformance overall CO2 splitting on hierarchical structured cobalt disulfide with partially removed sulfur edges. Adv. Funct. Mater. 2020, 30, 2000154.

    Article  CAS  Google Scholar 

  46. [46]

    Zhang, T. Y.; Han, X.; Yang, H. B.; Han, A. J.; Hu, E. Y.; Li, Y. P.; Yang, X. Q.; Wang, L.; Liu, J. F.; Liu, B. Atomically dispersed nickel(I) on an alloy-encapsulated nitrogen-doped carbon nanotube array for high-performance electrochemical CO2 reduction reaction. Angew. Chem., Int. Ed. 2020, 59, 12055–12061.

    Article  CAS  Google Scholar 

  47. [47]

    Yin, Z. Y.; Yu, C.; Zhao, Z. L.; Guo, X. F.; Shen, M. Q.; Li, N.; Muzzio, M.; Li, J. R.; Liu, H.; Lin, H. H. et al. Cu3N nanocubes for selective electrochemical reduction of CO2 to ethylene. Nano Lett. 2019, 19, 8658–8663.

    Article  CAS  Google Scholar 

  48. [48]

    Sun, X. F.; Zhu, Q. G.; Kang, X. C.; Liu, H. Z.; Qian, Q. L.; Ma, J.; Zhang, Z. F.; Yang, G. Y.; Han, B. X. Design of a Cu(i)/C-doped boron nitride electrocatalyst for efficient conversion of CO2 into acetic acid. Green Chem. 2017, 19, 2086–2091.

    Article  CAS  Google Scholar 

  49. [49]

    Reske, R.; Mistry, H.; Behafarid, F.; Cuenya, B. R.; Strasser, P. Particle size effects in the catalytic electroreduction of CO2 on Cu nanoparticles. J. Am. Chem. Soc. 2014, 136, 6978–6986.

    Article  CAS  Google Scholar 

  50. [50]

    Gao, S.; Sun, Z. T.; Liu, W.; Jiao, X. C.; Zu, X. L.; Hu, Q. T.; Sun, Y. F.; Yao, T.; Zhang, W. H.; Wei, S. Q. et al. Atomic layer confined vacancies for atomic-level insights into carbon dioxide electroreduction. Nat. Commun. 2017, 8, 14503.

    Article  CAS  Google Scholar 

  51. [51]

    Zhang, W. B.; Zeng, J. C.; Liu, H. G.; Shi, Z. P.; Tang, Y.; Gao, Q. S. CoxNi1−x nanoalloys on N-doped carbon nanofibers: Electronic regulation toward efficient electrochemical CO2 reduction. J. Catal. 2019, 372, 277–286.

    Article  CAS  Google Scholar 

  52. [52]

    Cai, F.; Gao, D. F.; Zhou, H.; Wang, G. X.; He, T.; Gong, H. M.; Miao, S.; Yang, F.; Wang, J. G.; Bao, X. H. Electrochemical promotion of catalysis over Pd nanoparticles for CO2 reduction. Chem. Sci. 2017, 8, 2569–2573.

    Article  CAS  Google Scholar 

  53. [53]

    Gao, D. F.; Zhou, H.; Cai, F.; Wang, J. G.; Wang, G. X.; Bao, X. H. Pd-containing nanostructures for electrochemical CO2 reduction reaction. ACS Catal. 2018, 8, 1510–1519.

    Article  CAS  Google Scholar 

  54. [54]

    Hall, A. S.; Yoon, Y.; Wuttig, A.; Surendranath, Y. Mesostructure-induced selectivity in CO2 reduction catalysis. J. Am. Chem. Soc. 2015, 137, 14834–14837.

    Article  CAS  Google Scholar 

  55. [55]

    Sun, K.; Ji, Y. J.; Liu, Y. Y.; Wang, Z. J. Synergies between electronic and geometric effects of Mo-doped Au nanoparticles for effective CO2 electrochemical reduction. J. Mater. Chem. A 2020, 8, 12291–12295.

    Article  CAS  Google Scholar 

  56. [56]

    Sun, K.; Wu, L. N.; Qin, W.; Zhou, J. G.; Hu, Y. F.; Jiang, Z. H.; Shen, B. Z.; Wang, Z. J. Enhanced electrochemical reduction of CO2 to CO on Ag electrocatalysts with increased unoccupied density of states. J. Mater. Chem. A 2016, 4, 12616–12623.

    Article  CAS  Google Scholar 

  57. [57]

    Qi, Z.; Biener, J.; Biener, M. Surface oxide-derived nanoporous gold catalysts for electrochemical CO2-to-CO reduction. ACS Appl. Energy Mater. 2019, 2, 7717–7721.

    Article  CAS  Google Scholar 

  58. [58]

    Liu, S. Q.; Wu, S. W.; Gao, M. R.; Li, M. S.; Fu, X. Z.; Luo, J. L. Hollow porous ag spherical catalysts for highly efficient and selective electrocatalytic reduction of CO2 to CO. ACS Sustainable Chem. Eng. 2019, 7, 14443–14450.

    Article  CAS  Google Scholar 

  59. [59]

    Liu, M.; Liu, M. X.; Wang, X. M.; Kozlov, S. M.; Cao, Z.; De Luna, P.; Li, H. M.; Qiu, X. Q.; Liu, K.; Hu, J. H. et al. Quantum-dot-derived catalysts for CO2 reduction reaction. Joule 2019, 3, 1703–1718.

    Article  CAS  Google Scholar 

  60. [60]

    Kuang, M.; Guan, A. X.; Gu, Z. X.; Han, P.; Qian, L. P.; Zheng, G. F. Enhanced N-doping in mesoporous carbon for efficient electrocatalytic CO2 conversion. Nano Res. 2019, 12, 2324–2329.

    Article  CAS  Google Scholar 

  61. [61]

    Kumar, B.; Asadi, M.; Pisasale, D.; Sinha-Ray, S.; Rosen, B. A.; Haasch, R.; Abiade, J.; Yarin, A. L.; Salehi-Khojin, A. Renewable and metal-free carbon nanofibre catalysts for carbon dioxide reduction. Nat. Commun. 2013, 4, 2819.

