Skip to main content
Log in

Bimetallic nickel cobalt sulfides with hierarchical coralliform architecture for ultrafast and stable Na-ion storage

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

A series of bimetallic nickel cobalt sulfides with hierarchical micro/nano architectures were fabricated via a facile synthesis strategy of bimetallic micro/nano structure precursor construction-anion exchange via solvothermal method. Among the nickel cobalt sulfides with different Ni/Co contents, the coral-like Ni1.01Co1.99S4 (Ni/Co, 1/2) delivers ultrafast and stable Na-ion storage performance (350 mAh·g−1 after 1,000 cycles at 1 A·g−1 and 355 mAh·g−1 at 5 A·g−1). The remarkable electrochemical properties can be attributed to the enhanced conductivity by co-existence of bimetallic components, the unique coral-like micro/nanostructure, which could prevent structural collapse and self-aggregation of nanoparticles, and the easily accessibility of electrolyte, and fast Na+ diffusion upon cycling. Detailed kinetics studies by a galvanostatic intermittent titration technique (GITT) reveal the dynamic change of Na+ diffusion upon cycling, and quantitative kinetic analysis indicates the high contribution of pseudocapacitive behavior during charge-discharge processes. Moreover, the ex-situ characterization analysis results further verify the Na-ion storage mechanism based on conversion reaction. This study is expected to provide a feasible design strategy for the bimetallic sulfides materials toward high performance sodium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Luo, W.; Shen, F.; Bommier, C.; Zhu, H. L.; Ji, X. L.; Hu, L. B. Na-ion battery anodes: Materials and electrochemistry. Acc. Chem. Res. 2016, 49, 231–240.

    Article  CAS  Google Scholar 

  2. Hou, X.; Li, C. C.; Xu, H. Y.; Xu, L. Q. NaFeTiO4 nanorod/multi-walled carbon nanotubes composite as an anode material for sodium-ion batteries with high performances in both half and full cells. Nano Res. 2017, 10, 3585–3595.

    Article  CAS  Google Scholar 

  3. Guo, S. H.; Liu, P.; Sun, Y.; Zhu, K.; Yi, J.; Chen, M. W.; Ishida, M.; Zhou, H. S. A high-voltage and ultralong-life sodium full cell for stationary energy storage. Angew. Chem., Int. Ed. 2015, 54, 11701–11705.

    Article  CAS  Google Scholar 

  4. Yao, X.; Zhu, Y. F.; Yao, H. R.; Wang, P. F.; Zhang, X. D.; Li, H. L.; Yang, X. N.; Gu, L.; Li, Y. C.; Wang, T. et al. A stable layered oxide cathode material for high-performance sodium-ion battery. Adv. Energy Mater. 2019, 9, 1803978.

    Article  CAS  Google Scholar 

  5. Ma, M. Z.; Zhang, S. P.; Yao, Y.; Wang, H. Y.; Xu, R. J.; Wang, J. W.; Zhou, X. F.; Yang, W. J.; Peng, Z. Q.; Wu, X. J. et al. Heterostructures of 2D molybdenum dichalcogenide on 2D nitrogen-doped carbon: Superior potassium-ion storage and insight into potassium storage mechanism. Adv. Mater. 2020, 32, 2000958.

    Article  CAS  Google Scholar 

  6. Wu, Y.; Wei, Z. X.; Xu, R.; Gong, Y.; Gu, L.; Ma, J. M.; Yu, Y. Boosting the rate capability of multichannel porous TiO2 nanofibers with well-dispersed Cu nanodots and Cu2+-doping derived oxygen vacancies for sodium-ion batteries. Nano Res. 2019, 12, 2211–2217.

    Article  CAS  Google Scholar 

  7. Dong, C. F.; Wu, L. Q.; He, Y. Y.; Zhou, Y. L.; Sun, X. P.; Du, W.; Sun, X. Q.; Xu, L. Q.; Jiang, F. Y. Willow-leaf-like ZnSe@N-doped carbon nanoarchitecture as a stable and high-performance anode material for sodium-ion and potassium-ion batteries. Small 2020, 16, 2004580.

    Article  CAS  Google Scholar 

  8. Mao, M. L.; Cui, C. Y.; Wu, M. G.; Zhang, M.; Gao, T.; Fan, X. L.; Chen, J.; Wang, T. H.; Ma, J. M.; Wang, C. S. Flexible ReS2 nanosheets/N-doped carbon nanofibers-based paper as a universal anode for alkali (Li, Na, K) ion battery. Nano Energy 2018, 45, 346–352.

