Skip to main content

Working-in-tandem mechanism of multi-dopants in enhancing electrocatalytic nitrogen reduction reaction performance of carbon-based materials


Developing carbon-based electrocatalysts with excellent N2 adsorption and activation capability holds the key to achieve highly efficient nitrogen reduction reaction (NRR) for reaching its practical application. Here, we report a highly active electrocatalyst—metal-free pyrrolic-N dominated N, S co-doped carbon (pyrr-NSC) for NRR. Based on theoretical and experimental results, it is confirmed that the N and S-dopants practice a working-in-tandem mechanism on pyrr-NSC, where the N-dopants are utilized to create electropositive C sites for enhancing N2 adsorption and the S-dopants are employed to induce electron backdonation for facilitating N2 activation. The synergistic effect of the pyrrolic-N and S-dopants can also suppress the irritating hydrogen evolution reaction, further boosting the NRR performance. This work gives an indication that the combination of two different dopants on electrocatalyst can enhance NRR performance by working in the two tandem steps—the adsorption and activation of N2 molecules, providing a new strategy for NRR electrocatalyst design.


  1. [1]

    Guo, W. H.; Zhang, K. X.; Liang, Z. B.; Zou, R. Q.; Xu, Q. Electrochemical nitrogen fixation and utilization: Theories, advanced catalyst materials and system design. Chem. Soc. Rev. 2019, 48, 5658–5716.

    CAS  Article  Google Scholar 

  2. [2]

    Zhang, S.; Zhao, Y. X.; Shi, R.; Waterhouse, G. I. N.; Zhang, T. R. Photocatalytic ammonia synthesis: Recent progress and future. EnergyChem 2019, 1, 100013.

    Article  Google Scholar 

  3. [3]

    Guo, C. X.; Ran, J. R.; Vasileff, A.; Qiao, S. Z. Rational design of electrocatalysts and photo(electro)catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions. Energy Environ. Sci. 2018, 11, 45–56.

    CAS  Article  Google Scholar 

  4. [4]

    Shipman, M. A.; Symes, M. D. Recent progress towards the electrosynthesis of ammonia from sustainable resources. Catal. Today 2017, 286, 57–68.

    CAS  Article  Google Scholar 

  5. [5]

    Li, M. Q.; Huang, H.; Low, J. X.; Gao, C.; Long, R.; Xiong, Y. J. Recent progress on electrocatalyst and photocatalyst design for nitrogen reduction. Small Methods 2019, 3, 1800388.

    Article  Google Scholar 

  6. [6]

    Xiong, W.; Cheng, X.; Wang, T.; Luo, Y. S.; Feng, J.; Lu, S. Y.; Asiri, A. M.; Li, W.; Jiang, Z. J.; Sun, X. P. Co3(hexahydroxytriphenylene)2: A conductive metal-organic framework for ambient electrocatalytic N2 reduction to NH3. Nano Res. 2020, 13, 1008–1012.

    CAS  Article  Google Scholar 

  7. [7]

    Li, C. B.; Ma, D. W.; Mou, S. Y.; Luo, Y. S.; Ma, B. Y.; Lu, S. Y.; Cui, G. W.; Li, Q.; Liu, Q.; Sun, X. P. Porous LaFeO3 nanofiber with oxygen vacancies as an efficient electrocatalyst for N2 conversion to NH3 under ambient conditions. J. Energy Chem. 2020, 50, 402–408.

    Article  Google Scholar 

  8. [8]

    Xia, L.; Li, B. H.; Zhang, Y.; Zhang, R.; Ji, L.; Chen, H. Y.; Cui, G. W.; Zheng, H. G.; Sun, X. P.; Xie, F. Y. et al. Cr2O3 nanoparticle-reduced graphene oxide hybrid: A highly active electrocatalyst for N2 reduction at ambient conditions. Inorg. Chem. 2019, 58, 2257–2260.

    CAS  Article  Google Scholar 

  9. [9]

    Ma, B. Y.; Zhao, H. T.; Li, T. S.; Liu, Q.; Luo, Y. S.; Li, C. B.; Lu, S. Y.; Asiri, A. M.; Ma, D. W.; Sun, X. P. Iron-group electrocatalysts for ambient nitrogen reduction reaction in aqueous media. Nano Res. 2021, 14, 555–569.