    Article  CAS  Google Scholar 

  62. [62]

    Dong, Y.; Zhang, Q. J.; Tian, Z. Q.; Li, B. R.; Yan, W. S.; Wang, S.; Jiang, K. M.; Su, J. W.; Oloman, C. W.; Gyenge, E. L. et al. Ammonia thermal treatment toward topological defects in porous carbon for enhanced carbon dioxide electroreduction. Adv. Mater. 2020, 32, 2001300.

    Article  CAS  Google Scholar 

  63. [63]

    Li, H. Q.; Xiao, N.; Wang, Y. W.; Li, C.; Ye, X.; Guo, Z.; Pan, X.; Liu, C.; Bai, J. P.; Xiao, J. et al. Nitrogen-doped tubular carbon foam electrodes for efficient electroreduction of CO2 to syngas with potential-independent CO/H2 ratios. J. Mater. Chem. A 2019, 7, 18852–18860.

    Article  CAS  Google Scholar 

  64. [64]

    Lin, R.; Ma, X. L.; Cheong, W. C.; Zhang, C.; Zhu, W.; Pei, J. J.; Zhang, K. Y.; Wang, B.; Liang, S. Y.; Liu, Y. X. et al. PdAg bimetallic electrocatalyst for highly selective reduction of CO2 with low COOH* formation energy and facile CO desorption. Nano Res. 2019, 12, 2866–2871.

    Article  CAS  Google Scholar 

  65. [65]

    Shi, R.; Guo, J. H.; Zhang, X. R.; Waterhouse, G. I. N.; Han, Z. J.; Zhao, Y. X.; Shang, L.; Zhou, C.; Jiang, L.; Zhang, T. R. Efficient wettability-controlled electroreduction of CO2 to CO at Au/C interfaces. Nat. Commun. 2020, 11, 3028.

    Article  CAS  Google Scholar 

  66. [66]

    Chen, Y. H.; Li, C. W.; Kanan, M. W. Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles. J. Am. Chem. Soc. 2012, 134, 19969–19972.

    Article  CAS  Google Scholar 

  67. [67]

    Zhang, N. Q.; Zhang, X. X.; Tao, L.; Jiang, P.; Ye, C. L.; Lin, R.; Huang, Z. W.; Li, A.; Pang, D. W.; Yan, H. et al. Silver single-atom catalyst for efficient electrochemical CO2 reduction synthesized from thermal transformation and surface reconstruction. Angew. Chem., Int. Ed., in press, DOI: https://doi.org/10.1002/anie.202014718.

  68. [68]

    Zhu, W. L.; Michalsky, R.; Metin, Ö.; Lv, H. F.; Guo, S. J.; Wright, C. J.; Sun, X. L.; Peterson, A. A.; Sun, S. H. Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO. J. Am. Chem. Soc. 2013, 135, 16833–16836.

    Article  CAS  Google Scholar 

  69. [69]

    Gao, D. F.; Zhou, H.; Wang, J.; Miao, S.; Yang, F.; Wang, G. X.; Wang, J. G.; Bao, X. H. Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles. J. Am. Chem. Soc. 2015, 137, 4288–4291.

    Article  CAS  Google Scholar 

  70. [70]

    Li, H.; Wen, P.; Itanze, D. S.; Hood, Z. D.; Ma, X.; Kim, M.; Adhikari, S.; Lu, C.; Dun, C.; Chi, M. et al. Colloidal silver diphosphide (AgP2) nanocrystals as low overpotential catalysts for CO2 reduction to tunable syngas. Nat. Commun. 2019, 10, 5724.

    Article  CAS  Google Scholar 

  71. [71]

    Zhu, W. L.; Zhang, Y. J.; Zhang, H. Y.; Lv, H. F.; Li, Q.; Michalsky, R.; Peterson, A. A.; Sun, S. H. Active and selective conversion of CO2 to CO on ultrathin Au nanowires. J. Am. Chem. Soc. 2014, 136, 16132–16135.

    Article  CAS  Google Scholar 

  72. [72]

    Yang, D. R.; Liu, L.; Zhang, Q.; Shi, Y.; Zhou, Y.; Liu, C. G.; Wang, F. B.; Xia, X. H. Importance of Au nanostructures in CO2 electrochemical reduction reaction. Sci. Bull. 2020, 65, 796–802.

    Article  CAS  Google Scholar 

  73. [73]

    Kim, J.; Song, J. T.; Ryoo, H.; Kim, J. G.; Chung, S. Y.; Oh, J. Morphology-controlled Au nanostructures for efficient and selective electrochemical CO2 reduction. J. Mater. Chem. A 2018, 6, 5119–5128.

    Article  CAS  Google Scholar 

  74. [74]

    Liu, S. B.; Sun, C.; Xiao, J.; Luo, J. L. Unraveling structure sensitivity in CO2 electroreduction to near-unity CO on silver nanocubes. ACS Catal. 2020, 10, 3158–3163.

    Article  CAS  Google Scholar 

  75. [75]

    Gao, D. F.; Zhang, Y.; Zhou, Z. W.; Cai, F.; Zhao, X. F.; Huang, W. G.; Li, Y. S.; Zhu, J. F.; Liu, P.; Yang, F. et al. Enhancing CO2 electroreduction with the metal-oxide interface. J. Am. Chem. Soc. 2017, 139, 5652–5655.

    Article  CAS  Google Scholar 

  76. [76]

    Zhang, L.; Mao, F. X.; Zheng, L. R.; Wang, H. F.; Yang, X. H.; Yang, H. G. Tuning metal catalyst with metal-C3N4 interaction for efficient CO2 electroreduction. ACS Catal. 2018, 8, 11035–11041.

    Article  CAS  Google Scholar 

  77. [77]

    Cheng, Z.; Sherman, B. J.; Lo, C. S. Carbon dioxide activation and dissociation on ceria (110): A density functional theory study. J. Chem. Phys 2013, 138, 014702.

