Skip to main content

Ultrahigh-temperature ferromagnetism in MoS2 Moiré superlattice/graphene hybrid heterostructures

Abstract

Realizing high-temperature ferromagnetism in two-dimensional (2D) semiconductor nanosheets is significant for their applications in next-generation magnetic and electronic nanodevices. Herein, this goal could be achieved on a MoS2 Moiré superlattice grown on the reduced graphene oxide (RGO) substrate by a hydrothermal approach. The as-synthesized bilayer MoS2 superlattice structure with rotating angle (ϕ = 13° ± 1°) of two hexagonal MoS2 lattices, possesses outstanding ferromagnetic property and an ultra-high Curie temperature of 990 K. The X-ray absorption near-edge structure and ultraviolet photoelectron spectroscopies combined with density functional theory calculation indicate that the covalent interactions between MoS2 Moiré superlattice and RGO substrate lead to the formation of interfacial Mo-S-C bonds and complete spin polarization of Mo 4d electrons near the Fermi level. This design could be generalized and may open up a possibility for tailoring the magnetism of other 2D materials.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Coey, J. M. D.; Venkatesan, M.; Fitzgerald, C. B. Donor impurity band exchange in dilute ferromagnetic oxides. Nat. Mater. 2005, 4, 173–179.

    CAS  Article  Google Scholar 

  2. [2]

    Philip, J.; Punnoose, A.; Kim, B. I.; Reddy, K. M.; Layne, S.; Holmes, J. O.; Satpati, B.; Leclair, P. R.; Santos, T. S.; Moodera, J. S. Carrier-controlled ferromagnetism in transparent oxide semiconductors. Nat. Mater. 2006, 5, 298–304.

    CAS  Article  Google Scholar 

  3. [3]

    Jamet, M.; Barski, A.; Devillers, T.; Poydenot, V.; Dujardin, R.; Bayle-Guillemaud, P.; Rothman, J.; Bellet-Amalric, E.; Marty, A.; Cibert, J. High-Curie-temperature ferromagnetism in self-organized Ge1x,Mn, nanocolumns. Nat. Mater. 2006, 5, 653–659.

    CAS  Article  Google Scholar 

  4. [4]

    Xiu, F. X.; Wang, Y.; Kim, J.; Hong, A.; Tang, J. S.; Jacob, A. P.; Zou, J.; Wang, K. L. Electric-field-controlled ferromagnetism in high-Curie-temperature Mn0.05Ge0.95 quantum dots. Nat. Mater. 2010, 9, 337–344.

    CAS  Article  Google Scholar 

  5. [5]

    Tombros, N.; Jozsa, C.; Popinciuc, M.; Jonkman, H. T.; Van Wees, B. J. Electronic spin transport and spin precession in single graphene layers at room temperature. Nature 2007, 448, 571–574.

    CAS  Article  Google Scholar 

  6. [6]

    Han, W.; Kawakami, R. K.; Gmitra, M.; Fabian, J. Graphene spintronics. Nat. Nanotechnol. 2014, 9, 794–807.

    CAS  Article  Google Scholar 

  7. [7]

    Ali, M. N.; Xiong, J.; Flynn, S.; Tao, J.; Gibson, Q. D.; Schoop, L. M.; Liang, T.; Haldolaarachchige, N.; Hirschberger, M.; Ong, N. P. et al. Large, non-saturating magnetoresistance in WTe2. Nature 2014, 574, 205–208.

    Article  CAS  Google Scholar 

  8. [8]

    Gong, C.; Li, L.; Li, Z. L.; Ji, H. W.; Stern, A.; Xia, Y.; Cao, T.; Bao, W.; Wang, C. Z.; Wang, Y. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 2017, 546, 265–269.

    CAS  Article  Google Scholar 

  9. [9]

    Huang, B.; Clark, G.; Navarro-Moratalla, E.; Klein, D. R.; Cheng, R.; Seyler, K. L.; Zhong, D.; Schmidgall, E.; McGuire, M. A.; Cobden, D. H. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 2017, 546, 270–273.

