Skip to main content

Cornerstone of molecular spintronics: Strategies for reliable organic spin valves

Abstract

Organic spin valve (OSV), one of the most promising and representative devices involving spin injection, transport and detection, has drawn tremendous attention owing to their ultra-long spin relaxation time in the field of molecular spintronics. Since the first demonstration of truly worked vertical OSV device in 2004, efforts in enhancement of high performance and pursuit of spin-related nature have been devoted in related field. It offers a new opportunity to develop the integrated flexible multi-functional arrays based on spintronics in the future. However, the unreliable working state in OSVs due to the lack of exploration on interface control will cause severe impact on the performance evaluation and further restrict their practical application. Herein, we focus on the recent progress in strategies for reliable fabrication and evaluation of typical OSVs in vertical configuration. Firstly, the challenges in protection of two spin interface properties and identification of spin-valve-like signals were proposed. Then, three points for attention including selection of bottom electrodes, optimization of organic spacer, and prevention of metal penetration to improve the device performance and reliability were mentioned. Particularly, various modified strategies to solve the “dead layer” issue were highlighted. Furthermore, we discussed the general protocols in the reliable evaluation of OSVs’ performance and transport mechanism identification. Notably, several key fundamentals resulting in spurious magnetoresistance (MR) response were illustrated. Finally, we also highlighted the future perspectives on spintronic devices of organic materials.

References

  1. [1]

    Dong, H. L.; Hu, W. P. Multilevel investigation of charge transport in conjugated polymers. Acc. Chem. Res. 2016, 49, 2435–2443.

    Article  CAS  Google Scholar 

  2. [2]

    Jang, H. J.; Richter, C. A. Organic spin-valves and beyond: Spin injection and transport in organic semiconductors and the effect of interfacial engineering. Adv. Mater. 2017, 29, 1602739.

    Article  CAS  Google Scholar 

  3. [3]

    Ni, Z. J.; Wang, H. L.; Dong, H. L.; Dang, Y. F.; Zhao, Q.; Zhang, X. T.; Hu, W. P. Mesopolymer synthesis by ligand-modulated direct arylation polycondensation towards n-type and ambipolar conjugated systems. Nat. Chem. 2019, 11, 271–277.

    Article  CAS  Google Scholar 

  4. [4]

    Liu, J.; Zhang, H. T.; Dong, H. L.; Meng, L. Q.; Jiang, L. F.; Jiang, L.; Wang, Y.; Yu, J. S.; Sun, Y. M.; Hu, W. P. et al. High mobility emissive organic semiconductor. Nat. Commun. 2015, 6, 10032.

    Article  CAS  Google Scholar 

  5. [5]

    Zhu, X. H.; Peng, J. B.; Cao, Y.; Roncali, J. Solution-processable single-material molecular emitters for organic light-emitting devices. Chem. Soc. Rev. 2011, 40, 3509–3524.

    Article  CAS  Google Scholar 

  6. [6]

    Zhang, D. W.; Li, M.; Chen, C. F. Recent advances in circularly polarized electroluminescence based on organic light-emitting diodes. Chem. Soc. Rev. 2020, 49, 1331–1343.

    Article  CAS  Google Scholar 

  7. [7]

    Wang, C. L.; Dong, H. L.; Jiang, L.; Hu, W. P. Organic semiconductor crystals. Chem. Soc. Rev. 2018, 47, 422–500.

    Article  CAS  Google Scholar 

  8. [8]

    Liu, J. Y.; Qin, Z. S.; Gao, H. K.; Dong, H. L.; Zhu, J.; Hu, W. P. Vertical organic field-effect transistors. Adv. Funct. Mater. 2019, 29, 1808453.

    Article  CAS  Google Scholar 

  9. [9]

    Ren, X. C.; Yang, F. X.; Gao, X.; Cheng, S. S.; Zhang, X. T.; Dong, H. L.; Hu, W. P. Organic field-effect transistor for energy-related applications: Low-power-consumption devices, near-infrared phototransistors, and organic thermoelectric devices. Adv. Energy Mater. 2018, 8, 1801003.

    Article  CAS  Google Scholar 

  10. [10]

    Liu, J.; Jiang, L.; Hu, W. P.; Liu, Y. Q.; Zhu, D. B. Monolayer organic field-effect transistors. Sci. China Chem. 2019, 62, 313–330.

