Skip to main content

Crystalline all-inorganic lead-free Cs3Sb2I9 perovskite microplates with ultra-fast photoconductive response and robust thermal stability

Abstract

Hybrid organolead halide perovskites have attracted tremendous attention due to their recent success as high efficiency solar cell materials and their fascinating material properties uniquely suitable for optoelectronic devices. However, the poor ambient and operational stability as well as the concern of lead toxicity greatly hamper their practical utilization. In this work, crystalline, all-inorganic and lead-free Cs3Sb2I9 perovskite microplates are successfully synthesized by a two-step chemical vapor deposition method. As compared with other typical lead-free perovskite materials, the Cs3Sb2I9 microplates demonstrate excellent optoelectronic properties, including substantial enhancements in the Stokes shift, exciton binding energy and electron-phonon coupling. Simple photoconductive devices fabricated using these microplates exhibit an ultra-fast response with the rise and decay time constants down to 96 and 58 µs, respectively. This respectable photoconductor performance can be regarded as a record among all the lead-free perovskite materials. Importantly, these photodetectors show superior thermal stability in a wide temperature range, capable to function reversibly between 80 and 380 K, indicating their robustness to operate under both low and high temperatures. All these results evidently suggest the technological potential of inorganic lead-free Cs3Sb2I9 perovskite microplates for next-generation high-performance optoelectronic devices.

References

  1. [1]

    Li, L.; Chen, H. Y.; Fang, Z. M.; Meng, X. Y.; Zuo, C. T.; Lv, M. L.; Tian, Y. Z.; Fang, Y.; Xiao, Z.; Shan, C. X. et al. An electrically modulated single-color/dual-color imaging photodetector. Adv. Mater. 2020, 32, 1907257.

    Article  CAS  Google Scholar 

  2. [2]

    Chen, H. Y.; Liu, H.; Zhang, Z. M.; Hu, K.; Fang, X. S. Nanostructured photodetectors: From ultraviolet to terahertz. Adv. Mater. 2016, 28, 403–433.

    Article  CAS  Google Scholar 

  3. [3]

    Xu, Y. L.; Lin, Q. Q. Photodetectors based on solution-processable semiconductors: Recent advances and perspectives. Appl. Phys. Rev. 2020, 7, 011315.

    Article  CAS  Google Scholar 

  4. [4]

    Zhou, Q. T.; Park, J. G.; Nie, R. M.; Thokchom, A. K.; Ha, D.; Pan, J.; Seok, S. I.; Kim, T. Nanochannel-assisted perovskite nanowires: From growth mechanisms to photodetector applications. ACS Nano 2018, 12, 8406–8414.

    Article  CAS  Google Scholar 

  5. [5]

    Yang, B.; Li, Y. J.; Tang, Y. X.; Mao, X.; Luo, C.; Wang, M. S.; Deng, W. Q.; Han, K. L. Constructing sensitive and fast lead-free single-crystalline perovskite photodetectors. J. Phys. Chem. Lett. 2018, 9, 3087–3092.

    Article  CAS  Google Scholar 

  6. [6]

    Hu, X.; Zhang, X. D.; Liang, L.; Bao, J.; Li, S.; Yang, W.; Xie, Y. High-performance flexible broadband photodetector based on organolead halide perovskite. Adv. Funct. Mater. 2014, 24, 7373–7380.

    Article  CAS  Google Scholar 

  7. [7]

    Dou, L. T.; Yang, Y. M.; You, J. B.; Hong, Z. R.; Chang, W. H.; Li, G.; Yang, Y. Solution-processed hybrid perovskite photodetectors with high detectivity. Nat. Commun. 2014, 5, 5404.

    Article  CAS  Google Scholar 

  8. [8]

    Liu, J. Y.; Xue, Y. Z.; Wang, Z. Y.; Xu, Z. Q.; Zheng, C. X.; Weber, B.; Song, J. C.; Wang, Y. S.; Lu, Y. R.; Zhang, Y. P. et al. Two-dimensional CH3NH3PbI3 perovskite: Synthesis and optoelectronic application. ACS Nano 2016, 10, 3536–3542.

