Skip to main content

Recent progress and perspective of electrochemical CO2 reduction towards C2-C5 products over non-precious metal heterogeneous electrocatalysts

Abstract

Electroreduction of carbon dioxide (CO2ER) into value-added chemical compounds has presented as a promising route for renewable carbon cycle, which alleviates global warming concern. Compared with traditional C1 products, high-value multicarbon products converted from atmospheric CO2 via CO2ER have attracted dramatic interest due to their significant economic efficiency, however desired catalytic selectivity of multicarbon products is difficult to achieve because of the high thermodynamic barriers and complex reaction pathways. To replace currently used precious-metal based catalysts, developing highly efficient and precious-metal-free CO2ER catalysts based on earth abundant elements is the top priority to meet the requirements of industrialization. Although certain progress has been made, there are still few systematic reports on the non-precious metal heterogeneous (NPMH) CO2ER electrocatalysts for efficient conversion of CO2 to multicarbon products. Herein, we summarize the latest research advances in recent developments of NPMH electrocatalysts, including nanostructured Cu, Cu-based bimetallic catalysts, Cu-based complexes, and carbon-based Cu-free catalysts for electroreduction of CO2 into high-value multicarbon products. The corresponding CO2ER performances are discussed in the order of the types of multicarbon products, specifically for ethanol (C2H5OH), ethylene (C2H4), ethane (C2H6), acetic acid (CH3COOH), propanol (C3H7OH), and other C2+ products with a special attention paid to understand the structure—activity relationship. Moreover, key strategies and characterization techniques for catalytic mechanism insights, and unsolved issues and future trends for enhancing the CO2ER performance of NPMH electrocatalysts are highlighted, which provides a constructive guidance on the development of CO2ER electrocatalysts with high activity and selectivity for multicarbon products.

References

  1. [1]

    Chu, S.; Cui, Y.; Liu, N. The path towards sustainable energy. Nat. Mater. 2017, 16, 16–22.

    Article  CAS  Google Scholar 

  2. [2]

    Obama, B. The irreversible momentum of clean energy. Science 2017, 355, 126–129.

    CAS  Article  Google Scholar 

  3. [3]

    Sun, X. F.; Zhu, Q. G.; Kang, X. C.; Liu, H. Z.; Qian, Q. L.; Ma, J.; Zhang, Z. F.; Yang, G. Y.; Han, B. X. Design of a Cu(I)/C-doped boron nitride electrocatalyst for efficient conversion of CO2 into acetic acid. Green Chem. 2017, 19, 2086–2091.

    CAS  Article  Google Scholar 

  4. [4]

    Kuang, M.; Guan, A. X.; Gu, Z. X.; Han, P.; Qian, L. P.; Zheng, G. F. Enhanced N-doping in mesoporous carbon for efficient electrocatalytic CO2 conversion. Nano Res. 2019, 12, 2324–2329.

    CAS  Article  Google Scholar 

  5. [5]

    Sun, T. T.; Xu, L. B.; Wang, D. S.; Li, Y. D. Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res. 2019, 12, 2067–2080.

    CAS  Article  Google Scholar 

  6. [6]

    Tan, S.; Tackett, B. M.; He, Q.; Lee, J. H.; Chen, J. G.; Wong, S. S. Synthesis and electrocatalytic applications of flower-like motifs and associated composites of nitrogen-enriched tungsten nitride (W2N3). Nano Res. 2020, 13, 1434–1443.

    CAS  Article  Google Scholar 

  7. [7]

    Wang, T. T.; Zhao, Q. D.; Fu, Y. Y.; Lei, C. J.; Yang, B.; Li, Z. J.; Lei, L. C.; Wu, G.; Hou, Y. Carbon-rich nonprecious metal single atom electrocatalysts for CO2 reduction and hydrogen evolution. Small Methods 2019, 3, 1900210.

    CAS  Article  Google Scholar 

  8. [8]

    Wang, X. Y.; Zhao, Q. D.; Yang, B.; Li, Z. J.; Bo, Z.; Lam, K. H.; Adli, N. M.; Lei, L. C.; Wen, Z. H.; Wu, G., et al. Emerging nanostructured carbon-based non-precious metal electrocatalysts for selective electrochemical CO2 reduction to CO. J. Mater. Chem. A 2019, 7, 25191–25202.

    CAS  Article  Google Scholar 

  9. [9]

    Zhu, W. L.; Zhang, Y. J.; Zhang, H. Y.; Lv, H. F.; Li, Q.; Michalsky, R.; Peterson, A. A.; Sun, S. H. Active and selective conversion of CO2 to CO on ultrathin Au nanowires. J. Am. Chem. Soc. 2014, 136, 16132–16135.

    CAS  Article  Google Scholar 

  10. [10]

    Tornow, C. E.; Thorson, M. R.; Ma, S. C.; Gewirth, A. A.; Kenis, P. J. A. Nitrogen-based catalysts for the electrochemical reduction of CO2 to CO. J. Am. Chem. Soc. 2012, 134, 19520–19523.

    CAS  Article  Google Scholar 

  11. [11]

    Gao, D. F.; Zhou, H.; Wang, J.; Miao, S.; Yang, F.; Wang, G. X.; Wang, J. G.; Bao, X. H. Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles. J. Am. Chem. Soc. 2015, 137, 4288–4291.

    CAS  Article  Google Scholar 

  12. [12]

    Zhang, C. H.; Yang, S. Z.; Wu, J. J.; Liu, M. J.; Yazdi, S.; Ren, M. Q.; Sha, J. W.; Zhong, J.; Nie, K. Q.; Jalilov, A. S. et al. Electrochemical CO2 reduction with atomic iron-dispersed on nitrogen-doped graphene. Adv. Energy Mater. 2018, 8, 1703487.