    Article  CAS  Google Scholar 

  9. Hu, Z.; Liu, Q. N.; Chou, S. L.; Dou, S. X. Advances and challenges in metal sulfides/selenides for next-generation rechargeable sodium-ion batteries. Adv. Mater. 2017, 29, 1700606.

    Article  CAS  Google Scholar 

  10. Luo, W.; Bommier, C.; Jian, Z. L.; Li, X.; Carter, R.; Vail, S.; Lu, Y. H.; Lee, J. J.; Ji, X. L. Low-surface-area hard carbon anode for Na-ion batteries via graphene oxide as a dehydration agent. ACS Appl. Mater. Interfaces 2015, 7, 2626–2631.

    Article  CAS  Google Scholar 

  11. Lu, P.; Sun, Y.; Xiang, H. F.; Liang, X.; Yu, Y. 3D amorphous carbon with controlled porous and disordered structures as a high-rate anode material for sodium-ion batteries. Adv. Energy Mater. 2018, 8, 1702434.

    Article  CAS  Google Scholar 

  12. Ma, Y. F.; Guo, Q. B.; Yang, M.; Wang, Y. H.; Chen, T. T.; Chen, Q.; Zhu, X. H.; Xia, Q. Y.; Li, S.; Xia, H. Highly doped graphene with multi-dopants for high-capacity and ultrastable sodium-ion batteries. Energy Storage Mater. 2018, 13, 134–141.

    Article  Google Scholar 

  13. Zhou, X. S.; Guo, Y. G. Highly disordered carbon as a superior anode material for room-temperature sodium-ion batteries. ChemElectroChem 2014, 1, 83–86.

    Article  CAS  Google Scholar 

  14. Lu, P.; Sun, Y.; Xiang, H. F.; Liang, X.; Yu, Y. 3D amorphous carbon with controlled porous and disordered structures as a high-rate anode material for sodium-ion batteries. Adv. Energy Mater. 2018, 8, 1702434.

    Article  CAS  Google Scholar 

  15. Liu, Y. Z.; Yang, C. H.; Zhang, Q. Y.; Liu, M. L. Recent progress in the design of metal sulfides as anode materials for sodium ion batteries. Energy Storage Mater. 2019, 22, 66–95.

    Article  Google Scholar 

  16. Zang, R.; Li, P. X.; Guo, X.; Man, Z. M.; Zhang, S. T.; Wang, C. Y.; Wang, G. X. Yolk-shell N-doped carbon coated FeS2 nanocages as a high-performance anode for sodium-ion batteries. J. Mater. Chem. A 2019, 7, 14051–14059.

    Article  CAS  Google Scholar 

  17. Zhou, L. M.; Zhang, K.; Sheng, J. Z.; An, Q. Y.; Tao, Z. L.; Kang, Y. M.; Chen, J.; Mai, L. Q. Structural and chemical synergistic effect of CoS nanoparticles and porous carbon nanorods for high-performance sodium storage. Nano Energy 2017, 35, 281–289.

    Article  CAS  Google Scholar 

  18. Dong, C. F.; Guo, L. J.; Li, H. B.; Zhang, B.; Gao, X.; Tian, F.; Qian, Y. T.; Wang, D. B.; Xu, L. Q. Rational fabrication of CoS2/Co4S3@N-doped carbon microspheres as excellent cycling performance anode for half/full sodium ion batteries. Energy Storage Mater. 2020, 25, 679–686.

    Article  Google Scholar 

  19. Gao, H.; Zhou, T. F.; Zheng, Y.; Zhang, Q.; Liu, Y. Q.; Chen, J.; Liu, H. K. Z.; Guo, P. CoS quantum dot nanoclusters for high-energy potassium-ion batteries. Adv. Funct. Mater. 2017, 27, 1702634.

    Article  CAS  Google Scholar 

  20. Chang, X. Q.; Ma, Y. F.; Yang, M.; Xing, T.; Tang, L. Y.; Chen, T. T.; Guo, Q. B.; Zhu, X. H.; Liu, J. Z.; Xia, H. In-situ solid-state growth of N, S codoped carbon nanotubes encapsulating metal sulfides for high-efficient-stable sodium ion storage. Energy Storage Mater. 2019, 23, 358–366.