    Article  CAS  Google Scholar 

  9. [9]

    Shi, D.; Adinolfi, V.; Comin, R.; Yuan, M. J.; Alarousu, E.; Buin, A.; Chen, Y.; Hoogland, S.; Rothenberger, A.; Katsiev, K. et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 2015, 347, 519–522.

    Article  CAS  Google Scholar 

  10. [10]

    Wang, K.; Li, Z. Z.; Zhou, F. G.; Wang, H. R.; Bian, H.; Zhang, H.; Wang, Q.; Jin, Z. W.; Ding, L. M.; Liu, S. Ruddlesden-popper 2D component to stabilize γ-CsPbI3 perovskite phase for stable and efficient photovoltaics. Adv. Energy Mater. 2019, 9, 1902529.

    Article  CAS  Google Scholar 

  11. [11]

    Wang, H. R.; Bian, H.; Jin, Z. W.; Zhang, H.; Liang, L.; Wen, J. L.; Wang, Q.; Ding, L. M.; Liu, S. F. Cesium lead mixed-halide perovskites for low-energy loss solar cells with efficiency beyond 17%. Chem. Mater. 2019, 31, 6231–6238.

    Article  CAS  Google Scholar 

  12. [12]

    Li, Z. Z.; Zhou, F. G.; Wang, Q.; Ding, L. M.; Jin, Z. W. Approaches for thermodynamically stabilized CsPbI3 solar cells. Nano Energy 2020, 71, 104634.

    Article  CAS  Google Scholar 

  13. [13]

    Bian, H.; Wang, H. R.; Li, Z. Z.; Zhou, F. G.; Xu, Y. K.; Zhang, H.; Wang, Q.; Ding, L. M.; Liu, S. F.; Jin, Z. W. Unveiling the effects of hydrolysis-derived DMAI/DMAPbIx, intermediate compound on the performance of CsPbI3 solar cells. Adv. Sci. 2020, 7, 1902868.

    Article  CAS  Google Scholar 

  14. [14]

    Wang, F.; Mei, J. J.; Wang, Y. P.; Zhang, L. G.; Zhao, H. F.; Zhao, D. X. Fast photoconductive responses in organometal halide perovskite photodetectors. ACS Appl. Mater. Interfaces 2016, 8, 2840–2846.

    Article  CAS  Google Scholar 

  15. [15]

    Juarez-Perez, E. J.; Hawash, Z.; Raga, S. R.; Ono, L. K.; Qi, Y. B. Thermal degradation of CH3NH3PbI3 perovskite into NH3 and CH3I gases observed by coupled thermogravimetry-mass spectrometry analysis. Energy Environ. Sci. 2016, 9, 3406–3410.

    Article  CAS  Google Scholar 

  16. [16]

    Conings, B.; Drijkoningen, J.; Gauquelin, N.; Babayigit, A.; D’Haen, J.; D’Olieslaeger, L.; Ethirajan, A.; Verbeeck, J.; Manca, J.; Mosconi, E. et al. Intrinsic thermal instability of methylammonium lead trihalide perovskite. Adv. Energy Mater. 2015, 5, 1500477.

    Article  CAS  Google Scholar 

  17. [17]

    Yang, J. L.; Siempelkamp, B. D.; Liu, D. Y.; Kelly, T. L. Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques. ACS Nano 2015, 9, 1955–1963.

    Article  CAS  Google Scholar 

  18. [18]

    De Roo, J.; Ibáñez, M.; Geiregat, P.; Nedelcu, G.; Walravens, W.; Maes, J.; Martins, J. C.; Van Driessche, I.; Kovalenko, M. V.; Hens, Z. Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals. ACS Nano 2016, 10, 2071–2081.

    Article  CAS  Google Scholar 

  19. [19]

    Akkerman, Q. A.; D’Innocenzo, V.; Accornero, S.; Scarpellini, A.; Petrozza, A.; Prato, M.; Manna, L. Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions. J. Am. Chem. Soc. 2015, 137, 10276–10281.

    Article  CAS  Google Scholar 

  20. [20]

    Yettapu, G. R.; Talukdar, D.; Sarkar, S.; Swarnkar, A.; Nag, A.; Ghosh, P.; Mandal, P. Terahertz conductivity within colloidal CsPbBr3 perovskite nanocrystals: Remarkably high carrier mobilities and large diffusion lengths. Nano Lett. 2016, 16, 4838–4848.

