Skip to main content

A GQD-based composite film as photon down-converter in CNT/Si solar cells

Abstract

Graphene quantum dots (GQDs), have unique quantum confinement effects, tunable bandgap and luminescence property, with a wide range of potential applications such as optoelectronic and biomedical areas. However, GQDs usually have a strong tendency toward aggregation especially in making solid films, which will degrade their optoelectronic properties, for example, causing undesired fluorescence quenching. Here, we designed a composite film by embedding GQDs in a polyvinyl pyrrolidone (PVP) matrix through hydrogen bonding with well-preserved fluorescence, with a small addition of acid for compensating the poor conductivity of PVP. As a multifunctional solid coating on carbon nanotube/silicon (CNT/Si) solar cells, the photon down-conversion by GQDs and the PVP anti-reflection layer for visible light lead to enhanced external quantum efficiency (by 12.34% in the ultraviolet (UV) range) and cell efficiency (up to 14.94%). Such advanced optical managing enabled by low-cost, carbon-based quantum dots, as demonstrated in our results, can be applied to more versatile optoelectronic and photovoltaic devices based on perovskites, organic and other materials.

References

  1. [1]

    Jamieson, T.; Bakhshi, R.; Petrova, D.; Pocock, R.; Imani, M.; Seifalian, A. M. Biological applications of quantum dots. Biomaterials 2007, 28, 4717–4732.

    Article  CAS  Google Scholar 

  2. [2]

    Yang, Y. X.; Zheng, Y.; Cao, W. R.; Titov, A.; Hyvonen, J.; Manders, J. R.; Xue, J. G.; Holloway, P. H.; Qian, L. High-efficiency light-emitting devices based on quantum dots with tailored nanostructures. Nature Photonics 2015, 9, 259–266.

    Article  CAS  Google Scholar 

  3. [3]

    Selopal, G. S.; Zhao, H. G.; Wang, Z. M.; Rosei, F. Core/shell quantum dots solar cells. Adv. Funct. Mater. 2020, 30, 1908762.

    Article  CAS  Google Scholar 

  4. [4]

    Gill, R.; Zayats, M.; Willner, I. Semiconductor quantum dots for bioanalysis. Angew. Chem., Int. Ed. 2008, 47, 7602–7625.

    Article  CAS  Google Scholar 

  5. [5]

    Wang, F. Y.; Yang, M. F.; Ji, S. H.; Yang, L. L.; Zhao, J. L.; Liu, H. L.; Sui, Y. R.; Sun, Y. F.; Yang, J. H.; Zhang, X. D. Boosting spectral response of multi-crystalline Si solar cells with Mn2+ doped CsPbCl3 quantum dots downconverter. J. Power Sources 2018, 395, 85–91.

    Article  CAS  Google Scholar 

  6. [6]

    Jalalah, M.; Al-Assiri, M. S.; Park, J. G. One-pot gram-scale, eco-friendly, and cost-effective synthesis of CuGaS2/ZnS nanocrystals as efficient UV-harvesting down-converter for photovoltaics. Adv. Energy Mater. 2018, 8, 1703418.

    Article  CAS  Google Scholar 

  7. [7]

    Levchuk, I.; Würth, C.; Krause, F.; Osvet, A.; Batentschuk, M.; Resch-Genger, U.; Kolbeck, C.; Herre, P.; Steinrück, H. P.; Peukert, W. et al. Industrially scalable and cost-effective Mn2+ doped ZnxCd1−x S/ZnS nanocrystals with 70% photoluminescence quantum yield, as efficient down-shifting materials in photovoltaics. Energy Environ. Sci. 2016, 9, 1083–1094.

    Article  CAS  Google Scholar 

  8. [8]

    Lopez-Delgado, R.; Zhou, Y.; Zazueta-Raynaud, A.; Zhao, H.; Pelayo, J. E.; Vomiero, A.; Álvarez-Ramos, M. E.; Rosei, F.; Ayon, A. Enhanced conversion efficiency in Si solar cells employing photoluminescent down-shifting CdSe/CdS core/shell quantum dots. Sci. Rep. 2017, 7, 14104.

    Article  CAS  Google Scholar 

  9. [9]

    Liu, Q. W.; Sun, J. H.; Gao, K.; Chen, N.; Sun, X. T.; Ti, D.; Bai, C. C.; Cui, R. R.; Qu, L. T. Graphene quantum dots for energy storage and conversion: From fabrication to applications. Mater. Chem. Front. 2020, 4, 421–436.

    Article  CAS  Google Scholar 

  10. [10]

    Yan, Y. B.; Gong, J.; Chen, J.; Zeng, Z. P.; Huang, W.; Pu, K. Y.; Liu, J. Y.; Chen, P. Recent advances on graphene quantum dots: From chemistry and physics to applications. Adv. Mater. 2019, 31, 1808283.

    Article  CAS  Google Scholar 

  11. [11]

    Fang, X.; Ding, J. N.; Yuan, N. Y.; Sun, P.; Lv, M. H.; Ding, G. Q.; Zhu, C. Graphene quantum dot incorporated perovskite films: Passivating grain boundaries and facilitating electron extraction. Phys. Chem. Chem. Phys. 2017, 19, 6057–6063.