    Article  Google Scholar 

  21. Deng, J.; Gong, Q. F.; Ye, H. L.; Feng, K.; Zhou, J. H.; Zha, C. Y.; Wu, J. H.; Chen, J. M.; Zhong, J.; Li, Y. G. Rational synthesis and assembly of Ni3S4 nanorods for enhanced electrochemical sodium-ion storage. ACS Nano 2018, 12, 1829–1836.

    Article  CAS  Google Scholar 

  22. Jiang, Y. L.; Zou, G. Q.; Hong, W. W.; Zhang, Y.; Zhang, Y.; Shuai, H. L.; Xu, W.; Hou, H. S.; Ji, X. B. N-rich carbon-coated Co3S4 ultrafine nanocrystals derived from ZIF-67 as an advanced anode for sodium-ion batteries. Nanoscale 2018, 10, 18786–18794.

    Article  CAS  Google Scholar 

  23. Dong, C. F.; Liang, J. W.; He, Y. Y.; Li, C. C.; Chen, X. X.; Guo, L. J.; Tian, F.; Qian, Y. T.; Xu, L. Q. NiS1.03 hollow spheres and cages as superhigh rate capacity and stable anode materials for half/full sodium-ion batteries. ACS Nano 2018, 12, 8277–8287.

    Article  CAS  Google Scholar 

  24. Guo, Q. B.; Ma, Y. F.; Chen, T. T.; Xia, Q. Y.; Yang, M.; Xia, H.; Yu, Y. Cobalt sulfide quantum dot embedded N/S-doped carbon nanosheets with superior reversibility and rate capability for sodium-ion batteries. ACS Nano 2017, 11, 12658–12667.

    Article  CAS  Google Scholar 

  25. Dong, C. F.; Guo, L. J.; He, Y. Y.; Shang, L. M.; Qian, Y. T.; Xu, L. Q. Ultrafine Co1−xS nanoparticles embedded in a nitrogen-doped porous carbon hollow nanosphere composite as an anode for superb sodium-ion batteries and lithium-ion batteries. Nanoscale 2018, 10, 2804–2811.

    Article  CAS  Google Scholar 

  26. Niu, C. J.; Meng, J. S.; Han, C. H.; Zhao, K. N.; Yan, M. Y.; Mai, L. Q. VO2 nanowires assembled into hollow microspheres for high-rate and long-life lithium batteries. Nano Lett. 2014, 14, 2873–2878.

    Article  CAS  Google Scholar 

  27. Yang, T.; Yang, D. X.; Liu, Y. G.; Liu, J.; Chen, Y. F.; Bao, L.; Lu, X. X.; Xiong, Q. Q.; Qin, H. Y.; Ji, Z. G. et al. MOF-derived carbon-encapsulated cobalt sulfides orostachys-like micro/nano-structures as advanced anode material for lithium ion batteries. Electrochim. Acta 2018, 290, 193–202.

    Article  CAS  Google Scholar 

  28. Song, Y. J.; Li, H.; Yang, L.; Bai, D. X.; Zhang, F. Z.; Xu, S. L. Solid-solution sulfides derived from tunable layered double hydroxide precursors/graphene aerogel for pseudocapacitors and sodium-ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 42742–42750.

    Article  CAS  Google Scholar 

  29. von Lim, Y.; Huang, S. Z.; Hu, J. P.; Kong, D. Z.; Wang, Y.; Xu, T. T.; Ang, L. K.; Yang, H. Y. Explicating the sodium storage kinetics and redox mechanism of highly pseudocapacitive binary transition metal sulfide via operando techniques and ab initio evaluation. Small Methods 2019, 3, 1900112.

    Article  CAS  Google Scholar 

  30. Fang, Y. J.; Luan, D. Y.; Chen, Y.; Gao, S. Y.; Lou, X. W. Synthesis of copper-substituted CoS2@CuxS double-shelled nanoboxes by sequential ion exchange for efficient sodium storage. Angew. Chem., Int. Ed. 2020, 59, 2644–2648.

    Article  CAS  Google Scholar 

  31. Wu, Y. Q.; Yang, H. X.; Pu, H.; Meng, W. J.; Gao, R. Z.; Zhao, D. L. SnS2/Co3S4 hollow nanocubes anchored on S-doped graphene for ultrafast and stable Na-ion storage. Small 2019, 15, 1903873.

    Article  CAS  Google Scholar 

  32. Zheng, T.; Li, G. D.; Meng, X. G.; Li, S. Y.; Ren, M. M. Porous core-shell CuCo2S4 nanospheres as anode material for enhanced lithium-ion batteries. Chem.—Eur. J. 2019, 25, 885–891.