    Article  CAS  Google Scholar 

  78. [78]

    Li, Q.; Fu, J. J.; Zhu, W. L.; Chen, Z. Z.; Shen, B.; Wu, L. H.; Xi, Z.; Wang, T. Y.; Lu, G.; Zhu, J. J. et al. Tuning Sn-catalysis for electrochemical reduction of CO2 to CO via the Core/Shell Cu/SnO2 structure. J. Am. Chem. Soc. 2017, 139, 4290–4293.

    Article  CAS  Google Scholar 

  79. [79]

    Zhang, J.; Qiao, M.; Li, Y. F.; Shao, Q.; Huang, X. Q. Highly active and selective electrocatalytic CO2 conversion enabled by Core/Shell Ag/(Amorphous-Sn(IV)) nanostructures with tunable shell thickness. ACS Appl. Mater. Interfaces 2019, 11, 39722–39727.

    Article  CAS  Google Scholar 

  80. [80]

    He, R.; Yuan, X.; Shao, P. F.; Duan, T.; Zhu, W. K. Hybridization of defective tin disulfide nanosheets and silver nanowires enables efficient electrochemical reduction of CO2 into formate and syngas. Small 2019, 15, e1904882.

    Article  CAS  Google Scholar 

  81. [81]

    Ma, S. C.; Lan, Y. C.; Perez, G. M. J.; Moniri, S.; Kenis, P. J. A. Silver supported on titania as an active catalyst for electrochemical carbon dioxide reduction. ChemSusChem 2014, 7, 866–874.

    Article  CAS  Google Scholar 

  82. [82]

    Li, J. J.; Zhu, B. L.; Wang, G. C.; Liu, Z. F.; Huang, W. P.; Zhang, S. M. Enhanced CO catalytic oxidation over an Au-Pt alloy supported on TiO2 nanotubes: Investigation of the hydroxyl and Au/Pt ratio influences. Catal. Sci. Technol. 2018, 8, 6109–6122.

    Article  CAS  Google Scholar 

  83. [83]

    Liu, S. F.; Xu, W.; Niu, Y. M.; Zhang, B. S.; Zheng, L. R.; Liu, W.; Li, L.; Wang, J. H. Ultrastable Au nanoparticles on titania through an encapsulation strategy under oxidative atmosphere. Nat. Commun. 2019, 10, 5790.

    Article  CAS  Google Scholar 

  84. [84]

    Zhang, J.; Wang, H.; Wang, L.; Ali, S.; Wang, C. T.; Wang, L. X.; Meng, X. J.; Li, B.; Su, D. S.; Xiao, F. S. Wet-chemistry strong metal-support interactions in titania-supported Au catalysts. J. Am. Chem. Soc. 2019, 141, 2975–2983.

    Article  CAS  Google Scholar 

  85. [85]

    Sun, L. B.; Reddu, V.; Fisher, A. C.; Wang, X. Electrocatalytic reduction of carbon dioxide: Opportunities with heterogeneous molecular catalysts. Energy Environ. Sci. 2020, 13, 374–403.

    Article  CAS  Google Scholar 

  86. [86]

    He, Q.; Lee, J. H.; Liu, D. B.; Liu, Y. M.; Lin, Z. X.; Xie, Z. H.; Hwang, S.; Kattel, S.; Song, L.; Chen, J. G. Accelerating CO2 electroreduction to CO over Pd single — atom catalyst. Adv. Funct. Mater. 2020, 30, 2000407.

    Article  CAS  Google Scholar 

  87. [87]

    Yang, J. R.; Li, W. H.; Wang, D. S.; Li, Y. D. Single-atom materials: Small structures determine macroproperties. Small Struct. 2020, 2000051.

  88. [88]

    Han, A. J.; Wang, B. Q.; Kumar, A.; Qin, Y. L.; Jin, J.; Wang, X. H.; Yang, C.; Dong, B.; Jia, Y.; Liu, J. F. et al. Recent advances for MOF-derived carbon-supported single-atom catalysts. Small Methods 2019, 3, 1800471.

    Article  CAS  Google Scholar 

  89. [89]

    Sun, T. T.; Xu, L. B.; Wang, D. S.; Li, Y. D. Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res. 2019, 12, 2067–2080.

    Article  CAS  Google Scholar 

  90. [90]

    Cao, Z.; Zacate, S. B.; Sun, X. D.; Liu, J. J.; Hale, E. M.; Carson, W. P.; Tyndall, S. B.; Xu, J.; Liu, X. W.; Liu, X. C. et al. Tuning gold nanoparticles with chelating ligands for highly efficient electrocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2018, 57, 12675–12679.

    Article  CAS  Google Scholar 

  91. [91]

    Zhao, Y.; Wang, C. Y.; Liu, Y. Q.; MacFarlane, D. R.; Wallace, G. G. Engineering surface amine modifiers of ultrasmall gold nanoparticles supported on reduced graphene oxide for improved electrochemical CO2 reduction. Adv. Energy Mater. 2018, 8, 1801400.

    Article  CAS  Google Scholar 

  92. [92]

    Ao, X.; Zhang, W.; Zhao, B. T.; Ding, Y.; Nam, G.; Soule, L.; Abdelhafiz, A.; Wang, C. D.; Liu, M. L. Atomically dispersed Fe-N-C decorated with Pt-alloy core-shell nanoparticles for improved activity and durability towards oxygen reduction. Energy Environ. Sci. 2020, 13, 3032–3040.

    Article  CAS  Google Scholar 

  93. [93]

    Luo, M. C.; Sun, Y. J.; Wang, L.; Guo, S. J. Tuning multimetallic ordered intermetallic nanocrystals for efficient energy electrocatalysis. Adv. Energy Mater. 2017, 7, 1602073.