    Article  CAS  Google Scholar 

  13. [13]

    Wang, T. T.; Sang, X. H.; Zheng, W. Z.; Yang, B.; Yao, S. Y.; Lei, C. J.; Li, Z. J.; He, Q. G.; Lu, J. G.; Lei, L. C., et al. Gas diffusion strategy for inserting atomic iron sites into graphitized carbon supports for unusually high-efficient CO2 electroreduction and high-performance Zn-CO2 batteries. Adv. Mater. 2020, 32, 2002430.

    CAS  Article  Google Scholar 

  14. [14]

    Zhong, H. X.; Meng, F. L.; Zhang, Q.; Liu, K. H.; Zhang, X. B. Highly efficient and selective CO2 electro-reduction with atomic Fe-C-N hybrid coordination on porous carbon nematosphere. Nano Res. 2019, 12, 2318–2323.

    CAS  Article  Google Scholar 

  15. [15]

    Feng, S. H.; Zheng, W. Z.; Zhu, J. K.; Li, Z. J.; Yang, B.; Wen, Z. H.; Lu, J. G.; Lei, L. C.; Wang, S. B.; Hou, Y. Porous metal-porphyrin triazine-based frameworks for efficient CO2 electroreduction. Appl. Catal. B Environ. 2020, 270, 118908.

    CAS  Article  Google Scholar 

  16. [16]

    Chen, H. L.; Chen, J. X.; Si, J. C.; Hou, Y.; Zheng, Q.; Yang, B.; Li, Z. J.; Gao, L. G.; Lei, L. C.; Wen, Z. H., et al. Ultrathin tin monosulfide nanosheets with the exposed (001) plane for efficient electrocatalytic conversion of CO2 into formate. Chem. Sci. 2020, 11, 3952–3958.

    CAS  Article  Google Scholar 

  17. [17]

    Fu, Y. Y.; Wang, T. T.; Zheng, W. Z.; Lei, C. J.; Yang, B.; Chen, J.; Li, Z. J.; Lei, L. C.; Yuan, C.; Hou, Y. Nanoconfined tin oxide within N-doped nanocarbon supported on electrochemically exfoliated graphene for efficient electroreduction of CO2 to formate and C1 products. ACS Appl. Mater. Interfaces 2020, 12, 16178–16185.

    CAS  Article  Google Scholar 

  18. [18]

    Wei, F. C.; Wang, T. T.; Jiang, X. L.; Ai, Y.; Cui, A. Y.; Cui, J.; Fu, J. W.; Cheng, J. G.; Lei, L. C.; Hou, Y., et al. Controllably engineering mesoporous surface and dimensionality of SnO2 toward highperformance CO2 electroreduction. Adv. Funct. Mater. 2020, 30, 2002092.

    CAS  Article  Google Scholar 

  19. [19]

    Xiong, W.; Yang, J.; Shuai, L.; Hou, Y.; Qiu, M.; Li, X. Y.; Leung, M. K. H. CuSn alloy nanoparticles on nitrogen-doped graphene for electrocatalytic CO2 reduction. ChemElectroChem 2019, 6, 5951–5957.

    CAS  Article  Google Scholar 

  20. [20]

    Sun, J. J.; Zheng, W. Z.; Lyu, S. L.; He, F.; Yang, B.; Li, Z. J.; Lei, L. C.; Hou, Y. Bi/Bi2O3 nanoparticles supported on N-doped reduced graphene oxide for highly efficient CO2 electroreduction to formate. Chin. Chem. Lett. 2020, 31, 1415–1421.

    CAS  Article  Google Scholar 

  21. [21]

    Jiang, Z. L.; Wang, T.; Pei, J. J.; Shang, H. S.; Zhou, D. N.; Li, H. J.; Dong, J. C.; Wang, Y.; Cao, R.; Zhuang, Z. B., el at. Discovery of main group single Sb-N4 active sites for CO2 electroreduction to formate with high efficiency. Energy Environ. Sci. 2020, 13, 2856–2863.

    CAS  Article  Google Scholar 

  22. [22]

    Xia, Z.; Freeman, M.; Zhang, D. X.; Yang, B.; Lei, L. C.; Li, Z. J.; Hou, Y. Highly selective electrochemical conversion of CO2 to HCOOH on dendritic indium foams. ChemElectroChem 2018, 5, 253–259.

    CAS  Article  Google Scholar 

  23. [23]

    Shang, H. S.; Wang, T.; Pei, J. J.; Jiang Z. L.; Zhou, D. N.; Wang, Y.; Li, H. J.; Dong, J. C.; Zhuang Z. B.; Chen, W. X., et al. Design of a single-atom indiumδ+-N4 interface for efficient electroreduction of CO2 to formate. Angew. Chem., Int. Ed. 2020, 59, 22465–22469.

    CAS  Article  Google Scholar 

  24. [24]

    Zheng, W. Z.; Yang, J.; Chen, H. Q.; Hou, Y.; Wang, Q.; Gu, M.; He, F.; Xia, Y.; Xia, Z.; Li, Z. J., et al. Atomically defined undercoordinated active sites for highly efficient CO2 electroreduction. Adv. Funct. Mater. 2020, 30, 1907658.

    CAS  Article  Google Scholar 

  25. [25]

    Nie, X. W.; Esopi, M. R.; Janik, M. J.; Asthagiri, A. Selectivity of CO2 reduction on copper electrodes: The role of the kinetics of elementary steps. Angew. Chem., Int. Ed. 2013, 52, 2459–2462.

    CAS  Article  Google Scholar 

  26. [26]

    Kortlever, R.; Shen, J.; Schouten, K. J. P.; Calle-Vallejo, F.; Koper, M. T. M. Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. J. Phys. Chem. Lett. 2015, 6, 4073–4082.

    CAS  Article  Google Scholar 

  27. [27]

    Zhang, L.; Zhao, Z. J.; Gong, J. L. Nanostructured materials for heterogeneous electrocatalytic CO2 reduction and their related reaction mechanisms. Angew. Chem., Int. Ed. 2017, 56, 11326–11353.