    Article  CAS  Google Scholar 

  33. Ali, Z.; Asif, M.; Huang, X. X.; Tang, T. Y.; Hou, Y. L. Hierarchically porous Fe2CoSe4 binary-metal selenide for extraordinary rate performance and durable anode of sodium-ion batteries. Adv. Mater. 2018, 30, 1802745.

    Article  CAS  Google Scholar 

  34. He, Y. Y.; Luo, M.; Dong, C. F.; Ding, X. Y.; Yin, C. C.; Nie, A. M.; Chen, Y. N.; Qian, Y. T.; Xu, L. Q. Coral-like NixCo1−xSe2 for Na-ion battery with ultralong cycle life and ultrahigh rate capability. J. Mater. Chem. A 2019, 7, 3933–3940.

    Article  CAS  Google Scholar 

  35. Han, X. P.; Wu, X. Y.; Zhong, C.; Deng, Y. D.; Zhao, N. Q.; Hu, W. B. NiCo2S4 nanocrystals anchored on nitrogen-doped carbon nanotubes as a highly efficient bifunctional electrocatalyst for rechargeable zinc-air batteries. Nano Energy 2017, 31, 541–550.

    Article  CAS  Google Scholar 

  36. Xie, S. L.; Gou, J. X.; Liu, B.; Liu, C. G. Synthesis of cobalt-doped nickel sulfide nanomaterials with rich edge sites as high-performance supercapacitor electrode materials. Inorg. Chem. Front. 2018, 5, 1218–1225.

    Article  CAS  Google Scholar 

  37. Zhu, S. H.; Li, Q. D.; Wei, Q. L.; Sun, R. M.; Liu, X. Q.; An, Q. Y.; Mai, L. Q. NiSe2 nanooctahedra as an anode material for high-rate and long-life sodium-ion battery. ACS Appl. Mater. Interfaces 2017, 9, 311–316.

    Article  CAS  Google Scholar 

  38. Chen, X. X.; Zeng, S. Y.; Muheiyati, H.; Zhai, Y. J.; Li, C. C.; Ding, X. Y.; Wang, L.; Wang, D. B.; Xu, L. Q.; He, Y. Y. et al. Double-shelled Ni-Fe-P/N-doped carbon nanobox derived from a prussian blue analogue as an electrode material for K-ion batteries and Li-S batteries. ACS Energy Lett. 2019, 4, 1496–1504.

    Article  CAS  Google Scholar 

  39. Zhang, K.; Park, M. H.; Zhou, L. M.; Lee, G. K.; Li, W. J.; Kang, Y. M.; Chen, J. Urchin-like CoSe2 as a high-performance anode material for sodium-ion batteries. Adv. Funct. Mater. 2016, 26, 6728–6735.

    Article  CAS  Google Scholar 

  40. Tang, Y. C.; Zhao, Z. B.; Hao, X. J.; Wang, Y. W.; Liu, Y.; Hou, Y. N.; Yang, Q.; Wang, X. Z.; Qiu, J. S. Engineering hollow polyhedrons structured from carbon-coated CoSe2 nanospheres bridged by CNTs with boosted sodium storage performance. J. Mater. Chem. A 2017, 5, 13591–13600.

    Article  CAS  Google Scholar 

  41. Chen, X. X.; Ding, X. Y.; Muheiyati, H.; Feng, Z. Y.; Xu, L. Q.; Ge, W. N.; Qian, Y. T.; Hierarchical flower-like cobalt phosphosulfide derived from Prussian blue analogue as an efficient polysulfides adsorbent for long-life lithium-sulfur batteries. Nano Res. 2019, 12, 1115–1120.

    Article  CAS  Google Scholar 

  42. Ma, G. Y.; Xu, X.; Feng, Z. Y.; Hu, C. J.; Zhu, Y. S.; Yang, X. F.; Yang, J.; Qian, Y. T. Carbon-coated mesoporous Co9S8 nanoparticles on reduced graphene oxide as a long-life and high-rate anode material for potassium-ion batteries. Nano Res. 2020, 13, 802–809.

    Article  CAS  Google Scholar 

  43. Tao, Y.; Li, R. Y.; Li, Z. J. Facile construction of three-dimensional NiCo2S4 with tremella-like morphology for high-performance supercapacitors. Mater. Lett. 2016, 167, 234–237.

    Article  CAS  Google Scholar 

  44. Zhou, Q.; Liu, L.; Huang, Z. F.; Yi, L. G.; Wang, X. Y.; Cao, G. Z. Co3S4@polyaniline nanotubes as high-performance anode materials for sodium ion batteries. J. Mater. Chem. A 2016, 4, 5505–5516.