    Article  CAS  Google Scholar 

  94. [94]

    Kim, H. Y.; Kim, J. M.; Ha, Y.; Woo, J.; Byun, A.; Shin, T. J.; Park, K. H.; Jeong, H. Y.; Kim, H.; Kim, J. Y. et al. Activity origin and multifunctionality of Pt-based intermetallic nanostructures for efficient electrocatalysis. ACS Catal. 2019, 9, 11242–11254.

    Article  CAS  Google Scholar 

  95. [95]

    Kim, D.; Xie, C. L.; Becknell, N.; Yu, Y.; Karamad, M.; Chan, K.; Crumlin, E. J.; Nørskov, J. K.; Yang, P. D. Electrochemical activation of CO2 through atomic ordering transformations of AuCu nanoparticles. J. Am. Chem. Soc. 2017, 139, 8329–8336.

    Article  CAS  Google Scholar 

  96. [96]

    Ma, S. C.; Sadakiyo, M.; Heima, M.; Luo, R.; Haasch, R. T.; Gold, J. I.; Yamauchi, M.; Kenis, P. J. A. Electroreduction of carbon dioxide to hydrocarbons using bimetallic Cu-Pd catalysts with different mixing patterns. J. Am. Chem. Soc. 2017, 139, 47–50.

    Article  CAS  Google Scholar 

  97. [97]

    Vasileff, A.; Xu, C. C.; Jiao, Y.; Zheng, Y.; Qiao, S. Z. Surface and interface engineering in copper-based bimetallic materials for selective CO2 electroreduction. Chem 2018, 4, 1809–1831.

    Article  CAS  Google Scholar 

  98. [98]

    Ma, M.; Hansen, H. A.; Valenti, M.; Wang, Z. G.; Cao, A. P.; Dong, M. D.; Smith, W. A. Electrochemical reduction of CO2 on compositionally variant Au-Pt bimetallic thin films. Nano Energy 2017, 42, 51–57.

    Article  CAS  Google Scholar 

  99. [99]

    Sankar, M.; He, Q.; Engel, R. V.; Sainna, M. A.; Logsdail, A. J.; Roldan, A.; Willock, D. J.; Agarwal, N.; Kiely, C. J.; Hutchings, G. J. Role of the support in gold-containing nanoparticles as heterogeneous catalysts. Chem. Rev. 2020, 120, 3890–3938.

    Article  CAS  Google Scholar 

  100. [100]

    Yang, J. R.; Li, W. H.; Wang, D. S.; Li, Y. D. Electronic metal-support interaction of single-atom catalysts and applications in electrocatalysis. Adv. Mater. 2020, 32, 2003300.

    Article  CAS  Google Scholar 

  101. [101]

    Dong, H.; Zhang, L.; Li, L. L.; Deng, W. Y.; Hu, C. L.; Zhao, Z. J.; Gong, J. L. Abundant Ce3+ ions in Au-CeOx nanosheets to enhance CO2 electroreduction performance. Small 2019, 15, e1900289.

    Article  CAS  Google Scholar 

  102. [102]

    Wang, J. J.; Kattel, S.; Hawxhurst, C. J.; Lee, J. H.; Tackett, B. M.; Chang, K.; Rui, N.; Liu, C. J.; Chen, J. G. Enhancing activity and reducing cost for electrochemical reduction of CO2 by supporting palladium on metal carbides. Angew. Chem., Int. Ed. 2019, 58, 6271–6275.

    Article  CAS  Google Scholar 

  103. [103]

    Zhao, S. Q.; Tang, Z. Y.; Guo, S. J.; Han, M. M.; Zhu, C.; Zhou, Y. J.; Bai, L.; Gao, J.; Huang, H.; Li, Y. Y. et al. Enhanced activity for CO2 electroreduction on a highly active and stable ternary Au-CDots-C3N4 electrocatalyst. ACS Catal. 2018, 8, 188–197.

    Article  CAS  Google Scholar 

  104. [104]

    Liu, X. Y.; Liu, M. H.; Luo, Y. C.; Mou, C. Y.; Lin, S. D.; Cheng, H. K.; Chen, J. M.; Lee, J. F.; Lin, T. S. Strong metal-support interactions between gold nanoparticles and ZnO nanorods in CO oxidation. J. Am. Chem. Soc. 2012, 134, 10251–10258.

    Article  CAS  Google Scholar 

  105. [105]

    Liu, M. H.; Chen, Y. W.; Lin, T. S.; Mou, C. Y. Defective mesocrystal ZnO-supported gold catalysts: Facilitating CO oxidation via vacancy defects in ZnO. ACS Catal. 2018, 8, 6862–6869.

    Article  CAS  Google Scholar 

  106. [106]

    Wang, T. T.; Sang, X. H.; Zheng, W. Z.; Yang, B.; Yao, S. Y.; Lei, C. J.; Li, Z. J.; He, Q. G.; Lu, J. G.; Lei, L. C. et al. Gas diffusion strategy for inserting atomic iron sites into graphitized carbon supports for unusually high-efficient CO2 electroreduction and highperformance Zn-CO2 batteries. Adv. Mater. 2020, 32, 2002430.

    Article  CAS  Google Scholar 

  107. [107]

    Li, X. G.; Xi, S. B.; Sun, L. B.; Dou, S.; Huang, Z. F.; Su, T.; Wang, X. Isolated FeN4 sites for efficient electrocatalytic CO2 reduction. Adv. Sci. 2020, 7, 2001545.

    Article  CAS  Google Scholar 

  108. [108]

    Yang, H. P.; Lin, Q.; Zhang, C.; Yu, X. Y.; Cheng, Z.; Li, G. D.; Hu, Q.; Ren, X. Z.; Zhang, Q. L.; Liu, J. H. et al. Carbon dioxide electroreduction on single-atom nickel decorated carbon membranes with industry compatible current densities. Nat. Commun. 2020, 11, 593.

    Article  CAS  Google Scholar 

  109. [109]

    Zhang, H. N.; Li, J.; Xi, S. B.; Du, Y. H.; Hai, X.; Wang, J. Y.; Xu, H. M.; Wu, G.; Zhang, J.; Lu, J. et al. A graphene-supported singleatom FeN5 catalytic site for efficient electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2019, 58, 14871–14876.