    Article  CAS  Google Scholar 

  11. [11]

    Qian, J.; Jiang, S.; Li, S. L.; Wang, X. R.; Shi, Y.; Li, Y. Solution-processed 2D molecular crystals: Fabrication techniques, transistor applications, and physics. Adv. Mater. Technol. 2019, 4, 1800182.

    Article  CAS  Google Scholar 

  12. [12]

    Wei, P.; Li, S. T.; Li, D. F.; Yu, H.; Wang, X. D.; Xu, C. C.; Yang, Y. D.; Bu, L. J.; Lu, G. H. Organic-semiconductor: Polymer-electret blends for high-performance transistors. Nano Res. 2018, 11, 5835–5848.

    Article  CAS  Google Scholar 

  13. [13]

    Wang, W.; Lu, B.; Deng, W.; Zhang, X. J.; Lu, Z. J.; Wu, D.; Jie, J. S.; Zhang, X. H. Controlled 2D growth of organic semiconductor crystals by suppressing “coffee-ring” effect. Nano Res. 2020, 13, 2478–2484.

    Article  CAS  Google Scholar 

  14. [14]

    Bessette, A.; Hanan, G. S. Design, synthesis and photophysical studies of dipyrromethene-based materials: Insights into their applications in organic photovoltaic devices. Chem. Soc. Rev. 2014, 43, 3342–3405.

    Article  CAS  Google Scholar 

  15. [15]

    Wadsworth, A.; Moser, M.; Marks, A.; Little, M. S.; Gasparini, N.; Brabec, C. J.; Baran, D.; McCulloch, I. Critical review of the molecular design progress in non-fullerene electron acceptors towards commercially viable organic solar cells. Chem. Soc. Rev. 2019, 48, 1596–1625.

    Article  CAS  Google Scholar 

  16. [16]

    Li, J.; Zhou, K.; Liu, J.; Zhen, Y. G.; Liu, L.; Zhang, J. D.; Dong, H. L.; Zhang, X. T.; Jiang, L.; Hu, W. P. Aromatic extension at 2,6-positions of anthracene toward an elegant strategy for organic semiconductors with efficient charge transport and strong solid state emission. J. Am. Chem. Soc. 2017, 139, 17261–17264.

    Article  CAS  Google Scholar 

  17. [17]

    Zheng, L.; Li, J. F.; Zhou, K.; Yu, X. X.; Zhang, X. T.; Dong, H. L.; Hu, W. P. Molecular-scale integrated multi-functions for organic light-emitting transistors. Nano Res. 2020, 13, 1976–1981.

    Article  CAS  Google Scholar 

  18. [18]

    Qin, Z. S.; Gao, H. K.; Liu, J. Y.; Zhou, K.; Li, J.; Dang, Y. Y.; Huang, L.; Deng, H. X.; Zhang, X. T.; Dong, H. L. et al. High-efficiency single-component organic light-emitting transistors. Adv. Mater. 2019, 31, 1903175.

    Article  CAS  Google Scholar 

  19. [19]

    Liu, D.; De, J. B.; Gao, H. K.; Ma, S. Q.; Ou, Q.; Li, S.; Qin, Z. S.; Dong, H. L.; Liao, Q.; Xu, B. et al. Organic laser molecule with high mobility, high photoluminescence quantum yield, and deep-blue lasing characteristics. J. Am. Chem. Soc. 2020, 142, 6332–6339.

    Article  CAS  Google Scholar 

  20. [20]

    Ren, X. C.; Pei, K.; Peng, B. Y.; Zhang, Z. C.; Wang, Z. R.; Wang, X. Y.; Chan, P. K. L. A low-operating-power and flexible active-matrix organic-transistor temperature-sensor array. Adv. Mater. 2016, 28, 4832–4838.

    Article  CAS  Google Scholar 

  21. [21]

    Wang, H. L.; Zhao, Q.; Ni, Z. J.; Li, Q. Y.; Liu, H. T.; Yang, Y. C.; Wang, L. F.; Ran, Y.; Guo, Y. L.; Hu, W. P. et al. A ferroelectric/electrochemical modulated organic synapse for ultraflexible, artificial visual-perception system. Adv. Mater. 2018, 30, 1803961.