    Article  CAS  Google Scholar 

  45. Sun, Z. H.; Zhao, C. L.; Cao, X. C.; Zeng, K.; Ma, Z. H.; Hu, Y. S.; Tian, J. H.; Yang, R. Z. Insights into the phase transformation of NiCo2S4@rGO for sodium-ion battery electrode. Electrochim. Acta 2020, 338, 135900.

    Article  CAS  Google Scholar 

  46. Guo, C.; Zhang, W. C.; Liu, Y.; He, J. P.; Yang, S.; Liu, M. K.; Wang, Q. H.; Guo, Z. P. Constructing CoO/Co3S4 heterostructures embedded in N-doped carbon frameworks for high-performance sodium-ion batteries. Adv. Funct. Mater. 2019, 29, 1901925.

    Article  CAS  Google Scholar 

  47. Ou, X.; Cao, L.; Liang, X. H.; Zheng, F. H.; Zheng, H. S.; Yang, X. F.; Wang, J. H.; Yang, C. H.; Liu, M. L. Fabrication of SnS2/Mn2SnS4/carbon heterostructures for sodium-ion batteries with high initial coulombic efficiency and cycling stability. ACS Nano 2019, 13, 3666–3676.

    Article  CAS  Google Scholar 

  48. Zhao, W. Q.; Zhang, L. M.; Jiang, F.; Chang, X. H.; Yang, Y.; Ge, P.; Sun, W.; Ji, X. B. Engineering metal sulfides with hierarchical interfaces for advanced sodium-ion storage systems. J. Mater. Chem. A 2020, 8, 5284–5297.

    Article  CAS  Google Scholar 

  49. Zhang, H. C.; Jiang, Y.; Qi, Z. Y.; Zhong, X. W.; Yu, Y. Sulfur doped ultra-thin anatase TiO2 nanosheets/graphene nanocomposite for high-performance pseudocapacitive sodium storage. Energy Storage Mater. 2018, 12, 37–43.

    Article  CAS  Google Scholar 

  50. He, Y. Y.; Wang, L.; Dong, C. F.; Li, C. C.; Ding, X. Y.; Qian, Y. T.; Xu, L. Q. In-situ rooting ZnSe/N-doped hollow carbon architectures as high-rate and long-life anode materials for half/full sodium-ion and potassium-ion batteries. Energy Storage Mater. 2019, 23, 35–45.

    Article  Google Scholar 

  51. An, C. S.; Yuan, Y. F.; Zhang, B.; Tang, L. B.; Xiao, B.; He, Z. J.; Zheng, J. C.; Lu, J. Graphene wrapped FeSe2 nano-microspheres with high pseudocapacitive contribution for enhanced Na-ion storage. Adv. Energy Mater. 2019, 9, 1900356.

    Article  CAS  Google Scholar 

  52. Chen, X. X.; Ding, X. Y.; Muheiyati, H.; Feng, Z. Y.; Xu, L. Q.; Ge, W. N.; Qian, Y. T. Hierarchical flower-like cobalt phosphosulfide derived from Prussian blue analogue as an efficient polysulfides adsorbent for long-life lithium-sulfur batteries. Nano Res. 2019, 12, 1115–1120.

    Article  CAS  Google Scholar 

  53. von Lim, Y.; Huang, S. Z.; Hu, J. P.; Kong, D. Z.; Wang, Y.; Xu, T. T.; Ang, L. K.; Yang, H. Y. Explicating the sodium storage kinetics and redox mechanism of highly pseudocapacitive binary transition metal sulfide via operando techniques and ab initio evaluation. Small Methods 2019, 3, 1900112.

    Article  CAS  Google Scholar 

  54. Zhou, Y. L.; Zhang, M.; Wang, Q.; Yang, J.; Luo, X. Y.; Li, Y. L.; Du, R.; Yan, X. S.; Sun, X. Q.; Dong, C. F. et al. Pseudocapacitance boosted N-doped carbon coated Fe7S8 nanoaggregates as promising anode materials for lithium and sodium storage. Nano Res. 2020, 13, 691–700.

    Article  CAS  Google Scholar 

  55. Fan, S. W.; Li, G. D.; Cai, F. P.; Yang, G. Synthesis of porous Ni-doped CoSe2/C nanospheres towards high-rate and long-term sodium-ion half/full batteries. Chem.—Eur. J. 2020, 26, 8579–8587.