    CAS  Article  Google Scholar 

  28. [28]

    Wang, X. Q.; Chen, Z.; Zhao, X. Y.; Yao, T.; Chen, W. X.; You, R.; Zhao, C. M.; Wu, G.; Wang, J; Huang, W. X., et al. Regulation of coordination number over single Co sites: Triggering the efficient electroreduction of CO2. Angew. Chem., Int. Ed. 2018, 57, 1944–1948.

    CAS  Article  Google Scholar 

  29. [29]

    Zheng, W. Z.; Guo, C. X.; Yang, J.; He, F.; Yang, B.; Li, Z. J.; Lei, L. C.; Xiao, J. P.; Wu, G.; Hou, Y. Highly active metallic nickel sites confined in N-doped carbon nanotubes toward significantly enhanced activity of CO2 electroreduction. Carbon 2019, 150, 52–59.

    CAS  Article  Google Scholar 

  30. [30]

    Jiang, K.; Siahrostami, S.; Zheng, T. T.; Hu, Y. F.; Hwang, S.; Stavitski, E.; Peng, Y. D.; Dynes, J.; Gangisetty, M.; Su, D. et al. Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction. Energy Environ. Sci. 2018, 11, 893–903.

    CAS  Article  Google Scholar 

  31. [31]

    Bushuyev, O. S.; De Luna, P.; Dinh, C. T.; Tao, L.; Saur, G.; van de Lagemaat, J.; Kelley, S. O.; Sargent, E. H. What should we make with CO2 and how can we make it? Joule 2018, 2, 825–832.

    CAS  Article  Google Scholar 

  32. [32]

    Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.

    CAS  Article  Google Scholar 

  33. [33]

    Mistry, H.; Varela, A. S.; Bonifacio, C. S.; Zegkinoglou, I.; Sinev, I.; Choi, Y. W.; Kisslinger, K.; Stach, E. A.; Yang, J. C.; Strasser, P. et al. Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene. Nat. Commun. 2016, 7, 12123.

    Article  CAS  Google Scholar 

  34. [34]

    Geioushy, R. A.; Khaled, M. M.; Alhooshani, K.; Hakeem, A. S.; Rinaldi, A. Graphene/ZnO/Cu2O electrocatalyst for selective conversion of CO2 into n-propanol. Electrochim. Acta 2017, 245, 456–462.

    CAS  Article  Google Scholar 

  35. [35]

    Lee, S.; Kim, D.; Lee, J. Electrocatalytic production of C3-C4 compounds by conversion of CO2 on a chloride-induced bi-phasic Cu2O-Cu catalyst. Angew. Chem., Int. Ed. 2015, 127, 14914–14918.

    Article  Google Scholar 

  36. [36]

    Reller, C.; Krause, R.; Volkova, E.; Schmid, B.; Neubauer, S.; Rucki, A.; Schuster, M.; Schmid, G. Selective electroreduction of CO2 toward ethylene on nano dendritic copper catalysts at high current density. Adv. Energy Mater. 2017, 7, 1602114.

    Article  CAS  Google Scholar 

  37. [37]

    Mangione, G.; Huang, J. F.; Buonsanti, R.; Corminboeuf, C. Dual-facet mechanism in copper nanocubes for electrochemical CO2 reduction into ethylene. J. Phys. Chem. Lett. 2019, 10, 4259–4265.

    CAS  Article  Google Scholar 

  38. [38]

    Yang, Y.; Ajmal, S.; Feng, Y. Q.; Li, K. J.; Zheng, X. Z.; Zhang, L. W. Insight into the formation and transfer process of the first intermediate of CO2 reduction over Ag-decorated dendritic Cu. Chem.—Eur. J. 2020, 26, 4080–4089.

    CAS  Google Scholar 

  39. [39]

    Chao, T. T.; Hu, Y. M.; Hong, X.; Li, Y. D. Design of noble metal electrocatalysts on an atomic level. ChemElectroChem 2019, 6, 289–303.

    CAS  Article  Google Scholar 

  40. [40]

    Yang, K. D.; Lee, C. W.; Jin, K.; Im, S. W.; Nam, K. T. Current status and bioinspired perspective of electrochemical conversion of CO2 to a long-chain hydrocarbon. J. Phys. Chem. Lett. 2017, 8, 538–545.

    CAS  Article  Google Scholar 

  41. [41]

    Gu, Z. X.; Shen, H.; Shang, L. M.; Lv, X. M.; Qian, L. P.; Zheng, G. F. Nanostructured copper-based electrocatalysts for CO2 reduction. Small Methods 2018, 2, 1800121.

    Article  CAS  Google Scholar 

  42. [42]

    Lee, C. W.; Yang, K. D.; Nam, D. H.; Jang, J. H.; Cho, N. H.; Im, S. W.; Nam, K. T. Defining a materials database for the design of copper binary alloy catalysts for electrochemical CO2 conversion. Adv. Mater. 2018, 30, 1704717.

    Article  CAS  Google Scholar 

  43. [43]

    Xie, H.; Wang, T. Y.; Liang, J. S.; Li, Q.; Sun, S. H. Cu-based nanocatalysts for electrochemical reduction of CO2. Nano Today 2018, 21, 41–54.

    Article  CAS  Google Scholar 

  44. [44]

    Birdja, Y. Y.; Pérez-Gallent, E.; Figueiredo, M. C.; Göttle, A. J.; Calle-Vallejo, F.; Koper, M. T. M. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 2019, 4, 732–745.

    CAS  Article  Google Scholar 

  45. [45]

    Gao, D. F.; Arán-Ais, R. M.; Jeon, H. S.; Cuenya, B. R. Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products. Nat. Catal. 2019, 2, 198–210.

    CAS  Article  Google Scholar 

  46. [46]

    Ringe, S.; Clark, E. L.; Resasco, J.; Walton, A.; Seger, B.; Bell, A. T.; Chan, K. Understanding cation effects in electrochemical CO2 reduction. Energy Environ. Sci. 2019, 12, 3001–3014.