    Article  CAS  Google Scholar 

  110. [110]

    Yang, H. B.; Hung, S. F.; Liu, S.; Yuan, K. D.; Miao, S.; Zhang, L. P.; Huang, X.; Wang, H. Y.; Cai, W. Z.; Chen, R. et al. Atomically dispersed Ni(I) as the active site for electrochemical CO2 reduction. Nat. Energy 2018, 3, 140–147.

    Article  CAS  Google Scholar 

  111. [111]

    Wang, X. S.; Pan, Y. Y.; Ning, H.; Wang, H. M.; Guo, D. L.; Wang, W. H.; Yang, Z. X.; Zhao, Q. S.; Zhang, B. X.; Zheng, L. R. et al. Hierarchically micro- and meso-porous Fe-N4O-doped carbon as robust electrocatalyst for CO2 reduction. Appl. Catal. B: Environ. 2020, 266, 118630.

    Article  CAS  Google Scholar 

  112. [112]

    Pan, F. P.; Li, B. Y.; Sarnello, E.; Fei, Y. H.; Gang, Y.; Xiang, X. M.; Du, Z. C.; Zhang, P.; Wang, G. F.; Nguyen, H. T. et al. Atomically dispersed iron-nitrogen sites on hierarchically mesoporous carbon nanotube and graphene nanoribbon networks for CO2 reduction. ACS Nano 2020, 14, 5506–5516.

    Article  CAS  Google Scholar 

  113. [113]

    Zhang, Y. L.; Zhang, J. Y.; Zhang, B. S.; Si, R.; Han, B.; Hong, F.; Niu, Y. M.; Sun, L.; Li, L.; Qiao, B. T. et al. Boosting the catalysis of gold by O2 activation at Au-SiO2 interface. Nat. Commun. 2020, 11, 558.

    Article  CAS  Google Scholar 

  114. [114]

    Larrazábal, G. O.; Martín, A. J.; Mitchell, S.; Hauert, R.; Pérez-Ramírez, J. Synergistic effects in silver-indium electrocatalysts for carbon dioxide reduction. J. Catal. 2016, 343, 266–277.

    Article  CAS  Google Scholar 

  115. [115]

    Luo, W.; Xie, W.; Mutschler, R.; Oveisi, E.; De Gregorio, G. L.; Buonsanti, R.; Züttel, A. Selective and stable electroreduction of CO2 to CO at the copper/indium interface. ACS Catal. 2018, 8, 6571–6581.

    Article  CAS  Google Scholar 

  116. [116]

    Zheng, X. L.; Ji, Y. F.; Tang, J.; Wang, J. Y.; Liu, B. F.; Steinrück, H. G.; Lim, K.; Li, Y. Z.; Toney, M. F.; Chan, K. et al. Theory-guided Sn/Cu alloying for efficient CO2 electroreduction at low overpotentials. Nat. Catal. 2019, 2, 55–61.

    Article  CAS  Google Scholar 

  117. [117]

    Arnal, P. M.; Comotti, M.; Schüth, F. High-temperature-stable catalysts by hollow sphere encapsulation. Angew. Chem., Int. Ed. 2006, 45, 8224–8227.

    Article  CAS  Google Scholar 

  118. [118]

    Lee, Y.; Garcia, M. A.; Huls, N. A. F.; Sun, S. H. Synthetic tuning of the catalytic properties of Au-Fe3O4 nanoparticles. Angew. Chem., Int. Ed. 2010, 49, 1271–1274.

    Article  CAS  Google Scholar 

  119. [119]

    Zhang, W. Y.; Qin, Q.; Dai, L.; Qin, R. X.; Zhao, X. J.; Chen, X. M.; Ou, D. H.; Chen, J.; Chuong, T. T.; Wu, B. B. et al. Electrochemical reduction of carbon dioxide to methanol on hierarchical Pd/SnO2 nanosheets with abundant Pd-O-Sn interfaces. Angew. Chem., Int. Ed. 2018, 57, 9475–9479.

    Article  CAS  Google Scholar 

  120. [120]

    Luc, W.; Collins, C.; Wang, S. W.; Xin, H. L.; He, K.; Kang, Y. J.; Jiao, F. Ag-Sn bimetallic catalyst with a core-shell structure for CO2 reduction. J. Am. Chem. Soc. 2017, 139, 1885–1893.

    Article  CAS  Google Scholar 

  121. [121]

    Lopez-Sanchez, J. A.; Dimitratos, N.; Hammond, C.; Brett, G. L.; Kesavan, L.; White, S.; Miedziak, P.; Tiruvalam, R.; Jenkins, R. L.; Carley, A. F. et al. Facile removal of stabilizer-ligands from supported gold nanoparticles. Nat. Chem. 2011, 3, 551–556.

    Article  CAS  Google Scholar 

  122. [122]

    Nguyen, D. L. T.; Kim, Y.; Hwang, Y. J.; Won, D. H. Progress in development of electrocatalyst for CO2 conversion to selective CO production. Carbon Energy 2020, 2, 72–98.

    Article  CAS  Google Scholar 

  123. [123]

    Guo, L.; Jiang, W. J.; Zhang, Y.; Hu, J. S.; Wei, Z. D.; Wan, L. J. Embedding Pt nanocrystals in N-Doped porous carbon/carbon nanotubes toward highly stable electrocatalysts for the oxygen reduction reaction. ACS Catal. 2015, 5, 2903–2909.

    Article  CAS  Google Scholar 

  124. [124]

    Ham, Y. S.; Park, Y. S.; Jo, A.; Jang, J. H.; Kim, S. K.; Kim, J. J. Proton-exchange membrane CO2 electrolyzer for CO production using Ag catalyst directly electrodeposited onto gas diffusion layer. J. Power Sources 2019, 437, 226898.