    CAS  Article  Google Scholar 

  10. [10]

    Chen, W. J.; Sun, Z. Y.; Wang, Z. J.; Gu, L. H.; Xu, X. D.; Wu, S. W.; Gao, C. L. Direct observation of van der Waals stacking-dependent interlayer magnetism. Science 2019, 366, 983–987.

    CAS  Article  Google Scholar 

  11. [11]

    Bonilla, M.; Kolekar, S.; Ma, Y. J.; Diaz, H. C.; Kalappattil, V.; Das, R.; Eggers, T.; Gutierrez, H. R.; Phan, M. H.; Batzill, M. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat. Nanotechnol. 2018, 13, 289–293.

    CAS  Article  Google Scholar 

  12. [12]

    Avsar, A.; Ciarrocchi, A.; Pizzochero, M.; Unuchek, D.; Yazyev, O. V.; Kis, A. Defect induced, layer-modulated magnetism in ultrathin metallic PtSe2. Nat. Nanotechnol. 2019, 14, 674–678.

    CAS  Article  Google Scholar 

  13. [13]

    Qian, X. F.; Liu, J. W.; Fu, L.; Li, J. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science 2014, 346, 1344–1347.

    CAS  Article  Google Scholar 

  14. [14]

    Kang, K.; Xie, S. E.; Huang, L.; Han, Y. M.; Huang, P. Y.; Mak, K. F.; Kim, C. J.; Muller, D.; Park, J. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 2015, 520, 656–660.

    CAS  Article  Google Scholar 

  15. [15]

    Xu, X. D.; Yao, W.; Xiao, D.; Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 2014, 10, 343–350.

    CAS  Article  Google Scholar 

  16. [16]

    Cheng, Y. C.; Zhu, Z. Y.; Mi, W. B.; Guo, Z. B.; Schwingenschlögl, U. Prediction of two-dimensional diluted magnetic semiconductors: Doped monolayer MoS2 systems. Phys. Rev. B 2013, 87, 100401.

    Article  CAS  Google Scholar 

  17. [17]

    Ramasubramaniam, A.; Naveh, D. Mn-doped monolayer MoS2: An atomically thin dilute magnetic semiconductor. Phys. Rev. B 2013, 87, 195201.

    Article  CAS  Google Scholar 

  18. [18]

    Dobrowolska, M.; Tivakornsasithorn, K.; Liu, X.; Furdyna, J.; Berciu, M.; Yu, K. M.; Walukiewicz, W. Controlling the Curie temperature in (Ga,Mn)As through location of the Fermi level within the impurity band. Nat. Mater. 2012, 11, 444–449.

    CAS  Article  Google Scholar 

  19. [19]

    Zhang, K. H.; Feng, S. M.; Wang, J. J.; Azcatl, A.; Lu, N.; Addou, R.; Wang, N.; Zhou, C. J.; Lerach, J.; Bojan, V. et al. Manganese doping of monolayer MoS2: The substrate is critical. Nano Lett. 2015, 15, 6586–6591.

    CAS  Article  Google Scholar 

  20. [20]

    Cai, L.; He, J. F.; Liu, Q. H.; Yao, T.; Chen, L.; Yan, W. S.; Hu, F. C.; Jiang, Y.; Zhao, Y. D.; Hu, T. D. et al. Vacancy-induced ferromagnetism of MoS2 nanosheets. J. Am. Chem. Soc. 2015, 137, 2622–2627.

    CAS  Article  Google Scholar 

  21. [21]

    Zhang, J.; Soon, J. M.; Loh, K. P.; Yin, J. H.; Ding, J.; Sullivian, M. B.; Wu, P. Magnetic molybdenum disulfide nanosheet films. Nano Lett. 2007, 7, 2370–2376.

    CAS  Article  Google Scholar 

  22. [22]

    Tongay, S.; Varnoosfaderani, S. S.; Appleton, B. R.; Wu, J. Q.; Hebard, A. F. Magnetic properties of MoS2: Existence of ferromagnetism. Appl. Phys. Lett. 2012, 101, 123105.