    CAS  Article  Google Scholar 

  47. [47]

    Todorova, T. K.; Schreiber, M. W.; Fontecave, M. Mechanistic Understanding of CO2 reduction reaction (CO2RR) toward multicarbon products by heterogeneous copper-based catalysts. ACS Catal. 2020, 10, 1754–1768.

    CAS  Article  Google Scholar 

  48. [48]

    Fan, L.; Xia, C.; Yang, F. Q.; Wang, J.; Wang, H. T.; Lu, Y. Y. Strategies in catalysts and electrolyzer design for electrochemical CO2 reduction toward C2+ products. Sci. Adv. 2020, 6, eaay3111.

    CAS  Article  Google Scholar 

  49. [49]

    Ma, S. C.; Sadakiyo, M.; Luo, R.; Heima, M.; Yamauchi, M.; Kenis, P. J. A. One-step electrosynthesis of ethylene and ethanol from CO2 in an alkaline electrolyzer. J. Power Sources 2016, 301, 219–228.

    CAS  Article  Google Scholar 

  50. [50]

    Duan, Y. X.; Meng, F. L.; Liu, K. H.; Yi, S. S.; Li, S. J.; Yan, J. M.; Jiang, Q. Amorphizing of Cu nanoparticles toward highly efficient and robust electrocatalyst for CO2 reduction to liquid fuels with high Faradaic efficiencies. Adv. Mater. 2018, 30, 1706194.

    Article  CAS  Google Scholar 

  51. [51]

    Hoang, T. T. H.; Ma, S. C.; Gold, J. I.; Kenis, P. J. A.; Gewirth, A. A. Nanoporous copper films by additive-controlled electrodeposition: CO2 reduction catalysis. ACS Catal. 2017, 7, 3313–3321.

    CAS  Article  Google Scholar 

  52. [52]

    Mi, Y. Y.; Shen, S. B.; Peng, X. Y.; Bao, H. H.; Liu, X. J.; Luo, J. Selective electroreduction of CO2 to C2 products over Cu3N-derived Cu nanowires. ChemElectroChem 2019, 6, 2393–2397.

    CAS  Article  Google Scholar 

  53. [53]

    Ren, D.; Ang, B. S. H.; Yeo, B. S. Tuning the selectivity of carbon dioxide electroreduction toward ethanol on oxide-derived CuxZn catalysts. ACS Catal. 2016, 6, 8239–8247.

    CAS  Article  Google Scholar 

  54. [54]

    Hoang, T. T. H.; Verma, S.; Ma, S. C.; Fister, T. T.; Timoshenko, J.; Frenkel, A. I.; Kenis, P. J. A.; Gewirth, A. A. Nanoporous copper-silver alloys by additive-controlled electrodeposition for the selective electroreduction of CO2 to ethylene and ethanol. J. Am. Chem. Soc. 2018, 140, 5791–5797.

    CAS  Article  Google Scholar 

  55. [55]

    Shen, S. B.; Peng, X. Y.; Song, L. D.; Qiu, Y.; Li, C.; Zhuo, L. C.; He, J.; Ren, J. Q.; Liu, X. J.; Luo, J. AuCu alloy nanoparticle embedded Cu submicrocone arrays for selective conversion of CO2 to ethanol. Small 2019, 15, 1902229.

    Article  CAS  Google Scholar 

  56. [56]

    Ren, D.; Deng, Y. L.; Handoko, A. D.; Chen, C. S.; Malkhandi, S.; Yeo, B. S. Selective electrochemical reduction of carbon dioxide to ethylene and ethanol on copper(I) oxide catalysts. ACS Catal. 2015, 5, 2814–2821.

    CAS  Article  Google Scholar 

  57. [57]

    Zhu, Q. G.; Sun, X. F.; Yang, D. X.; Ma, J.; Kang, X. C.; Zheng, L. R.; Zhang, J.; Wu, Z. H.; Han, B. X. Carbon dioxide electroreduction to C2 products over copper-cuprous oxide derived from electrosynthesized copper complex. Nat. Commun. 2019, 10, 3851.

    Article  CAS  Google Scholar 

  58. [58]

    Liu, Y. M.; Fan, X. F.; Nayak, A.; Wang, Y.; Shan, B.; Quan, X.; Meyer, T. J. Steering CO2 electroreduction toward ethanol production by a surface-bound Ru polypyridyl carbene catalyst on N-doped porous carbon. Proc. Natl. Acad. Sci. USA 2019, 116, 26353–26358.

    CAS  Article  Google Scholar 

  59. [59]

    Song, Y. F.; Chen, W.; Zhao, C. C.; Li, S. G.; Wei, W.; Sun, Y. H. Metal-free nitrogen-doped mesoporous carbon for electroreduction of CO2 to ethanol. Angew. Chem., Int. Ed. 2017, 56, 10840–10844.

    CAS  Article  Google Scholar 

  60. [60]

    Liu, Y. M.; Zhang, Y. J.; Cheng, K.; Quan, X.; Fan, X. F.; Su, Y.; Chen, S.; Zhao, H. M.; Zhang, Y. B.; Yu, H. T. et al. Selective electrochemical reduction of carbon dioxide to ethanol on a boron- and nitrogen-co-doped nanodiamond. Angew. Chem., Int. Ed. 2017, 56, 15607–15611.

    CAS  Article  Google Scholar 

  61. [61]

    Chen, C. S.; Handoko, A. D.; Wan, J. H.; Ma, L.; Ren, D.; Yeo, B. S. Stable and selective electrochemical reduction of carbon dioxide to ethylene on copper mesocrystals. Catal. Sci. Technol. 2015, 5, 161–168.