    Article  CAS  Google Scholar 

  21. [21]

    Sun, S. B.; Yuan, D.; Xu, Y.; Wang, A. F.; Deng, Z. T. Ligand-mediated synthesis of shape-controlled cesium lead halide perovskite nanocrystals via reprecipitation process at room temperature. ACS Nano 2016, 10, 3648–3657.

    Article  CAS  Google Scholar 

  22. [22]

    Pradhan, B.; Kumar, G. S.; Sain, S.; Dalui, A.; Ghorai, U. K.; Pradhan, S. K.; Acharya, S. Size tunable cesium antimony chloride perovskite nanowires and nanorods. Chem. Mater. 2018, 30, 2135–2142.

    Article  CAS  Google Scholar 

  23. [23]

    Tong, X. W.; Kong, W. Y.; Wang, Y. Y.; Zhu, J. M.; Luo, L. B.; Wang, Z. H. High-performance red-light photodetector based on lead-free bismuth halide perovskite film. ACS Appl. Mater. Interfaces 2017, 9, 18977–18985.

    Article  CAS  Google Scholar 

  24. [24]

    Chen, J.; Luo, Z. Y.; Fu, Y. P.; Wang, X. X.; Czech, K. J.; Shen, S. H.; Guo, L. J.; Wright, J. C.; Pan, A. L.; Jin, S. Tin(IV)-tolerant vapor-phase growth and photophysical properties of aligned cesium tin halide perovskite (CsSnX3; X = Br, I) nanowires. ACS Energy Lett. 2019, 4, 1045–1052.

    Article  CAS  Google Scholar 

  25. [25]

    Huang, H.; Bodnarchuk, M. I.; Kershaw, S. V.; Kovalenko, M. V.; Rogach, A. L. Lead halide perovskite nanocrystals in the research spotlight: Stability and defect tolerance. ACS Energy Lett. 2017, 2, 2071–2083.

    Article  CAS  Google Scholar 

  26. [26]

    Hoefler, S. F.; Trimmel, G.; Rath, T. Progress on lead-free metal halide perovskites for photovoltaic applications: A review. Monatsh. Chem. 2017, 148, 795–826.

    Article  CAS  Google Scholar 

  27. [27]

    Parrott, E. S.; Milot, R. L.; Stergiopoulos, T.; Snaith, H. J.; Johnston, M. B.; Herz, L. M. Effect of structural phase transition on charge-carrier lifetimes and defects in CH3NH3SnI3 perovskite. J. Phys. Chem. Lett. 2016, 7, 1321–1326.

    Article  CAS  Google Scholar 

  28. [28]

    Hao, F.; Stoumpos, C. C.; Cao, D. H.; Chang, R. P. H.; Kanatzidis, M. G. Lead-free solid-state organic-inorganic halide perovskite solar cells. Nat. Photonics 2014, 8, 489–494.

    Article  CAS  Google Scholar 

  29. [29]

    Noel, N. K.; Stranks, S. D.; Abate, A.; Wehrenfennig, C.; Guarnera, S.; Haghighirad, A. A.; Sadhanala, A.; Eperon, G. E.; Pathak, S. K.; Johnston, M. B. et al. Lead-free organic-inorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci. 2014, 7, 3061–3068.

    Article  CAS  Google Scholar 

  30. [30]

    Hebig, J. C.; Kühn, I.; Flohre, J.; Kirchartz, T. Optoelectronic properties of (CH3NH3)3Sb2I9 thin films for photovoltaic applications. ACS Energy Lett. 2016, 1, 309–314.

    Article  CAS  Google Scholar 

  31. [31]

    Chatterjee, S.; Pal, A. J. Tin(IV) Substitution in (CH3NH3)3Sb2I9: Toward low-band-gap defect-ordered hybrid perovskite solar cells. ACS Appl. Mater. Interfaces 2018, 10, 35194–35205.