    Article  CAS  Google Scholar 

  125. [125]

    Miola, M.; Hu, X. M.; Brandiele, R.; Bjerglund, E. T.; Grønseth, D. K.; Durante, C.; Pedersen, S. U.; Lock, N.; Skrydstrup, T.; Daasbjerg, K. Ligand-free gold nanoparticles supported on mesoporous carbon as electrocatalysts for CO2 reduction. J. COV2 Util. 2018, 28, 50–58.

    Article  CAS  Google Scholar 

  126. [126]

    Sheng, W. C.; Kattel, S.; Yao, S. Y.; Yan, B. H.; Liang, Z. X.; Hawxhurst, C. J.; Wu, Q. Y.; Chen, J. G. Electrochemical reduction of CO2 to synthesis gas with controlled CO/H2 ratios. Energy Environ. Sci. 2017, 10, 1180–1185.

    Article  CAS  Google Scholar 

  127. [127]

    Feng, X. F.; Jiang, K. L.; Fan, S. S.; Kanan, M. W. Grain-boundary-dependent CO2 electroreduction activity. J. Am. Chem. Soc. 2015, 137, 4606–4609.

    Article  CAS  Google Scholar 

  128. [128]

    Zhang, Y. C.; Hu, L.; Han, W. Q. Insights into in situ one-step synthesis of carbon-supported nano-particulate gold-based catalysts for efficient electrocatalytic CO2 reduction. J. Mater. Chem. A 2018, 6, 23610–23620.

    Article  CAS  Google Scholar 

  129. [129]

    Li, Y. F.; Chen, C.; Cao, R.; Pan, Z. W.; He, H.; Zhou, K. B. Dual-atom Ag2/graphene catalyst for efficient electroreduction of CO2 to CO. Appl. Catal. B: Environ. 2020, 268, 118747.

    Article  CAS  Google Scholar 

  130. [130]

    Lin, R. H.; Albani, D.; Fako, E.; Kaiser, S. K.; Safonova, O. V.; López, N.; Pérez-Ramírez, J. Design of single gold atoms on nitrogen-doped carbon for molecular recognition in alkyne semi-hydrogenation. Angew. Chem., Int. Ed. 2019, 58, 504–509.

    Article  CAS  Google Scholar 

  131. [131]

    Li, Q.; Zhu, W. L.; Fu, J. J.; Zhang, H. Y.; Wu, G.; Sun, S. H. Controlled assembly of Cu nanoparticles on pyridinic-N rich graphene for electrochemical reduction of CO2 to ethylene. Nano Energy 2016, 24, 1–9.

    Article  CAS  Google Scholar 

  132. [132]

    Kim, C.; Jeon, H. S.; Eom, T.; Jee, M. S.; Kim, H.; Friend, C. M.; Min, B. K.; Hwang, Y. J. Achieving selective and efficient electrocatalytic activity for CO2 reduction using immobilized silver nanoparticles. J. Am. Chem. Soc. 2015, 137, 13844–13850.

    Article  CAS  Google Scholar 

  133. [133]

    Yang, C. H.; Li, S. Y.; Zhang, Z. C.; Wang, H. Q.; Liu, H. L.; Jiao, F.; Guo, Z. G.; Zhang, X. T.; Hu, W. P. Organic-inorganic hybrid nanomaterials for electrocatalytic CO2 reduction. Small 2020, 16, 2001847.

    Article  CAS  Google Scholar 

  134. [134]

    Wagner, A.; Ly, K. H.; Heidary, N.; Szabó, I.; Földes, T.; Assaf, K. I.; Barrow, S. J.; Sokolowski, K.; Al-Hada, M.; Kornienko, N. et al. Host-guest chemistry meets electrocatalysis: Cucurbit[6]uril on a Au surface as a hybrid system in CO2 reduction. ACS Catal. 2020, 10, 751–761.

    Article  CAS  Google Scholar 

  135. [135]

    Cao, Z.; Kim, D.; Hong, D. C.; Yu, Y.; Xu, J.; Lin, S.; Wen, X. D.; Nichols, E. M.; Jeong, K.; Reimer, J. A. et al. A molecular surface functionalization approach to tuning nanoparticle electrocatalysts for carbon dioxide reduction. J. Am. Chem. Soc. 2016, 138, 8120–8125.

    Article  CAS  Google Scholar 

  136. [136]

    Fang, Y. X.; Cheng, X.; Flake, J. C.; Xu, Y. CO2 electrochemical reduction at thiolate-modified bulk Au electrodes. Catal. Sci. Technol. 2019, 9, 2689–2701.

    Article  CAS  Google Scholar 

  137. [137]

    Fu, J. J.; Zhu, W. L.; Chen, Y.; Yin, Z. Y.; Li, Y. Y.; Liu, J.; Zhang, H. Y.; Zhu, J. J.; Sun, S. H. Bipyridine-assisted assembly of Au nanoparticles on Cu nanowires to enhance the electrochemical reduction of CO2. Angew. Chem., Int. Ed. 2019, 58, 14100–14103.

    Article  CAS  Google Scholar 

  138. [138]

    Lee, J. H.; Kattel, S.; Xie, Z. H.; Tackett, B. M.; Wang, J. J.; Liu, C. J.; Chen, J. G. Understanding the role of functional groups in polymeric binder for electrochemical carbon dioxide reduction on gold nanoparticles. Adv. Funct. Mater. 2018, 28, 1804762.

    Article  CAS  Google Scholar 

  139. [139]

    Cui, X. F.; Wang, J.; Liu, B.; Ling, S.; Long, R.; Xiong, Y. J. Turning Au nanoclusters catalytically active for visible-light-driven CO2 reduction through bridging ligands. J. Am. Chem. Soc. 2018, 140, 16514–16520.

    Article  CAS  Google Scholar 

  140. [140]

    Cho, M.; Song, J. T.; Back, S.; Jung, Y.; Oh, J. The role of adsorbed CN and Cl on an Au electrode for electrochemical CO2 reduction. ACS Catal. 2018, 8, 1178–1185.