    CAS  Article  Google Scholar 

  62. [62]

    Loiudice, A.; Lobaccaro, P.; Kamali, E. A.; Thao, T.; Huang, B. H.; Ager, J. W.; Buonsanti, R. Tailoring copper nanocrystals towards C2 products in electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2016, 55, 5789–5792.

    CAS  Article  Google Scholar 

  63. [63]

    Chen, X. Y.; Henckel, D. A.; Nwabara, U. O.; Li, Y. Y.; Frenkel, A. I.; Fister, T. T.; Kenis, P. J. A.; Gewirth, A. A. Controlling speciation during CO2 reduction on Cu-alloy electrodes. ACS Catal. 2020, 10, 672–682.

    CAS  Article  Google Scholar 

  64. [64]

    Weng, Z.; Zhang, X.; Wu, Y. S.; Huo, S. J.; Jiang, J. B.; Liu, W.; He, G. J.; Liang, Y. Y.; Wang, H. L. Self-cleaning catalyst electrodes for stabilized CO2 reduction to hydrocarbons. Angew. Chem., Int. Ed. 2017, 56, 13135–13139.

    CAS  Article  Google Scholar 

  65. [65]

    Kim, D.; Lee, S.; Ocon, J. D.; Jeong, B.; Lee, J. K.; Lee, J. Insights into an autonomously formed oxygen-evacuated Cu2O electrode for the selective production of C2H4 from CO2. Phys. Chem. Chem. Phys. 2015, 17, 824–830.

    CAS  Article  Google Scholar 

  66. [66]

    Altaf, N.; Liang, S. Y.; Huang, L.; Wang, Q. Electro-derived Cu-Cu2O nanocluster from LDH for stable and selective C2 hydrocarbons production from CO2 electrochemical reduction. J. Energy Chem. 2020, 48, 169–180.

    Article  Google Scholar 

  67. [67]

    Cheng, Y. S.; Chu, X. P.; Ling, M.; Li, N.; Wu, K. L.; Wu, F. H.; Li, H.; Yuan, G. Z.; Wei, X. W. An MOF-derived copper@nitrogen-doped carbon composite: The synergistic effects of N-types and copper on selective CO2 electroreduction. Catal. Sci. Technol. 2019, 9, 5668–5675.

    CAS  Article  Google Scholar 

  68. [68]

    Li, Q.; Zhu, W. L.; Fu, J. J.; Zhang, H. Y.; Wu, G.; Sun, S. H. Controlled assembly of Cu nanoparticles on pyridinic-N rich graphene for electrochemical reduction of CO2 to ethylene. Nano Energy 2016, 24, 1–9.

    Article  CAS  Google Scholar 

  69. [69]

    Yang, K. D.; Ko, W. R.; Lee, J. H.; Kim, S. J.; Lee, H.; Lee, M. H.; Nam, K. T. Morphology-directed selective production of ethylene or ethane from CO2 on a Cu mesopore electrode. Angew. Chem., Int. Ed. 2017, 56, 796–800.

    CAS  Article  Google Scholar 

  70. [70]

    Ma, M.; Djanashvili, K.; Smith, W. A. Controllable hydrocarbon formation from the electrochemical reduction of CO2 over Cu nanowire arrays. Angew. Chem., Int. Ed. 2016, 55, 6680–6684.

    CAS  Article  Google Scholar 

  71. [71]

    Kas, R.; Kortlever, R.; Milbrat, A.; Koper, M. T. M.; Mul, G.; Baltrusaitis, J. Electrochemical CO2 reduction on Cu2O-derived copper nanoparticles: Controlling the catalytic selectivity of hydrocarbons. Phys. Chem. Chem. Phys. 2014, 16, 12194–12201.

    CAS  Article  Google Scholar 

  72. [72]

    Genovese, C.; Ampelli, C.; Perathoner, S.; Centi, G. Mechanism of C-C bond formation in the electrocatalytic reduction of CO2 to acetic acid. A challenging reaction to use renewable energy with chemistry. Green Chem. 2017, 19, 2406–2415.

    CAS  Article  Google Scholar 

  73. [73]

    Liu, Y. M.; Chen, S.; Quan, X.; Yu, H. T. Efficient electrochemical reduction of carbon dioxide to acetate on nitrogen-doped nanodiamond. J. Am. Chem. Soc. 2015, 137, 11631–11636.

    CAS  Article  Google Scholar 

  74. [74]

    Wu, J. J.; Ma, S. C.; Sun, J.; Gold, J. I.; Tiwary, C.; Kim, B.; Zhu, L. Y.; Chopra, N.; Odeh, I. N.; Vajtai, R. et al. A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates. Nat. Commun. 2016, 7, 13869.

    CAS  Article  Google Scholar 

  75. [75]

    Ren, D.; Wong, N. T.; Handoko, A. D.; Huang, Y.; Yeo, B. S. Mechanistic insights into the enhanced activity and stability of agglomerated Cu nanocrystals for the electrochemical reduction of carbon dioxide to n-propanol. J. Phys. Chem. Lett. 2016, 7, 20–24.

    CAS  Article  Google Scholar 

  76. [76]

    Kim, D.; Kley, C. S.; Li, Y. F.; Yang, P. D. Copper nanoparticle ensembles for selective electroreduction of CO2 to C2-C3 products. Proc. Natl. Acad. Sci. USA 2017, 114, 10560–10565.

    CAS  Article  Google Scholar 

  77. [77]

    Handoko, A. D.; Wei, F. X.; Jenndy; Yeo, B. S.; Seh, Z. W. Understanding heterogeneous electrocatalytic carbon dioxide reduction through operando techniques. Nat. Catal. 2018, 1, 922–934.

    CAS  Article  Google Scholar 

  78. [78]

    Pan, F. P.; Yang, Y. Designing CO2 reduction electrode materials by morphology and interface engineering. Energy Environ. Sci. 2020, 13, 2275–2309.