    Article  CAS  Google Scholar 

  32. [32]

    Umar, F.; Zhang, J.; Jin, Z. X.; Muhammad, I.; Yang, X. K.; Deng, H.; Jahangeer, K.; Hu, Q. S.; Song, H. S.; Tang, J. Dimensionality controlling of Cs3Sb2I9 for efficient all-inorganic planar thin film solar cells by HCl-assisted solution method. Adv. Opt. Mater. 2019, 7, 1801368.

    Article  CAS  Google Scholar 

  33. [33]

    Zuo, C. T.; Ding, L. M. Lead-free perovskite materials (NH4)3Sb2IxBr9−x. Angew. Chem., Int. Ed. 2017, 56, 6528–6532.

    Article  CAS  Google Scholar 

  34. [34]

    Ma, Z. Z.; Shi, Z. F.; Yang, D. W.; Zhang, F.; Li, S.; Wang, L. T.; Wu, D.; Zhang, Y. T.; Na, G. R.; Zhang, L. J. et al. Electrically-driven violet light-emitting devices based on highly stable lead-free perovskite Cs3Sb2Br9 quantum dots. ACS Energy Lett. 2020, 5, 385–394.

    Article  CAS  Google Scholar 

  35. [35]

    Zhang, J.; Yang, Y.; Deng, H.; Farooq, U.; Yang, X. K.; Khan, J.; Tang, J.; Song, H. S. High quantum yield blue emission from lead-free inorganic antimony halide perovskite colloidal quantum dots. ACS Nano 2017, 11, 9294–9302.

    Article  CAS  Google Scholar 

  36. [36]

    Singh, A.; Boopathi, K. M.; Mohapatra, A.; Chen, Y. F.; Li, G.; Chu, C. W. Photovoltaic performance of vapor-assisted solution-processed layer polymorph of Cs3Sb2I9. ACS Appl. Mater. Interfaces 2018, 10, 2566–2573.

    Article  CAS  Google Scholar 

  37. [37]

    Correa-Baena, J. P.; Nienhaus, L.; Kurchin, R. C.; Shin, S. S.; Wieghold, S.; Hartono, N. T. P.; Layurova, M.; Klein, N. D.; Poindexter, J. R.; Polizzotti, A. et al. A-site cation in inorganic A3Sb2I9 perovskite influences structural dimensionality, exciton binding energy, and solar cell performance. Chem. Mater. 2018, 30, 3734–3742.

    Article  CAS  Google Scholar 

  38. [38]

    Park, B. W.; Philippe, B.; Zhang, X. L.; Rensmo, H.; Boschloo, G.; Johansson, E. M. J. Bismuth based hybrid perovskites A3Bi2I9 (A: Methylammonium or cesium) for solar cell application. Adv. Mater. 2015, 27, 6806–6813.

    Article  CAS  Google Scholar 

  39. [39]

    Li, J.; Luo, L. H.; Huang, H. W.; Ma, C.; Ye, Z. Z.; Zeng, J.; He, H. P. 2D behaviors of excitons in cesium lead halide perovskite nano-platelets. J. Phys. Chem. Lett. 2017, 8, 1161–1168.

    Article  CAS  Google Scholar 

  40. [40]

    Yang, Z.; Wang, M. Q.; Qiu, H. W.; Yao, X.; Lao, X. Z.; Xu, S. J.; Lin, Z. H.; Sun, L. Y.; Shao, J. Y. Engineering the exciton dissociation in quantum-confined 2D CsPbBr3 nanosheet films. Adv. Funct. Mater. 2018, 28, 1705908.

    Article  CAS  Google Scholar 

  41. [41]

    Jain, S. M.; Phuyal, D.; Davies, M. L.; Li, M.; Philippe, B.; De Castro, C.; Qiu, Z.; Kim, J.; Watson, T.; Tsoi, W. C. et al. An effective approach of vapour assisted morphological tailoring for reducing metal defect sites in lead-free, (CH3NH3)3Bi2I9 bismuth-based perovskite solar cells for improved performance and long-term stability. Nano Energy 2018, 49, 614–624.