    Article  CAS  Google Scholar 

  23. [23]

    Han, S. W.; Hwang, Y. H.; Kim, S. H.; Yun, W. S.; Lee, J. D.; Park, M. G.; Ryu, S.; Park, J. S.; Yoo, D. H.; Yoon, S. P. et al. Controlling ferromagnetic easy axis in a layered MoS2 single crystal. Phys. Rev. Lett. 2013, 110, 247201.

    Article  CAS  Google Scholar 

  24. [24]

    Son, Y. W.; Cohen, M. L.; Louie, S. G. Half-metallic graphene nanoribbons. Nature 2006, 444, 347–349.

    CAS  Article  Google Scholar 

  25. [25]

    Castro, E. V.; Peres, N. M. R.; Stauber, T.; Silva, N. A. P. Low-density ferromagnetism in biased bilayer graphene. Phys. Rev. Lett. 2008, 100, 186803.

    Article  CAS  Google Scholar 

  26. [26]

    Wu, F.; Huang, C. X.; Wu, H. P.; Lee, C.; Deng, H. K. M.; Kan, E.; Jena, P. Atomically thin transition-metal dinitrides: high-temperature ferromagnetism and half-metallicity. Nano Lett. 2015, 15, 8277–8281.

    CAS  Article  Google Scholar 

  27. [27]

    Cao, T.; Li, Z. L.; Louie, S. G. Tunable magnetism and half-metallicity in hole-doped monolayer GaSe. Phys. Rev. Lett. 2015, 114, 236602.

    Article  CAS  Google Scholar 

  28. [28]

    Garnica, M.; Stradi, D.; Barja, S.; Calleja, F.; Díaz, C.; Alcamí, M.; Martín, N.; De Parga, A. L. V.; Martín, F.; Miranda, R. Long-range magnetic order in a purely organic 2D layer adsorbed on epitaxial graphene. Nat. Phys. 2013, 9, 368–374.

    CAS  Article  Google Scholar 

  29. [29]

    Grisolia, M. N.; Varignon, J.; Sanchez-Santolino, G.; Arora, A.; Valencia, S.; Varela, M.; Abrudan, R.; Weschke, E.; Schierle, E.; Rault, J. E. et al. Hybridization-controlled charge transfer and induced magnetism at correlated oxide interfaces. Nat. Phys. 2016, 12, 484–492.

    CAS  Article  Google Scholar 

  30. [30]

    Al Ma’Mari, F.; Moorsom, T.; Teobaldi, G.; Deacon, W.; Prokscha, T.; Luetkens, H.; Lee, S.; Sterbinsky, G. E.; Arena, D. A.; MacLaren, D. A. et al. Beating the Stoner criterion using molecular interfaces. Nature 2015, 524, 69–73.

    Article  CAS  Google Scholar 

  31. [31]

    Tseng, T. C.; Urban, C.; Wang, Y.; Otero, R.; Tait, S. L.; Alcamí, M.; Écija, D.; Trelka, M.; Gallego, J. M.; Lin, N. et al. Charge-transfer-induced structural rearrangements at both sides of organic/metal interfaces. Nat. Chem. 2010, 2, 374–379.

    CAS  Article  Google Scholar 

  32. [32]

    Liu, K. H.; Zhang, L. M.; Cao, T.; Jin, C. H.; Qiu, D. N.; Zhou, Q.; Zettl, A.; Yang, P. D.; Louie, S. G.; Wang, F. Evolution of interlayer coupling in twisted molybdenum disulfide bilayers. Nat. Commun. 2014, 5, 4966.

    CAS  Article  Google Scholar 

  33. [33]

    Fang, H.; Battaglia, C.; Carraro, C.; Nemsak, S.; Ozdol, B.; Kang, J. S.; Bechtel, H. A.; Desai, S. B.; Kronast, F.; Unal, A. A. et al. Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides. Proc. Natl. Acad. Sci. USA 2014, 111, 6198–6202.

    CAS  Article  Google Scholar 

  34. [34]

    Ahmed, S.; Viboon, P.; Ding, X.; Bao, N. N.; Du, Y. H.; Herng, T. S.; Ding, J.; Yi, J. B. Annealing effect on the ferromagnetism of MoS2 nanoparticles. J. Alloys Compd. 2018, 746, 399–404.