    CAS  Article  Google Scholar 

  79. [79]

    Schouten, K. J. P.; Kwon, Y.; van der Ham, C. J. M.; Qin, Z.; Koper, M. T. M. A new mechanism for the selectivity to C1 and C2 species in the electrochemical reduction of carbon dioxide on copper electrodes. Chem. Sci. 2011, 2, 1902–1909.

    CAS  Article  Google Scholar 

  80. [80]

    Hori, Y.; Murata, A.; Takahashi, R. Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution. J. Chem. Soc. 1989, 85, 2309–2326.

    CAS  Google Scholar 

  81. [81]

    Xiao, H.; Goddard III, W. A.; Cheng, T.; Liu, Y. Y. Cu metal embedded in oxidized matrix catalyst to promote CO2 activation and CO dimerization for electrochemical reduction of CO2. Proc. Natl. Acad. Sci. USA 2017, 114, 6685–6688.

    CAS  Article  Google Scholar 

  82. [82]

    Liu, X. Y.; Schlexer, P.; Xiao, J. P.; Ji, Y. F.; Wang, L.; Sandberg, R. B.; Tang, M.; Brown, K. S.; Peng, H. J.; Ringe, S., et al. pH effects on the electrochemical reduction of CO(2) towards C2 products on stepped copper. Nat. Commun. 2019, 10, 32.

    CAS  Article  Google Scholar 

  83. [83]

    Feroci, M.; Orsini, M.; Rossi, L.; Sotgiu, G.; Inesi, A. Electrochemically promoted C-N bond formation from amines and CO2 in ionic liquid BMIm-BF4: Synthesis of carbamates. J. Org. Chem. 2007, 72, 200–203.

    CAS  Article  Google Scholar 

  84. [84]

    Bhugun, I.; Lexa, D.; Savéant, J. M. Catalysis of the electrochemical reduction of carbon dioxide by iron(0) porphyrins. Synergistic effect of lewis acid cations. J. Phys. Chem. 1996, 100, 19981–19985.

    CAS  Article  Google Scholar 

  85. [85]

    Kyriacou, D.; Jahngen, E. G. E. An electrogenerative acidobasic cell utilizing biomass for the generation of electricity and molecular hydrogen. J. Appl. Electrochem. 1993, 23, 1196–1198.

    CAS  Article  Google Scholar 

  86. [86]

    Wang, L.; Nitopi, S. A.; Bertheussen, E.; Orazov, M.; Morales-Guio, C. G.; Liu, X. Y.; Higgins, D. C.; Chan, K.; Nørskov, J. K., Hahn, C. et al. Electrochemical carbon monoxide reduction on polycrystalline copper: Effects of potential, pressure, and pH on selectivity toward multicarbon and oxygenated products. ACS Catal. 2018, 8, 7445–7454.

    CAS  Article  Google Scholar 

  87. [87]

    Schouten, K. J. P.; Qin, Z. S.; Pérez Gallent, E.; Koper, M. T. M. Two pathways for the formation of ethylene in CO reduction on single-crystal copper electrodes. J. Am. Chem. Soc. 2012, 134, 9864–9867.

    CAS  Article  Google Scholar 

  88. [88]

    Schouten, K. J. P.; Pérez Gallent, E.; Koper, M. T. M. The influence of pH on the reduction of CO and CO2 to hydrocarbons on copper electrodes. J. Electroanal. Chem. 2014, 716, 53–57.

    CAS  Article  Google Scholar 

  89. [89]

    Roberts, F. S.; Kuhl, K. P.; Nilsson, A. High selectivity for ethylene from carbon dioxide reduction over copper nanocube electrocatalysts. Angew. Chem., Int. Ed. 2015, 54, 5179–5182.

    CAS  Article  Google Scholar 

  90. [90]

    Hori, Y. Electrochemical CO2 reduction on metal electrodes. In Modern Aspects of Electrochemistry; Vayenas, C. G.; White, R. E.; Gamboa-Aldeco, M. E., Eds.; Springer: New York, 2008; pp 89–189.

    Chapter  Google Scholar 

  91. [91]

    Varela, A. S.; Kroschel, M.; Reier, T.; Strasser, P. Controlling the selectivity of CO2 electroreduction on copper: The effect of the electrolyte concentration and the importance of the local pH. Catal. Today 2016, 260, 8–13.

    CAS  Article  Google Scholar 

  92. [92]

    DiMeglio, J. L.; Rosenthal, J. Selective conversion of CO2 to CO with high efficiency using an inexpensive bismuth-based electrocatalyst. J. Am. Chem. Soc. 2013, 135, 8798–8801.

    CAS  Article  Google Scholar 

  93. [93]

    Meekins, B. H.; Kamat, P. V. Got TiO2 nanotubes? Lithium ion intercalation can boost their photoelectrochemical performance. ACS Nano 2009, 3, 3437–3446.

    CAS  Article  Google Scholar 

  94. [94]

    Kuhl, K. P.; Cave, E. R.; Abram, D. N.; Jaramillo, T. F. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ. Sci. 2012, 5, 7050–7059.

    CAS  Article  Google Scholar 

  95. [95]

    Hori, Y.; Takahashi, R.; Yoshinami, Y.; Murata, A. Electrochemical reduction of CO at a copper electrode. J. Phys. Chem. B 1997, 101, 7075–7081.

    CAS  Article  Google Scholar 

  96. [96]

    Kathiresan, M.; Velayutham, D. Ionic liquids as an electrolyte for the electro synthesis of organic compounds. Chem. Commun. 2015, 51, 17499–17516.

    CAS  Article  Google Scholar 

  97. [97]

    Eshetu, G. G.; Armand, M.; Ohno, H.; Scrosati, B.; Passerini, S. Ionic liquids as tailored media for the synthesis and processing of energy conversion materials. Energy Environ. Sci. 2016, 9, 49–61.