    Article  CAS  Google Scholar 

  56. Zhu, Y. J.; Xu, Y. H.; Liu, Y. H.; Luo, C.; Wang, C. S. Comparison of electrochemical performances of olivine NaFePO4 in sodium-ion batteries and olivine LiFePO4 in lithium-ion batteries. Nanoscale 2013, 5, 780–787.

    Article  CAS  Google Scholar 

  57. Gu, S. S.; Lou, Z.; Li, L. D.; Chen, Z. J.; Ma, X. D.; Shen, G. Z. Fabrication of flexible reduced graphene oxide/Fe2O3 hollow nanospheres based on-chip micro-supercapacitors for integrated photodetecting applications. Nano Res. 2016, 9, 424–434.

    Article  CAS  Google Scholar 

  58. Li, C. C.; Zhu, L.; Qi, S. Y.; Ge, W. N.; Ma, W. Z.; Zhao, Y.; Huang, R. Z.; Xu, L. Q.; Qian, Y. T. Ultrahigh-areal-capacity battery anodes enabled by free-standing vanadium nitride@N-doped carbon/graphene architecture. ACS Appl. Mater. Interfaces 2020, 12, 49607–49616.

    Article  CAS  Google Scholar 

  59. He, Y. Y.; Xu, L. Q.; Li, C. C.; Chen, X. X.; Xu, G.; Jiao, X. Y. Mesoporous Mn-Sn bimetallic oxide nanocubes as long cycle life anodes for Li-ion half/full cells and sulfur hosts for Li-S batteries. Nano Res. 2018, 11, 3555–3566.

    Article  CAS  Google Scholar 

  60. Li, S. J.; Ge, P.; Jiang, F.; Shuai, H. L.; Xu, W.; Jiang, Y. L.; Zhang, Y.; Hu, J. G.; Hou, H. S.; Ji, X. B. The advance of nickel-cobalt-sulfide as ultra-fast/high sodium storage materials: The influences of morphology structure, phase evolution and interface property. Energy Storage Mater. 2019, 16, 267–280.

    Article  Google Scholar 

  61. Yang, Z. G.; Wu, Z. G.; Hua, W. B.; Xiao, Y.; Wang, G. K.; Liu, Y. X.; Wu, C. J.; Li, Y. C.; Zhong, B. H.; Xiang, W. et al. Hydrangea-like CuS with irreversible amorphization transition for high-performance sodium-ion storage. Adv. Sci. 2020, 7, 1903279.

    Article  CAS  Google Scholar 

  62. Miao Y. Q.; Zhao, X. S.; Wang, X.; Ma, C. H.; Cheng, L.; Chen, G.; Yue, H. J.; Wang, L.; Zhang, D. Flower-like NiCo2S4 nanosheets with high electrochemical performance for sodium-ion batteries. Nano Res. 2020, 13, 3041–3047.

    Article  CAS  Google Scholar 

  63. Lu, F.; Zhou, M.; Li, W. R.; Weng, Q. H.; Li, G. L.; Xue, Y. M.; Jiang, X. F.; Zeng, X. H.; Bando, Y.; Golberg, D. Engineering sulfur vacancies and impurities in NiCo2S4 nanostructures toward optimal supercapacitive performance. Nano Energy 2016, 26, 313–323.

    Article  CAS  Google Scholar 

  64. Yang, T. T.; Li, R. Y.; Li, Z. J.; Gu, Z. G.; Wang, G. L.; Liu, J. K. Hybrid of NiCo2S4 and nitrogen and sulphur-functionalized multiple graphene aerogel for application in supercapacitors and oxygen reduction with significant electrochemical synergy. Electrochim. Acta 2016, 211, 59–70.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Shandong Provincial Natural Science Foundation (Nos. ZR2020QB123, ZR2020QB108, and ZR2019MEM030), the National Natural Science Foundation of China (Nos. 51972180, 22071135, and 51572134), Academy of Sciences large apparatus United Fund of China (No. U1832187), Key Research & Development Project of Shandong Province (No. 2019GGX102070), and the Program for Scientific Research Innovation Team in Colleges and Universities of Jinan (No. 2018GXRC006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guowei Zhou or Liqiang Xu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Dong, C., He, S. et al. Bimetallic nickel cobalt sulfides with hierarchical coralliform architecture for ultrafast and stable Na-ion storage. Nano Res. 14, 4014–4024 (2021). https://doi.org/10.1007/s12274-021-3328-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3328-9

Keywords

Navigation