    CAS  Article  Google Scholar 

  10. [10]

    Zhu, X. J.; Zhao, J. X.; Ji, L.; Wu, T. W.; Wang, T.; Gao, S. Y.; Alshehri, A. A.; Alzahrani, K. A.; Luo, Y. L.; Xiang, Y. M. et al. FeOOH quantum dots decorated graphene sheet: An efficient electrocatalyst for ambient N2 reduction. Nano Res. 2020, 13, 209–214.

    CAS  Article  Google Scholar 

  11. [11]

    Wang, X. W.; Qiu, S. Y.; Feng, J. M.; Tong, Y. Y.; Zhou, F. L.; Li, Q. Y.; Song, L.; Chen, S. M.; Wu, K. H.; Su, P. P. et al. Confined Fe-Cu clusters as sub-nanometer reactors for efficiently regulating the electrochemical nitrogen reduction reaction. Adv. Mater. 2020, 32, 2004382.

    CAS  Article  Google Scholar 

  12. [12]

    Zhang, H. C.; Cui, C. N.; Luo, Z. X. MoS2-supported Fe2 clusters catalyzing nitrogen reduction reaction to produce ammonia. J. Phys. Chem. C 2020, 124, 6260–6266.

    CAS  Article  Google Scholar 

  13. [13]

    Zhang, L. L.; Ding, L. X.; Chen, G. F.; Yang, X. F.; Wang, H. H. Ammonia synthesis under ambient conditions: Selective electroreduction of dinitrogen to ammonia on black phosphorus nanosheets. Angew. Chem., Int. Ed. 2019, 58, 2612–2616.

    CAS  Article  Google Scholar 

  14. [14]

    Hu, C. G.; Dai, L. M. Carbon-based metal-free catalysts for electrocatalysis beyond the ORR. Angew. Chem., Int. Ed. 2016, 55, 11736–11758.

    CAS  Article  Google Scholar 

  15. [15]

    Wang, Z. H.; Hu, X.; Liu, Z. Z.; Zou, G. J.; Wang, G. N.; Zhang, K. Recent developments in polymeric carbon nitride-derived photocatalysts and electrocatalysts for nitrogen fixation. ACS Catal. 2019, 9, 10260–10278.

    CAS  Article  Google Scholar 

  16. [16]

    Zhao, S. L.; Lu, X. Y.; Wang, L. Z.; Gale, J.; Amal, R. Carbon-based metal-free catalysts for electrocatalytic reduction of nitrogen for synthesis of ammonia at ambient conditions. Adv. Mater. 2019, 31, 1805367.

    Article  Google Scholar 

  17. [17]

    Chen, C.; Yan, D. F.; Wang, Y.; Zhou, Y. Y.; Zou, Y. Q.; Li, Y. F.; Wang, S. Y. B-N pairs enriched defective carbon nanosheets for ammonia synthesis with high efficiency. Small 2019, 15, 1805029.

    Article  Google Scholar 

  18. [18]

    Ren, J. T.; Wan, C. Y.; Pei, T. Y.; Lv, X. W.; Yuan, Z. Y. Promotion of electrocatalytic nitrogen reduction reaction on N-doped porous carbon with secondary heteroatoms. Appl. Catal. B: Environ. 2020, 266, 118633.

    CAS  Article  Google Scholar 

  19. [19]

    Wang, H.; Wang, L.; Wang, Q.; Ye, S. Y.; Sun, W.; Shao, Y.; Jiang, Z. P.; Qiao, Q.; Zhu, Y. M.; Song, P. F. et al. Ambient electrosynthesis of ammonia: Electrode porosity and composition engineering. Angew. Chem., Int. Ed. 2018, 57, 12360–12364.

    CAS  Article  Google Scholar 

  20. [20]

    Ito, Y.; Cong, W. T.; Fujita, T.; Tang, Z.; Chen, M. W. High catalytic activity of nitrogen and sulfur co-doped nanoporous graphene in the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2015, 54, 2131–2136.

    CAS  Article  Google Scholar 

  21. [21]

    Liang, J.; Jiao, Y.; Jaroniec, M.; Qiao, S. Z. Sulfur and nitrogen dualdoped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance. Angew. Chem., Int. Ed. 2012, 51, 11496–11500.