    Article  CAS  Google Scholar 

  12. [12]

    Zhu, Z. L.; Ma, J. N.; Wang, Z. L.; Mu, C.; Fan, Z. T.; Du, L. L.; Bai, Y.; Fan, L. Z.; Yan, H.; Phillips, D. L. et al. Efficiency enhancement of perovskite solar cells through fast electron extraction: The role of graphene quantum dots. J. Am. Chem. Soc. 2014, 136, 3760–3763.

    Article  CAS  Google Scholar 

  13. [13]

    Diao, S. L.; Zhang, X. J.; Shao, Z. B.; Ding, K.; Jie, J. S.; Zhang, X. H. 12.35% efficient graphene quantum dots/silicon heterojunction solar cells using graphene transparent electrode. Nano Energy 2017, 31, 359–366.

    Article  CAS  Google Scholar 

  14. [14]

    Gao, P.; Ding, K.; Wang, Y.; Ruan, K. Q.; Diao, S. L.; Zhang, Q.; Sun, B. Q.; Jie, J. S. Crystalline Si/graphene quantum dots heterojunction solar cells. J. Phys. Chem. C 2014, 118, 5164–5171.

    Article  CAS  Google Scholar 

  15. [15]

    Tsai, M. L.; Wei, W. R.; Tang, L. B.; Chang, H. C.; Tai, S. H.; Yang, P. K.; Lau, S. P.; Chen, L. J.; He, J. H. Si hybrid solar cells with 13% efficiency via concurrent improvement in optical and electrical properties by employing graphene quantum dots. ACS Nano 2016, 10, 815–821.

    Article  CAS  Google Scholar 

  16. [16]

    Lee, K. D.; Park, M. J.; Kim, D. Y.; Kim, S. M.; Kang, B. J.; Kim, S.; Kim, H.; Lee, H. S.; Kang, Y.; Yoon, S. S. et al. Graphene quantum dot layers with energy-down-shift effect on crystalline-silicon solar cells. ACS Appl. Mater. Interfaces 2015, 7, 19043–19049.

    Article  CAS  Google Scholar 

  17. [17]

    Tsai, M. L.; Tu, W. C.; Tang, L. B.; Wei, T. C.; Wei, W. R.; Lau, S. P.; Chen, L. J.; He, J. H. Efficiency enhancement of silicon heterojunction solar cells via photon management using graphene quantum dot as downconverters. Nano Lett. 2016, 16, 309–313.

    Article  CAS  Google Scholar 

  18. [18]

    Sabetghadam, S. A.; Hosseini, Z.; Zarei, S.; Ghanbari, T. Improvement of the current generation in silicon solar cells by utilizing graphene quantum dot as spectral converter. Mater. Lett. 2020, 279, 128515.

    Article  CAS  Google Scholar 

  19. [19]

    Kovalchuk, A.; Huang, K. W.; Xiang, C. S.; Martí, A. A.; Tour, J. M. Luminescent polymer composite films containing coal-derived graphene quantum dots. ACS Appl. Mater. Interfaces 2015, 7, 26063–26068.

    Article  CAS  Google Scholar 

  20. [20]

    Ren, J. K.; Stagi, L.; Innocenzi, P. Fluorescent carbon dots in solidstate: From nanostructures to functional devices. Prog. Solid State Chem. 2020, 100295, https://doi.org/10.1016/j.progsolidstchem.2020.100295.

  21. [21]

    Zhu, J. Y.; Bai, X.; Zhai, Y.; Chen, X.; Zhu, Y. S.; Pan, G. C.; Zhang, H. Z.; Dong, B.; Song, H. W. Carbon dots with efficient solid-state photoluminescence towards white light-emitting diodes. J. Mater. Chem. C 2017, 5, 11416–11420.

    Article  CAS  Google Scholar 

  22. [22]

    Barman, B. K.; Nagao, T.; Nanda, K. K. Dual roles of a transparent polymer film containing dispersed N-doped carbon dots: A high-efficiency blue light converter and UV screen. Appl. Surf. Sci. 2020, 510, 145405.

    Article  CAS  Google Scholar 

  23. [23]

    Liu Y. Q.; Li Y. J.; Wu Y. L.; Yang G. T.; Mazzarella L.; Procel-Moya P.; Tamboli A. C.; Weber K.; Boccard M.; Isabella O. et al. High-efficiency silicon heterojunction solar cells: Materials, devices and applications. Mater. Sci. Eng. R Rep. 2020, 142, 100579.

    Article  Google Scholar 

  24. [24]

    Wang, L.; Wang, Y. L.; Xu, T.; Liao, H. B.; Yao, C. J.; Liu, Y.; Li, Z.; Chen, Z. W.; Pan, D. Y.; Sun, L. T. et al. Gram-scale synthesis of single-crystalline graphene quantum dots with superior optical properties. Nat. Commun. 2014, 5, 5357.