    CAS  Article  Google Scholar 

  35. [35]

    Ivanshin, V. A.; Litvinova, T. O.; Sukhanov, A. A. Electronic hybridization effects in dense intermetallics measured by electron spin resonance. J. Phys. Conf. Ser., 2011, 273, 012035.

    Article  CAS  Google Scholar 

  36. [36]

    Blinc, R.; Cevc, P.; Mrzel, A.; Arčon, D.; Remškar, M.; Milia, F.; Laguta, V. V. EPR spectra of MoS2/C60. Phys. Status Solidi B 2010, 247, 3033–3034.

    CAS  Article  Google Scholar 

  37. [37]

    Liang, Y. Y.; Li, Y. G.; Wang, H. L.; Zhou, J. G.; Wang, J.; Regier, T.; Dai, H. J. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 2011, 10, 780–786.

    CAS  Article  Google Scholar 

  38. [38]

    Wang, J.; Zhou, J. G.; Hu, Y. F.; Regier, T. Chemical interaction and imaging of single Co3O4/graphene sheets studied by scanning transmission X-ray microscopy and X-ray absorption spectroscopy. Energy Environ. Sci. 2013, 6, 926–934.

    CAS  Article  Google Scholar 

  39. [39]

    Lany, S.; Zunger, A. Dopability, intrinsic conductivity, and nonstoichiometry of transparent conducting oxides. Phys. Rev. Lett. 2007, 98, 045501.

    Article  CAS  Google Scholar 

  40. [40]

    Wang, L. F.; Xu, Z.; Wang, W. L.; Bai, X. D. Atomic mechanism of dynamic electrochemical lithiation processes of MoS2 nanosheets. J. Am. Chem. Soc. 2014, 136, 6693–6697.

    CAS  Article  Google Scholar 

  41. [41]

    Lin, Y. C.; Dumcenco, D. O.; Huang, Y. S.; Suenaga, K. Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2. Nat. Nanotechnol. 2014, 9, 391–396.

    CAS  Article  Google Scholar 

  42. [42]

    Zhang, M.; Huang, Z. J.; Wang, X.; Zhang, H. Y.; Li, T. H.; Wu, Z. L.; Luo, Y. H.; Cao, W. Magnetic MoS2 pizzas and sandwiches with Mnn (n=1−4) cluster toppings and fillings: A first-principles investigation. Sci. Rep. 2016, 6, 19504.

    CAS  Article  Google Scholar 

  43. [43]

    Edwards, D. M.; Katsnelson, M. I. High-temperature ferromagnetism of sp electrons in narrow impurity bands: Application to CaB6. J. Phys. Condens. Matter. 2006, 18, 7209–7225.

    CAS  Article  Google Scholar 

  44. [44]

    Ganguli, N.; Kelly, P. J. Tuning ferromagnetism at interfaces between insulating perovskite oxides. Phys. Rev. Lett. 2014, 113, 127201.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 11975234, 11775225, 12075243, and 12005227), Users with Excellence Program of Hefei Science Center CAS (Nos. 2019HSC-UE002, 2020HSC-UE002, and 2020HSC-CIP013), and Postdoctoral Science Foundation of China (Nos. 2020TQ0316, 2020M682041, and 2019M662202). The authors would like to thank BSRF, SSRF and NSRL for the synchrotron beamtime. This work was partially carried out at the USTC Center for Micro and Nanoscale Research and Fabrication.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Liang Cai, Zhihu Sun or Wensheng Yan.

Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cai, L., Duan, H., Liu, Q. et al. Ultrahigh-temperature ferromagnetism in MoS2 Moiré superlattice/graphene hybrid heterostructures. Nano Res. 14, 4182–4187 (2021). https://doi.org/10.1007/s12274-021-3360-9

Download citation

Keywords

  • MoS2 moiré superlattice
  • high-temperature ferromagnetism
  • XAFS
  • hybrid heterostructures
  • 2D nanosheets