    Article  CAS  Google Scholar 

  141. [141]

    Mahyoub, S. A.; Qaraah, F. A.; Chen, C. Z.; Zhang, F. H.; Yan, S. L.; Cheng, Z. M. An overview on the recent developments of Ag-based electrodes in the electrochemical reduction of CO2 to CO. Sustainable Energy Fuels 2020, 4, 50–67.

    Article  CAS  Google Scholar 

  142. [142]

    Wang, Z. J.; Wu, L. N.; Sun, K.; Chen, T.; Jiang, Z. H.; Cheng, T.; Goddard III, W. A. Surface ligand promotion of carbon dioxide reduction through stabilizing chemisorbed reactive intermediates. J. Phys. Chem. Lett. 2018, 9, 3057–3061.

    Article  CAS  Google Scholar 

  143. [143]

    Gao, M. Y.; Zhu, Y. M.; Liu, Y. Y.; Wu, K. J.; Lu, H. F.; Tang, S. Y.; Liu, C. J.; Yue, H. R.; Liang, B.; Yan, J. Y. The role of adsorbed oleylamine on gold catalysts during synthesis for highly selective electrocatalytic reduction of CO2 to CO. Chem. Commun. 2020, 56, 7021–7024.

    Article  CAS  Google Scholar 

  144. [144]

    Kim, C.; Eom, T.; Jee, M. S.; Jung, H.; Kim, H.; Min, B. K.; Hwang, Y. J. Insight into electrochemical CO2 reduction on surface-molecule-mediated Ag nanoparticles. ACS Catal. 2017, 7, 779–785.

    Article  CAS  Google Scholar 

  145. [145]

    Fang, Y. X.; Flake, J. C. Electrochemical reduction of CO2 at functionalized Au electrodes. J. Am. Chem. Soc. 2017, 139, 3399–3405.

    Article  CAS  Google Scholar 

  146. [146]

    Chen, Y.; Fan, Z. X.; Wang, J.; Ling, C. Y.; Niu, W. X.; Huang, Z. Q.; Liu, G. G.; Chen, B.; Lai, Z. C.; Liu, X. Z. et al. Ethylene selectivity in electrocatalytic CO2 reduction on Cu nanomaterials: A crystal phase-dependent study. J. Am. Chem. Soc. 2020, 142, 12760–12766.

    Article  CAS  Google Scholar 

  147. [147]

    Ma, X. M.; Shen, Y. L.; Yao, S.; An, C. H.; Zhang, W. Q.; Zhu, J. F.; Si, R.; Guo, C. X.; An, C. H. Core-shell nanoporous AuCu3@Au monolithic electrode for efficient electrochemical CO2 reduction. J. Mater. Chem. A 2020, 8, 3344–3350.

    Article  CAS  Google Scholar 

  148. [148]

    Valenti, M.; Prasad, N. P.; Kas, R.; Bohra, D.; Ma, M.; Balasubramanian, V.; Chu, L.; Gimenez, S.; Bisquert, J.; Dam, B. et al. Suppressing H2 evolution and promoting selective CO2 electroreduction to CO at low overpotentials by alloying Au with Pd. ACS Catal. 2019, 9, 3527–3536.

    Article  CAS  Google Scholar 

  149. [149]

    Lv, H. F.; Liu, T. F.; Zhang, X. M.; Song, Y. F.; Matsumoto, H.; Ta, N.; Zeng, C. B.; Wang, G. X.; Bao, X. H. Atomic-scale insight into exsolution of CoFe alloy nanoparticles in La0.4Sr0.6Co0.2Fe0.7Mo0.1O3−δ with Efficient CO2 Electrolysis. Angew. Chem., Int. Ed. 2020, 59, 15968–15973.

    Article  CAS  Google Scholar 

  150. [150]

    Kim, C.; Dionigi, F.; Beermann, V.; Wang, X. L.; Möller, T.; Strasser, P. Alloy nanocatalysts for the electrochemical oxygen reduction (ORR) and the direct electrochemical carbon dioxide reduction reaction (CO2RR). Adv. Mater. 2019, 31, e1805617.

    Article  CAS  Google Scholar 

  151. [151]

    Yin, Z.; Gao, D. F.; Yao, S. Y.; Zhao, B.; Cai, F.; Lin, L. L.; Tang, P.; Zhai, P.; Wang, G. X.; Ma, D. et al. Highly selective palladium-copper bimetallic electrocatalysts for the electrochemical reduction of CO2 to CO. Nano Energy 2016, 27, 35–43.

    Article  CAS  Google Scholar 

  152. [152]

    Cai, F.; Gao, D. F.; Si, R.; Ye, Y. F.; He, T.; Miao, S.; Wang, G. X.; Bao, X. H. Effect of metal deposition sequence in carbon-supported Pd-Pt catalysts on activity towards CO2 electroreduction to formate. Electrochem. Commun. 2017, 76, 1–5.

    Article  CAS  Google Scholar 

  153. [153]

    Sun, K.; Cheng, T.; Wu, L. N.; Hu, Y. F.; Zhou, J. G.; Maclennan, A.; Jiang, Z. H.; Gao, Y. Z.; Goddard III, W. A.; Wang, Z. J. Ultrahigh mass activity for carbon dioxide reduction enabled by gold-iron core-shell nanoparticles. J. Am. Chem. Soc. 2017, 139, 15608–15611.

    Article  CAS  Google Scholar 

  154. [154]

    Lee, J. H.; Kattel, S.; Jiang, Z.; Xie, Z. H.; Yao, S. Y.; Tackett, B. M.; Xu, W. Q.; Marinkovic, N. S.; Chen, J. G. Tuning the activity and selectivity of electroreduction of CO2 to synthesis gas using bimetallic catalysts. Nat. Commun. 2019, 10, 3724.

    Article  CAS  Google Scholar 

  155. [155]

    Kortlever, R.; Peters, I.; Koper, S.; Koper, M. T. M. Electrochemical CO2 reduction to formic acid at low overpotential and with high faradaic efficiency on carbon-supported bimetallic Pd-Pt nanoparticles. ACS Catal. 2015, 5, 3916–3923.