    Article  CAS  Google Scholar 

  22. [22]

    Wang, H. L.; Liu, H. T.; Zhao, Q.; Cheng, C.; Hu, W. P.; Liu, Y. Q. Three-component integrated ultrathin organic photosensors for plastic optoelectronics. Adv. Mater. 2016, 28, 624–630.

    Article  CAS  Google Scholar 

  23. [23]

    Zhao, Q.; Wang, H. L.; Ni, Z. J.; Liu, J.; Zhen, Y. G.; Zhang, X. T.; Jiang, L.; Li, R. J.; Dong, H. L.; Hu, W. P. Organic ferroelectric-based 1T1T random access memory cell employing a common dielectric layer overcoming the half-selection problem. Adv. Mater. 2017, 29, 1701907.

    Article  CAS  Google Scholar 

  24. [24]

    Wang, Y.; Sun, L. J.; Wang, C.; Yang, F. X.; Ren, X. C.; Zhang, X. T.; Dong, H. L.; Hu, W. P. Organic crystalline materials in flexible electronics. Chem. Soc. Rev. 2019, 48, 1492–1530.

    Article  CAS  Google Scholar 

  25. [25]

    Yang, F. X.; Cheng, S. S.; Zhang, X. T.; Ren, X. C.; Li, R. J.; Dong, H. L.; Hu, W. P. 2D organic materials for optoelectronic applications. Adv. Mater. 2018, 30, 1702415.

    Article  CAS  Google Scholar 

  26. [26]

    Zhang, X. T.; Dong, H. L.; Hu, W. P. Organic semiconductor single crystals for electronics and photonics. Adv. Mater. 2018, 30, 1801048.

    Article  CAS  Google Scholar 

  27. [27]

    Fratini, S.; Nikolka, M.; Salleo, A.; Schweicher, G.; Sirringhaus, H. Charge transport in high-mobility conjugated polymers and molecular semiconductors. Nat. Mater. 2020, 19, 491–502.

    Article  CAS  Google Scholar 

  28. [28]

    Ding, S. S.; Tian, Y.; Wang, H. L.; Zhou, Z.; Mi, W. B.; Ni, Z. J.; Zou, Y.; Dong, H. L.; Gao, H. J.; Zhu, D. B. et al. Reliable spin valves of conjugated polymer based on mechanically transferrable top electrodes. ACS Nano 2018, 12, 12657–12664.

    Article  CAS  Google Scholar 

  29. [29]

    Sun, X. N.; Bedoya-Pinto, A.; Llopis, R.; Casanova, F.; Hueso, L. E. Flexible semi-transparent organic spin valve based on bathocuproine. Appl. Phys. Lett. 2014, 105, 083302.

    Article  CAS  Google Scholar 

  30. [30]

    Sanvito, S.; Rocha, A. R. Molecular-spintronics: The art of driving spin through molecules. J. Comput. Theor. Nanos. 2006, 3, 624–642.

    Article  CAS  Google Scholar 

  31. [31]

    Krinichnyi, V. I.; Chemerisov, S. D.; Lebedev, Y. S. EPR and charge-transport studies of polyaniline. Phys. Rev. B 1997, 55, 16233–16244.

    Article  CAS  Google Scholar 

  32. [32]

    Tsurumi, J.; Matsui, H.; Kubo, T.; Häusermann, R.; Mitsui, C.; Okamoto, T.; Watanabe, S.; Takeya, J. Coexistence of ultra-long spin relaxation time and coherent charge transport in organic single-crystal semiconductors. Nat. Phys. 2017, 13, 994–998.

    Article  CAS  Google Scholar 

  33. [33]

    Jiang, S. W.; Yue, F. J.; Wang, S.; Wu, D. Recent advances in spin transport in organic semiconductors. Sci. China Phys. Mech. Astron. 2013, 56, 142–150.

    Article  Google Scholar 

  34. [34]

    Schott, S.; Chopra, U.; Lemaur, V.; Melnyk, A.; Olivier, Y.; Di Pietro, R.; Romanov, I.; Carey, R. L.; Jiao, X. C.; Jellett, C. et al. Polaron spin dynamics in high-mobility polymeric semiconductors. Nat. Phys. 2019, 15, 814–822.

    Article  CAS  Google Scholar 

  35. [35]

    Barraud, C.; Seneor, P.; Mattana, R.; Fusil, S.; Bouzehouane, K.; Deranlot, C.; Graziosi, P.; Hueso, L.; Bergenti, I.; Dediu, V. et al. Unravelling the role of the interface for spin injection into organic semiconductors. Nat. Phys. 2010, 6, 615–620.