    CAS  Article  Google Scholar 

  22. [22]

    Duan, J. J.; Chen, S.; Jaroniec, M.; Qiao, S. Z. Heteroatom-doped graphene-based materials for energy-relevant electrocatalytic processes. ACS Catal. 2015, 5, 5207–5234.

    CAS  Article  Google Scholar 

  23. [23]

    Wang, M. F.; Liu, S. S.; Qian, T.; Liu, J.; Zhou, J. Q.; Ji, H. Q.; Xiong, J.; Zhong, J.; Yan, C. L. Over 56.55% Faradaic efficiency of ambient ammonia synthesis enabled by positively shifting the reaction potential. Nat. Commun. 2019, 10, 341.

    CAS  Article  Google Scholar 

  24. [24]

    Zhang, W. Q.; Low, J.; Long, R.; Xiong, Y. J. Metal-free electrocatalysts for nitrogen reduction reaction. EnergyChem 2020, 2, 100040.

    Article  Google Scholar 

  25. [25]

    Liu, Y. M.; Su, Y.; Quan, X.; Fan, X. F.; Chen, S.; Yu, H. T.; Zhao, H. M.; Zhang, Y. B.; Zhao, J. J. Facile ammonia synthesis from electrocatalytic N2 reduction under ambient conditions on N-doped porous carbon. ACS Catal. 2018, 8, 1186–1191.

    CAS  Article  Google Scholar 

  26. [26]

    Qu, K. G.; Zheng, Y.; Zhang, X. X.; Davey, K.; Dai, S.; Qiao, S. Z. Promotion of electrocatalytic hydrogen evolution reaction on nitrogen-doped carbon nanosheets with secondary heteroatoms. ACS Nano 2017, 11, 7293–7300.

    CAS  Article  Google Scholar 

  27. [27]

    Wu, H.; Chen, Z. M.; Xiao, F.; Wang, Y.; Cao, E. P.; Chen, S.; Du, S. C.; Wu, Y. Q.; Ren, Z. Y. Tunable doping of N and S in carbon nanotubes by retarding pyrolysis-gas diffusion to promote electrocatalytic hydrogen evolution. Chem. Commun. 2019, 55, 10011–10014.

    CAS  Article  Google Scholar 

  28. [28]

    Zhu, L. L.; Lin, H. P.; Li, Y. Y.; Liao, F.; Lifshitz, Y.; Sheng, M. Q.; Lee, S. T.; Shao, M. W. A rhodium/silicon co-electrocatalyst design concept to surpass platinum hydrogen evolution activity at high overpotentials. Nat. Commun. 2016, 7, 12272.

    CAS  Article  Google Scholar 

  29. [29]

    Cheng, Y. F.; Lu, S. K.; Liao, F.; Liu, L. B.; Li, Y. Q.; Shao, M. W. Rh-MoS2 nanocomposite catalysts with Pt-like activity for hydrogen evolution reaction. Adv. Funct. Mater. 2017, 27, 1700359.

    Article  Google Scholar 

  30. [30]

    Zheng, J. Y.; Lyu, Y. H.; Qiao, M.; Veder, J. P.; Marco, R. D.; Bradley, J.; Wang, R. L.; Li, Y. F.; Huang, A. B.; Jiang, S. P. et al. Tuning the electron localization of gold enables the control of nitrogen-to-ammonia fixation. Angew. Chem., Int. Ed. 2019, 58, 18604–18609.

    CAS  Article  Google Scholar 

  31. [31]

    Li, Y. B.; Zhang, H. M.; Wang, Y.; Liu, P. R.; Yang, H. G.; Yao, X. D.; Wang, D.; Tang, Z. Y.; Zhao, H. J. A self-sponsored doping approach for controllable synthesis of S and N co-doped trimodal-porous structured graphitic carbon electrocatalysts. Energy Environ. Sci. 2014, 7, 3720–3726.

    CAS  Article  Google Scholar 

  32. [32]

    Shi, L.; Li, Q.; Ling, C. Y.; Zhang, Y. H.; Ouyang, Y. X.; Bai, X. W.; Wang, J. L. Metal-free electrocatalyst for reducing nitrogen to ammonia using a Lewis acid pair. J. Mater. Chem. A 2019, 7, 4865–4871.