    Article  CAS  Google Scholar 

  42. [42]

    Yang, B.; Yin, L. X.; Niu, G. D.; Yuan, J. H.; Xue, K. H.; Tan, Z. F.; Miao, X. S.; Niu, M.; Du, X. Y.; Song, H. S. et al. Lead-free halide Rb2CuBr3 as sensitive X-Ray scintillator. Adv. Mater. 2019, 31, 1904711.

    Article  CAS  Google Scholar 

  43. [43]

    Liu, M.; Zhong, G. H.; Yin, Y. M.; Miao, J. S.; Li, K.; Wang, C. Q.; Xu, X. R.; Shen, C.; Meng, H. Aluminum-doped cesium lead bromide perovskite nanocrystals with stable blue photoluminescence used for display backlight. Adv. Sci. 2017, 4, 1700335.

    Article  CAS  Google Scholar 

  44. [44]

    Swarnkar, A.; Chulliyil, R.; Ravi, V. K.; Irfanullah, M.; Chowdhury, A.; Nag, A. Colloidal CsPbBr3 perovskite nanocrystals: Luminescence beyond traditional quantum dots. Angew. Chem., Int. Ed. 2015, 54, 15424–15428.

    Article  CAS  Google Scholar 

  45. [45]

    Jun, T.; Sim, K.; Iimura, S.; Sasase, M.; Kamioka, H.; Kim, J.; Hosono, H. Lead-free highly efficient blue-emitting Cs3Cu2I5 with 0D electronic structure. Adv. Mater. 2018, 30, 1804547.

    Article  CAS  Google Scholar 

  46. [46]

    Lian, L. Y.; Zheng, M. Y.; Zhang, W. Z.; Yin, L. X.; Du, X. Y.; Zhang, P.; Zhang, X. W.; Gao, J. B.; Zhang, D. L.; Gao, L. et al. Efficient and reabsorption-free radioluminescence in Cs3Cu2I5 nanocrystals with self-trapped excitons. Adv. Sci. 2020, 7, 2000195.

    Article  CAS  Google Scholar 

  47. [47]

    Ma, Z. Z.; Shi, Z. F.; Qin, C. C.; Cui, M. H.; Yang, D. W.; Wang, X. J.; Wang, L. T.; Ji, X. Z.; Chen, X.; Sun, J. L. et al. Stable yellow light-emitting devices based on ternary copper halides with broadband emissive self-trapped excitons. ACS Nano 2020, 14, 4475–4486.

    Article  CAS  Google Scholar 

  48. [48]

    Li, Y.; Shi, Z. F.; Wang, L. T.; Chen, Y. C.; Liang, W. Q.; Wu, D.; Li, X. J.; Zhang, Y.; Shan, C. X.; Fang, X. S. Solution-processed one-dimensional CsCu2I3 nanowires for polarization-sensitive and flexible ultraviolet photodetectors. Mater. Horiz. 2020, 7, 1613–1622.

    Article  CAS  Google Scholar 

  49. [49]

    Xie, B. M.; Xie, R. H.; Zhang, K.; Yin, Q. W.; Hu, Z. C.; Yu, G.; Huang, F.; Cao, Y. Self-filtering narrowband high performance organic photodetectors enabled by manipulating localized Frenkel exciton dissociation. Nat. Commun. 2020, 11, 2871.

    Article  CAS  Google Scholar 

  50. [50]

    Gong, Y. P.; Liu, Q. F.; Gong, M. G.; Wang, T.; Zeng, G. G.; Chan, W. L.; Wu, J. High-performance photodetectors based on effective exciton dissociation in protein-adsorbed multiwalled carbon nanotube nanohybrids. Adv. Opt. Mater. 2017, 5, 1600478.

    Article  CAS  Google Scholar 

  51. [51]

    McCall, K. M.; Stoumpos, C. C.; Kostina, S. S.; Kanatzidis, M. G.; Wessels, B. W. Strong electron-phonon coupling and self-trapped excitons in the defect halide perovskites A3M2I9 (A = Cs, Rb; M = Bi, Sb). Chem. Mater. 2017, 29, 4129–4145.

    Article  CAS  Google Scholar 

  52. [52]

    Toyozawa, Y. Further contribution to the theory of the line-shape of the exciton absorption band. Prog. Theor. Phys. 1962, 27, 89–104.