    Article  CAS  Google Scholar 

  25. [25]

    Wang, J. Y.; Yan, H.; Liu, Z. Q.; Wang, Z. C.; Gao, H. N.; Zhang, S. J.; Wang, B. L.; Xu, N.; Zhang, S. Q.; Liu X. J. et al. Langmuir-Blodgett self-assembly of ultrathin graphene quantum dot films with modulated optical properties. Nanoscale 2018, 10, 19612–19620.

    Article  CAS  Google Scholar 

  26. [26]

    Yang, S. W.; Sun, J.; Zhu, C.; He, P.; Peng, Z.; Ding, G. Q. Supramolecular recognition control of polyethylene glycol modified N-doped graphene quantum dots: Tunable selectivity for alkali and alkaline-earth metal ions. Analyst 2016, 141, 1052–1059.

    Article  CAS  Google Scholar 

  27. [27]

    Qin, H. Y.; Gong, T.; Jin, Y. H.; Cho, Y.; Shin, C.; Lee, C.; Kim, T. Near-UV-emitting graphene quantum dots from graphene hydrogels. Carbon 2015, 94, 181–188.

    Article  CAS  Google Scholar 

  28. [28]

    Wang, Z. J.; Zhao, X. J.; Guo, Z. Z.; Miao, P.; Gong, X. Carbon dots based nanocomposite thin film for highly efficient luminescent solar concentrators. Org. Electron. 2018, 62, 284–289.

    Article  CAS  Google Scholar 

  29. [29]

    Bai, H.; Li, C.; Wang, X. L.; Shi, G. Q. On the gelation of graphene oxide. J. Phys. Chem. C 2011, 115, 5545–5551.

    Article  CAS  Google Scholar 

  30. [30]

    Saini, P.; Sharma, B.; Singh, M.; Tandon, R. P.; Singh, S. P.; Mahapatro, A. K. Electrical properties of self sustained layer of graphene oxide and polyvinylpyriodine composite. Integr. Ferroelectrics 2019, 202, 197–203.

    Article  CAS  Google Scholar 

  31. [31]

    Zhang, T. X.; Zhu, J. Y.; Zhai, Y.; Wang, H.; Bai, X.; Dong, B.; Wang, H. Y.; Song, H. W. A novel mechanism for red emission carbon dots: Hydrogen bond dominated molecular states emission. Nanoscale 2017, 9, 13042–13051.

    Article  CAS  Google Scholar 

  32. [32]

    Jia, Y.; Wei, J. Q.; Wang, K. L.; Cao, A. Y.; Shu, Q. K.; Gui, X. C.; Zhu, Y. Q.; Zhuang, D. M.; Zhang, G.; Ma, B. B. et al. Nanotube-silicon heterojunction solar cells. Adv. Mater. 2008, 20, 4594–4598.

    Article  CAS  Google Scholar 

  33. [33]

    Li, X.; Zang, X. B.; Li, X. M.; Zhu, M.; Chen, Q.; Wang, K. L.; Zhong, M. L.; Wei, J. Q.; Wu, D. H.; Zhu, H. W. Hybrid heterojunction and solid-state photoelectrochemical solar cells. Adv. Energy Mater. 2014, 4, 1400224.

    Article  CAS  Google Scholar 

  34. [34]

    Zang, X. B.; Chen, Q.; Li, P. X.; He, Y. J.; Li, X.; Zhu, M.; Li, X. M.; Wang, K. L.; Zhong, M. L.; Wu, D. H. et al. Highly flexible and adaptable, all-solid-state supercapacitors based on graphene woven-fabric film electrodes. Small 2014, 10, 2583–2588.

    Article  CAS  Google Scholar 

  35. [35]

    McIntosh, K. R.; Lau, G.; Cotsell, J. N.; Hanton, K.; Bätzner, D. L.; Bettiol, F.; Richards, B. S. Increase in external quantum efficiency of encapsulated silicon solar cells from a luminescent down-shifting layer. Prog. Photovoltaics Res. Appl. 2009, 17, 191–197.

    Article  CAS  Google Scholar 

  36. [36]

    Zhao, X. W.; Wu, H. S.; Yang, L. S.; Wu, Y. Z.; Sun, Y. P.; Shang, Y. Y.; Cao, A. Y. High efficiency CNT-Si heterojunction solar cells by dry gas doping. Carbon 2019, 147, 164–171.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A. Y. C. acknowledged the support from the National Natural Science Foundation of China (NSFC) (No. 51672005) and the National Key R&D Program of China (No. 2017YFA0206701). Y. Y. S. acknowledged the National Natural Science Foundation of China (NSFC) (No.51872267). X. W. Z. thanked Qihang Gong for his encouragement and support all the time.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Yuanyuan Shang or Anyuan Cao.

Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Wu, Y., Xia, Z. et al. A GQD-based composite film as photon down-converter in CNT/Si solar cells. Nano Res. 14, 3893–3899 (2021). https://doi.org/10.1007/s12274-021-3311-5

Download citation

Keywords

  • graphene quantum dots
  • polyvinyl pyrrolidone
  • energy-down-shift
  • external quantum efficiency
  • CNT/Si solar cells