    CAS  Article  Google Scholar 

  98. [98]

    Shi, J.; Shi, F.; Song, N.; Liu, J. X.; Yang, X. K.; Jia, Y. J.; Xiao, Z. W.; Du, P. A novel electrolysis cell for CO2 reduction to CO in ionic liquid/organic solvent electrolyte. J. Power Sources 2014, 259, 50–53.

    CAS  Article  Google Scholar 

  99. [99]

    Oh, Y; Hu, X. L. Ionic liquids enhance the electrochemical CO2 reduction catalyzed by MoO2. Chem. Commun. 2015, 51, 13698–13701.

    CAS  Article  Google Scholar 

  100. [100]

    Zhang, S.; Kang, P.; Ubnoske, S.; Brennaman, M. K.; Song, N.; House, R. L.; Glass, J. T.; Meyer, T. J. Polyethylenimine-enhanced electrocatalytic reduction of CO2 to formate at nitrogen-doped carbon nanomaterials. J. Am. Chem. Soc. 2014, 136, 7845–7848.

    CAS  Article  Google Scholar 

  101. [101]

    Medina-Ramos, J.; Pupillo, R. C.; Keane, T. P.; DiMeglio, J. L.; Rosenthal, J. Efficient conversion of CO2 to CO using Tin and other inexpensive and easily prepared post-transition metal catalysts. J. Am. Chem. Soc. 2015, 137, 5021–5027.

    CAS  Article  Google Scholar 

  102. [102]

    Chu, D. B.; Qin, G. X.; Yuan, X. M.; Xu, M.; Zheng, P.; Lu, J. Fixation of CO2 by electrocatalytic reduction and electropolymerization in ionic liquid-H2O solution. ChemSusChem 2008, 1, 205–209.

    CAS  Article  Google Scholar 

  103. [103]

    Rosen, B. A.; Haan, J. L.; Mukherjee, P.; Braunschweig, B.; Zhu, W.; Salehi-Khojin, A.; Dlott, D. D.; Masel, R. I. In situ spectroscopic examination of a low overpotential pathway for carbon dioxide conversion to carbon monoxide. J. Phys. Chem. C 2012, 116, 15307–15312.

    CAS  Article  Google Scholar 

  104. [104]

    Rosen, B. A.; Salehi-Khojin, A.; Thorson, M. R.; Zhu, W.; Whipple, D. T.; Kenis, P. J. A.; Masel, R. I. Ionic liquid-mediated selective conversion of CO2 to CO at low overpotentials. Science 2011, 334, 643–644.

    CAS  Article  Google Scholar 

  105. [105]

    Feng, Q. J.; Liu, S. Q.; Wang, X. Y.; Jin, G. H. Nanoporous copper incorporated platinum composites for electrocatalytic reduction of CO2 in ionic liquid BMIMBF4. Appl. Surf. Sci. 2012, 258, 5005–5009.

    CAS  Article  Google Scholar 

  106. [106]

    Kaneco, S.; Iiba, K.; Ohta, K.; Mizuno, T. Electrochemical reduction of carbon dioxide on copper in methanol with various potassium supporting electrolytes at low temperature. J. Solid State Electrochem. 1999, 3, 424–428.

    CAS  Article  Google Scholar 

  107. [107]

    Kaneco, S.; Iiba, K.; Katsumata, H.; Suzuki, T.; Ohta, K. Effect of sodium cation on the electrochemical reduction of CO2 at a copper electrode in methanol. J. Solid State Electrochem. 2007, 11, 490–495.

    CAS  Article  Google Scholar 

  108. [108]

    Khezri, B.; Fisher, A. C.; Pumera, M. CO2 reduction: The quest for electrocatalytic materials. J. Mater. Chem. A 2017, 5, 8230–8246.

    CAS  Article  Google Scholar 

  109. [109]

    Montoya, J. H.; Shi, C.; Chan, K.; Nørskov, J. K. Theoretical insights into a CO dimerization mechanism in CO2 electroreduction. J. Phys. Chem. Lett. 2015, 6, 2032–2037.

    CAS  Article  Google Scholar 

  110. [110]

    Birhanu, M. K.; Tsai, M. C.; Kahsay, A. W.; Chen, C. T.; Zeleke, T. S.; Ibrahim, K. B.; Huang, C. J.; Su, W. N.; Hwang, B. J. Copper and copper-based bimetallic catalysts for carbon dioxide electroreduction. Adv. Mater. Interfaces 2018, 5, 1800919.

    Article  CAS  Google Scholar 

  111. [111]

    Zheng, Y.; Vasileff, A.; Zhou, X. L.; Jiao, Y.; Jaroniec, M.; Qiao, S. Z. Understanding the roadmap for electrochemical reduction of CO2 to multi-carbon oxygenates and hydrocarbons on copper-based catalysts. J. Am. Chem. Soc. 2019, 141, 7646–7659.

    CAS  Article  Google Scholar 

  112. [112]

    Vasileff, A.; Xu, C. C.; Jiao, Y.; Zheng, Y.; Qiao, S. Z. Surface and interface engineering in copper-based bimetallic materials for selective CO2 electroreduction. Chem 2018, 4, 1809–1831.

    CAS  Article  Google Scholar 

  113. [113]

    Liu, X. E.; Dai, L. M. Carbon-based metal-free catalysts. Nat. Rev. Mate. 2016, 1, 16064.

    CAS  Article  Google Scholar 

  114. [114]

    Zou, X. L.; Liu, M. J.; Wu, J. J.; Ajayan, P. M.; Li, J.; Liu, B. L.; Yakobson, B. I. How nitrogen-doped graphene quantum dots catalyze electroreduction of CO2 to hydrocarbons and oxygenates. ACS Catal. 2017, 7, 6245–6250.

    CAS  Article  Google Scholar 

  115. [115]

    Mao, X.; Kour, G.; Zhang, L.; He, T. W.; Wang, S. F.; Yan, C.; Zhu, Z. H.; Du, A. J. Silicon-doped graphene edges: An efficient metal-free catalyst for the reduction of CO2 into methanol and ethanol. Catal. Sci. Technol. 2019, 9, 6800–6807.