    Article  CAS  Google Scholar 

  53. [53]

    Dawson, K. R; Pooley, D. F band absorption in alkali halides as a function of temperature. Phys. Status Solidi B 1969, 35, 95–105.

    Article  CAS  Google Scholar 

  54. [54]

    Leung, C. H.; Song, K. S. On the luminescence quenching of F centres in alkali halides. Solid State Commun. 1980, 33, 907–910.

    Article  CAS  Google Scholar 

  55. [55]

    Urbach, F. The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev. 1953, 92, 1324.

    Article  CAS  Google Scholar 

  56. [56]

    Masada, S.; Yamada, T.; Tahara, H.; Hirori, H.; Saruyama, M.; Kawawaki, T.; Sato, R.; Teranishi, T.; Kanemitsu, Y. Effect of a-site cation on photoluminescence spectra of single lead bromide perovskite nanocrystals. Nano Lett. 2020, 20, 4022–4028.

    Article  CAS  Google Scholar 

  57. [57]

    Van Roosbroeck, W.; Shockley, W. Photon-radiative recombination of electrons and holes in germanium. Phys. Rev. 1954, 94, 1558–1560.

    Article  CAS  Google Scholar 

  58. [58]

    Olson, C. G.; Lynch, D. W. Longitudinal-optical-phonon-plasmon coupling in GaAs. Phys. Rev. 1969, 177, 1231–1234.

    Article  CAS  Google Scholar 

  59. [59]

    Konstantatos, G.; Clifford, J.; Levina, L.; Sargent, E. H. Sensitive solution-processed visible-wavelength photodetectors. Nat. Photon. 2007, 1, 531–534.

    Article  CAS  Google Scholar 

  60. [60]

    Liu, Y. C.; Zhang, Y. X.; Yang, Z.; Ye, H. C.; Feng, J. S.; Xu, Z.; Zhang, X.; Munir, R.; Liu, J.; Zuo, P. et al. Multi-inch single-crystalline perovskite membrane for high-detectivity flexible photosensors. Nat. Commun. 2018, 9, 5302.

    Article  CAS  Google Scholar 

  61. [61]

    Waleed, A.; Tavakoli, M. M.; Gu, L. L.; Wang, Z. Y.; Zhang, D. Q.; Manikandan, A.; Zhang, Q. P.; Zhang, R. J.; Chueh, Y. L.; Fan, Z. Y. Lead-free perovskite nanowire array photodetectors with drastically improved stability in nanoengineering templates. Nano Lett. 2017, 17, 523–530.

    Article  CAS  Google Scholar 

  62. [62]

    Ji, C. M.; Wang, P.; Wu, Z. Y.; Sun, Z. H.; Li, L. N.; Zhang, J.; Hu, W. D.; Hong, M. C.; Luo, J. H. Inch-size single crystal of a lead-free organic-inorganic hybrid perovskite for high-performance photodetector. Adv. Funct. Mater. 2018, 28, 1705467.

    Article  CAS  Google Scholar 

  63. [63]

    Lei, L. Z.; Shi, Z. F.; Li, Y.; Ma, Z. Z.; Zhang, F.; Xu, T. T.; Tian, Y. T.; Wu, D.; Li, X. J.; Du, G. T. High-efficiency and air-stable photodetectors based on lead-free double perovskite Cs2AgBiBr6 thin films. J. Mater. Chem. C 2018, 6, 7982–7988.

    Article  CAS  Google Scholar 

  64. [64]

    Zhou, J.; Luo, J. J.; Rong, X. M.; Wei, P. J.; Molokeev, M. S.; Huang, Y.; Zhao, J.; Liu, Q. L.; Zhang, X. W.; Tang, J. et al. Lead-free perovskite derivative Cs2nCl6xBrx single crystals for narrowband photodetectors. Adv. Opt. Mater. 2019, 7, 1900139.

    Article  CAS  Google Scholar 

  65. [65]

    Zhang, Z. X.; Li, C.; Lu, Y.; Tong, X. W.; Liang, F. X.; Zhao, X. Y.; Wu, D.; Xie, C.; Luo, L. B. Sensitive deep ultraviolet photodetector and image sensor composed of inorganic lead-free Cs3Cu2I5 perovskite with wide bandgap. J. Phys. Chem. Lett. 2019, 10, 5343–5350.