    Article  CAS  Google Scholar 

  156. [156]

    Yuan, X. T.; Zhang, L.; Li, L. L.; Dong, H.; Chen, S.; Zhu, W. J.; Hu, C. L.; Deng, W. Y.; Zhao, Z. J.; Gong, J. L. Ultrathin Pd-Au shells with controllable alloying degree on Pd nanocubes toward carbon dioxide reduction. J. Am. Chem. Soc. 2019, 141, 4791–4794.

    Article  CAS  Google Scholar 

  157. [157]

    Zhou, Y.; Zhou, R.; Zhu, X. R.; Han, N.; Song, B.; Liu, T. C.; Hu, G. Z.; Li, Y. F.; Lu, J.; Li, Y. G. Mesoporous PdAg nanospheres for stable electrochemical CO2 reduction to formate. Adv. Mater. 2020, 32, 2000992.

    Article  CAS  Google Scholar 

  158. [158]

    Bai, X. F.; Chen, W.; Zhao, C. C.; Li, S. G.; Song, Y. F.; Ge, R. P.; Wei, W.; Sun, Y. H. Exclusive formation of formic acid from CO2 electroreduction by a tunable Pd-Sn alloy. Angew. Chem., Int. Ed. 2017, 56, 12219–12223.

    Article  CAS  Google Scholar 

  159. [159]

    Zhu, W. J.; Zhang, L.; Yang, P. P.; Chang, X. X.; Dong, H.; Li, A.; Hu, C. L.; Huang, Z. Q.; Zhao, Z. J.; Gong, J. L. Morphological and compositional design of Pd-Cu bimetallic nanocatalysts with controllable product selectivity toward CO2 electroreduction. Small 2018, 14, 1703314.

    Article  CAS  Google Scholar 

  160. [160]

    Lee, S.; Park, G.; Lee, J. Importance of Ag-Cu biphasic boundaries for selective electrochemical reduction of CO2 to ethanol. ACS Catal. 2017, 7, 8594–8604.

    Article  CAS  Google Scholar 

  161. [161]

    Yang, Y.; Ajmal, S.; Feng, Y. Q.; Li, K. J.; Zheng, X. Z.; Zhang, L. W. Insight into the formation and transfer process of the first intermediate of CO2 reduction over Ag-decorated dendritic Cu. Chem. Eur. J. 2020, 26, 4080–4089.

    CAS  Google Scholar 

  162. [162]

    Zeng, J. C.; Zhang, W. B.; Yang, Y.; Li, D.; Yu, X.; Gao, Q. S. Pd-Ag alloy electrocatalysts for CO2 reduction: Composition tuning to break the scaling relationship. ACS Appl. Mater. Interfaces 2019, 11, 33074–33081.

    Article  CAS  Google Scholar 

  163. [163]

    Hoang, T. T. H.; Verma, S.; Ma, S.; Fister, T. T.; Timoshenko, J.; Frenkel, A. I.; Kenis, P. J. A.; Gewirth, A. A. Nanoporous copper-silver alloys by additive-controlled electrodeposition for the selective electroreduction of CO2 to ethylene and ethanol. J. Am. Chem. Soc. 2018, 140, 5791–5797.

    Article  CAS  Google Scholar 

  164. [164]

    Lamaison, S.; Wakerley, D.; Blanchard, J.; Montero, D.; Rousse, G.; Mercier, D.; Marcus, P.; Taverna, D.; Giaume, D.; Mougel, V. et al. High-current-density CO2-to-CO electroreduction on Ag-alloyed Zn dendrites at elevated pressure. Joule 2020, 4, 395–406.

    Article  CAS  Google Scholar 

  165. [165]

    Chatterjee, S.; Griego, C.; Hart, J. L.; Li, Y. W.; Taheri, M. L.; Keith, J.; Snyder, J. D. Free standing nanoporous palladium alloys as CO poisoning tolerant electrocatalysts for the electrochemical reduction of CO2 to formate. ACS Catal. 2019, 9, 5290–5301.

    Article  CAS  Google Scholar 

  166. [166]

    Kim, D.; Resasco, J.; Yu, Y.; Asiri, A. M.; Yang, P. D. Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold-copper bimetallic nanoparticles. Nat. Commun. 2014, 5, 4948.

    Article  CAS  Google Scholar 

  167. [167]

    Kim, J. H.; Woo, H.; Choi, J.; Jung, H. W.; Kim, Y. T. CO2 electroreduction on Au/TiC: Enhanced activity due to metal-support interaction. ACS Catal. 2017, 7, 2101–2106.

    Article  CAS  Google Scholar 

  168. [168]

    Li, N.; Chen, X. Z.; Ong, W. J.; MacFarlane, D. R.; Zhao, X. J.; Cheetham, A. K.; Sun, C. H. Understanding of electrochemical mechanisms for CO2 capture and conversion into hydrocarbon fuels in transition-metal carbides (MXenes). ACS Nano 2017, 11, 10825–10833.

    Article  CAS  Google Scholar 

  169. [169]

    Mota, F. M.; Nguyen, D. L. T.; Lee, J. E.; Piao, H. Y.; Choy, J. H.; Hwang, Y. J.; Kim, D. H. Toward an effective control of the H2 to CO ratio of syngas through CO2 electroreduction over immobilized gold nanoparticles on layered titanate nanosheets. ACS Catal. 2018, 8, 4364–4374.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Key Research and Development Program (No. 2018YFB1502503) and Sichuan Science and Technology Program (No. 2020YJ0299).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Rui Wu, Jun Song Chen or Tierui Zhang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Wu, R., Zhao, L. et al. Metal-support interactions in designing noble metal-based catalysts for electrochemical CO2 reduction: Recent advances and future perspectives. Nano Res. 14, 3795–3809 (2021). https://doi.org/10.1007/s12274-021-3363-6

Download citation

Keywords

  • electrochemical CO2 reduction
  • metal-support interaction
  • noble metal catalysts
  • support materials