    CAS  Article  Google Scholar 

  116. [116]

    Nakata, K.; Ozaki, T.; Terashima, C.; Fujishima, A.; Einaga, Y. High-yield electrochemical production of formaldehyde from CO2 and seawater. Angew. Chem., Int. Ed. 2014, 53, 871–874.

    CAS  Article  Google Scholar 

  117. [117]

    Lan, Y. C.; Niu, G. Q.; Wang, F.; Cui, D. H.; Hu, Z. F. SnO2-modified two-dimensional CuO for enhanced electrochemical reduction of CO2 to C2H4. ACS Appl. Mater. Interfaces 2020, 12, 36128–36136.

    CAS  Article  Google Scholar 

  118. [118]

    Xiao, X. X.; Xu, Y. L.; Lv, X. M.; Xie, J. M.; Liu, J.; Yu, C. L. Electrochemical CO2 reduction on copper nanoparticles-dispersed carbon aerogels. J. Colloid Interface Sci. 2019, 545, 1–7.

    CAS  Article  Google Scholar 

  119. [119]

    Jia, C.; Dastafkan, K.; Ren, W. H.; Yang, W. F.; Zhao, C. Carbon-based catalysts for electrochemical CO2 reduction. Sustain. Energy Fuels 2019, 3, 2890–2906.

    CAS  Article  Google Scholar 

  120. [120]

    Vasileff, A.; Zheng, Y.; Qiao, S. Z. Carbon solving carbon’s problems: Recent progress of nanostructured carbon-based catalysts for the electrochemical reduction of CO2. Adv. Energy Mater. 2017, 7, 1700759.

    Article  CAS  Google Scholar 

  121. [121]

    Zhao, J.; Chen, Z.; Zhao, J. X. Metal-free graphdiyne doped with sp-hybridized boron and nitrogen atoms at acetylenic sites for high-efficiency electroreduction of CO2 to CH4 and C2H4. J. Mater. Chem. A 2019, 7, 4026–4035.

    CAS  Article  Google Scholar 

  122. [122]

    Coban, H. B. Organic acids as antimicrobial food agents: Applications and microbial productions. Bioprocess Biosyst. Eng. 2020, 43, 569–591.

    CAS  Article  Google Scholar 

  123. [123]

    Liu, Y.; Li, Y. W.; Chen, Y. Z.; Qu, T.; Shu, C. Y.; Yang, X. D.; Zhu, H. Y.; Guo, S. W.; Zhao, S. D.; Asefa, T., et al. A CO2/H2 fuel cell: Reducing CO2 while generating electricity. J. Mater. Chem. A 2020, 8, 8329–8336.

    CAS  Article  Google Scholar 

  124. [124]

    Zhao, J.; Xue, S.; Barber, J.; Zhou, Y. W.; Meng, J.; Ke, X. B. An overview of Cu-based heterogeneous electrocatalysts for CO2 reduction. J. Mater. Chem. A 2020, 8, 4700–4734.

    CAS  Article  Google Scholar 

  125. [125]

    Han, Z. J.; Kortlever, R.; Chen, H. Y.; Peters, J. C.; Agapie, T. CO2 reduction selective for C≥2 products on polycrystalline copper with N-substituted pyridinium additives. ACS Cent. Sci. 2017, 3, 853–859.

    CAS  Article  Google Scholar 

  126. [126]

    Schizodimou, A.; Kyriacou, G. Acceleration of the reduction of carbon dioxide in the presence of multivalent cations. Electrochim. Acta 2012, 78, 171–176.

    CAS  Article  Google Scholar 

  127. [127]

    Kyriacou G. Z.; Anagnostopoulos, A. K. Influence CO2 partial pressure and the supporting electrolyte cation on the product distribution in CO2 electroreduction. J. Appl. Electrochem. 1993, 23, 483–486.

    CAS  Article  Google Scholar 

  128. [128]

    Ogura, K.; Ferrell III, J. R.; Cugini, A. V.; Smotkin, E. S.; Salazar-Villalpando, M. D. CO2 attraction by specifically adsorbed anions and subsequent accelerated electrochemical reduction. Electrochim. Acta 2010, 56, 381–386.

    CAS  Article  Google Scholar 

  129. [129]

    Lee, S.; Ocon, J. D.; Son, Y. I.; Lee, J. Alkaline CO2 electrolysis toward selective and continuous HCOO production over SnO2 nanocatalysts. J. Phys. Chem. C 2015, 119, 4884–4890.

    CAS  Article  Google Scholar 

  130. [130]

    Hu, B. X.; Stancovski, V.; Morton, M.; Suib, S. L. Enhanced electrocatalytic reduction of CO2/H2O to paraformaldehyde at Pt/metal oxide interfaces. Appl. Catal. A Gen. 2010, 382, 277–283.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was financially support from by the National Natural Science Foundation of China (Nos. 21922811, 21878270, and 21961160742), the Zhejiang Provincial Natural Science Foundation of China (No. LR19B060002), the Fundamental Research Funds for the Central Universities (No. 2020XZZX00209), Zhejiang Key Laboratory of Marine Materials and Protective Technologies (No. 2020K10), Key Laboratory of Marine Materials and Related Technologies, CAS, the Startup Foundation for Hundred-Talent Program of Zhejiang University, and the Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang (No. 2019R01006) to Y. H.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Pingyun Feng or Yang Hou.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Wang, T., Li, Z. et al. Recent progress and perspective of electrochemical CO2 reduction towards C2-C5 products over non-precious metal heterogeneous electrocatalysts. Nano Res. 14, 3188–3207 (2021). https://doi.org/10.1007/s12274-021-3335-x

Download citation

Keywords

  • heterogeneous electrocatalysts
  • precious-metal-free catalyst
  • CO2 electroreduction
  • C2-C5 products
  • structure—activity relationship