    CAS  Article  Google Scholar 

  33. [33]

    Yang, Y. Y.; Zhang, L. F.; Hu, Z. P.; Zheng, Y.; Tang, C.; Chen, P.; Wang, R. G.; Qiu, K. W.; Mao, J.; Ling, T. et al. The crucial role of charge accumulation and spin polarization in activating carbon-based catalysts for electrocatalytic nitrogen reduction. Angew. Chem., Int. Ed. 2020, 59, 4525–4531.

    CAS  Article  Google Scholar 

  34. [34]

    Légaré, M. A.; Bélanger-Chabot, G.; Dewhurst, R. D.; Welz, E.; Krummenacher, I.; Engels, B.; Braunschweig, H. Nitrogen fixation and reduction at boron. Science 2018, 359, 896–900.

    Article  Google Scholar 

  35. [35]

    Hung, C. T.; Yu, N. Y.; Chen, C. T.; Wu, P. H.; Han, X. X.; Kao, Y. S.; Liu, T. C.; Chu, Y. Y.; Deng, F.; Zheng, A. M. et al. Highly nitrogen-doped mesoscopic carbons as efficient metal-free electrocatalysts for oxygen reduction reactions. J. Mater. Chem. A 2014, 2, 20030–20037.

    CAS  Article  Google Scholar 

  36. [36]

    Hu, C. Y.; Chen, X.; Jin, J. B.; Han, Y.; Chen, S. M.; Ju, H. X.; Cai, J.; Qiu, Y. R.; Gao, C.; Wang, C. M. et al. Surface plasmon enabling nitrogen fixation in pure water through a dissociative mechanism under mild conditions. J. Am. Chem. Soc. 2019, 141, 7807–7814.

    CAS  Article  Google Scholar 

  37. [37]

    Zhang, N.; Jalil, A.; Wu, D. X.; Chen, S. M.; Liu, Y. F.; Gao, C.; Ye, W.; Qi, Z. M.; Ju, H. X.; Wang, C. M. et al. Refining defect states in W18O49 by Mo doping: A strategy for tuning N2 activation towards solar-driven nitrogen fixation. J. Am. Chem. Soc. 2018, 140, 9434–9443.

    CAS  Article  Google Scholar 

  38. [38]

    Kitano, M.; Inoue, Y.; Yamazaki, Y.; Hayashi, F.; Kanbara, S.; Matsuishi, S.; Yokoyama, T.; Kim, S. W.; Hara, M.; Hosono, H. Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store. Nat. Chem. 2012, 4, 934–940.

    CAS  Article  Google Scholar 

  39. [39]

    Yu, X. M.; Han, P.; Wei, Z. X.; Huang, L. S.; Gu, Z. X.; Peng, S. J.; Ma, J. M.; Zheng, G. F. Boron-doped graphene for electrocatalytic N2 reduction. Joule 2018, 2, 1610–1622.

    CAS  Article  Google Scholar 

Download references


This work was financially supported in part by the National Key R&D Program of China (No. 2017YFA0207301), the National Natural Science Foundation of China (Nos. 21725102, U1832156, 91961106, 22075267, and 21950410514), CAS Key Research Program of Frontier Sciences (No. QYZDB-SSW-SLH018), CAS Interdisciplinary Innovation Team, Science and Technological Fund of Anhui Province for Outstanding Youth (No. 2008085J05), Youth Innovation Promotion Association of CAS (No. 2019444), Chinese Academy of Sciences President’s International Fellowship Initiative (Nos. 2019PC0114 and 2020T130627), China Postdoctoral Science Foundation (No. 2019M652190), Young Elite Scientist Sponsorship Program by CAST, and DNL Cooperation Fund, CAS (No. DNL201922). DRIFTS and SVUV-PIMS measurements were performed at BL01B and BL04B in the National Synchrotron Radiation Laboratory (NSRL) in Hefei, China. We thank the support from USTC Center for Micro- and Nanoscale Research and Fabrication.

Author information



Corresponding authors

Correspondence to Ran Long or Yujie Xiong.

Electronic supplementary material


Working-in-tandem mechanism of multi-dopants in enhancing electrocatalytic nitrogen reduction reaction performance of carbon-based materials

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Mao, K., Low, J. et al. Working-in-tandem mechanism of multi-dopants in enhancing electrocatalytic nitrogen reduction reaction performance of carbon-based materials. Nano Res. 14, 3234–3239 (2021).

Download citation


  • N2 reduction reaction
  • metal-free catalyst
  • heteroatoms doping
  • asymmetric charge distribution
  • electrocatalysis