    Article  CAS  Google Scholar 

  66. [66]

    Fang, C.; Wang, H. Z.; Shen, Z. X.; Shen, H. Z.; Wang, S.; Ma, J. Q.; Wang, J.; Luo, H. M.; Li, D. H. High-performance photodetectors based on lead-free 2D ruddlesden-popper perovskite/MoS2 heterostructures. ACS Appl. Mater. Interfaces 2019, 11, 8419–8427.

    Article  CAS  Google Scholar 

  67. [67]

    Li, Y.; Shi, Z. F.; Lei, L. Z.; Li, S.; Yang, D. W.; Wu, D.; Xu, T. T.; Tian, Y. Z.; Lu, Y. J.; Wang, Y. et al. Ultrastable lead-free double perovskite photodetectors with imaging capability. Adv. Mater. Interfaces 2019, 6, 1900188.

    Article  CAS  Google Scholar 

  68. [68]

    Zheng, Z.; Hu, Q. S.; Zhou, H. Z.; Luo, P.; Nie, A. M.; Zhu, H. M.; Gan, L.; Zhuge, F. W.; Ma, Y.; Song, H. S. et al. Submillimeter and lead-free Cs3Sb2Br9 perovskite nanoflakes: Inverse temperature crystallization growth and application for ultrasensitive photodetectors. Nanoscale Horiz. 2019, 4, 1372–1379.

    Article  CAS  Google Scholar 

  69. [69]

    Li, W. G.; Wang, X. D.; Liao, J. F.; Jiang, Y.; Kuang, D. B. Enhanced on-off ratio photodetectors based on lead-free Cs3Bi2I9 single crystal thin films. Adv. Funct. Mater. 2020, 30, 1909701.

    Article  CAS  Google Scholar 

  70. [70]

    Krishnaiah, M.; Khan, M. I.; Kumar, A.; Jin, S. H. Impact of CsI concentration, relative humidity, and annealing temperature on lead-free Cs2SnI6 perovskites: Toward visible light photodetectors application. Mater. Lett. 2020, 269, 127675.

    Article  CAS  Google Scholar 

  71. [71]

    Zhang, W. C.; Sui, Y.; Kou, B.; Peng, Y.; Wu, Z. Y.; Luo, J. H. Large-area exfoliated lead-free perovskite-derivative single-crystalline membrane for flexible low-defect photodetectors. ACS Appl. Mater. Interfaces 2020, 12, 9141–9149.

    Article  CAS  Google Scholar 

  72. [72]

    Tian, C. C.; Wang, F.; Wang, Y. P.; Yang, Z.; Chen, X. J.; Mei, J. J.; Liu, H. Z.; Zhao, D. X. Chemical vapor deposition method grown all-inorganic perovskite microcrystals for self-powered photodetectors. ACS Appl. Mater. Interfaces 2019, 11, 15804–15812.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 11874351, 11874352, 51672229, and 61805237), the Hong Kong Scholars Program (No. XJ2019027), the General Research Fund (CityU 11204618) and the Theme-based Research (No. T42-103/16-N) of the Research Grants Council of Hong Kong SAR, China, CityU SGP-9380076 and the Foshan Innovative and Entrepreneurial Research Team Program (No. 2018IT100031).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Fei Wang, Kin Man Yu or Johnny C. Ho.

Electronic Supplementary Material

12274_2021_3351_MOESM1_ESM.pdf

Crystalline all-inorganic lead-free Cs3Sb2I9 perovskite microplates with ultra-fast photoconductive response and robust thermal stability

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shil, S.K., Wang, F., Lai, Z. et al. Crystalline all-inorganic lead-free Cs3Sb2I9 perovskite microplates with ultra-fast photoconductive response and robust thermal stability. Nano Res. 14, 4116–4124 (2021). https://doi.org/10.1007/s12274-021-3351-x

Download citation

Keywords

  • all-inorganic
  • lead-free perovskites
  • Cs3Sb2I9
  • microplates
  • photoresponse
  • stability