    Article  CAS  Google Scholar 

  36. [36]

    Bedoya-Pinto, A.; Miralles, S. G.; Vélez, S.; Atxabal, A.; Gargiani, P.; Valvidares, M.; Casanova, F.; Coronado, E.; Hueso, L. E. Interfaceassisted sign inversion of magnetoresistance in spin valves based on novel lanthanide quinoline molecules. Adv. Funct. Mater. 2018, 28, 1702099.

    Article  CAS  Google Scholar 

  37. [37]

    Droghetti, A.; Thielen, P.; Rungger, I.; Haag, N.; Großmann, N.; Stöckl, J.; Stadtmüller, B.; Aeschlimann, M.; Sanvito, S.; Cinchetti, M. Dynamic spin filtering at the Co/Alq3 interface mediated by weakly coupled second layer molecules. Nat. Commun. 2016, 7, 12668.

    Article  CAS  Google Scholar 

  38. [38]

    Sun, M. F.; Mi, W. B. Progress in organic molecular/ferromagnet spinterfaces: Towards molecular spintronics. J. Mater. Chem. C 2018, 6, 6619–6636.

    Article  CAS  Google Scholar 

  39. [39]

    Galbiati, M.; Tatay, S.; Barraud, C.; Dediu, A. V.; Petroff, F.; Mattana, R.; Seneor, P. Spinterface: Crafting spintronics at the molecular scale. MRS Bull. 2014, 39, 602–607.

    Article  CAS  Google Scholar 

  40. [40]

    Cinchetti, M.; Dediu, V. A.; Hueso, L. E. Activating the molecular spinterface. Nat. Mater. 2017, 16, 507–515.

    Article  CAS  Google Scholar 

  41. [41]

    Forment-Aliaga, A.; Coronado, E. Hybrid interfaces in molecular spintronics. Chem. Rec. 2018, 18, 737–748.

    Article  CAS  Google Scholar 

  42. [42]

    Liang, S. H.; Yang, H. X.; Yang, H. W.; Tao, B. S.; Djeffal, A.; Chshiev, M.; Huang, W. C.; Li, X. G.; Ferri, A.; Desfeux, R. et al. Ferroelectric control of organic/ferromagnetic spinterface. Adv. Mater. 2016, 28, 10204–10210.

    Article  CAS  Google Scholar 

  43. [43]

    Coronado, E. Molecular magnetism: From chemical design to spin control in molecules, materials and devices. Nat. Rev. Mater. 2020, 5, 87–104.

    Article  Google Scholar 

  44. [44]

    Guo, L. D.; Gu, X. R.; Zhu, X. W.; Sun, X. N. Recent advances in molecular spintronics: Multifunctional spintronic devices. Adv. Mater. 2019, 31, 1805355.

    Article  CAS  Google Scholar 

  45. [45]

    Sun, X. N.; Bedoya-Pinto, A.; Mao, Z. P.; Gobbi, M.; Yan, W. J.; Guo, Y. L.; Atxabal, A.; Llopis, R.; Yu, G.; Liu, Y. Q. et al. Active morphology control for concomitant long distance spin transport and photoresponse in a single organic device. Adv. Mater. 2016, 28, 2609–2615.

    Article  CAS  Google Scholar 

  46. [46]

    Sun, X. N.; Vélez, S.; Atxabal, A.; Bedoya-Pinto, A.; Parui, S.; Zhu, X. W.; Llopis, R.; Casanova, F.; Hueso, L. E. A molecular spin-photovoltaic device. Science 2017, 357, 677–680.

    Article  CAS  Google Scholar 

  47. [47]

    Nguyen, T. D.; Ehrenfreund, E.; Vardeny, Z. V. Spin-polarized light-emitting diode based on an organic bipolar spin valve. Science 2012, 337, 204–209.

    Article  CAS  Google Scholar 

  48. [48]

    Prieto-Ruiz, J. P.; Miralles, S. G.; Prima-García, H.; López-Muñoz, A.; Riminucci, A.; Graziosi, P.; Aeschlimann, M.; Cinchetti, M.; Dediu, V. A.; Coronado, E. Enhancing light emission in interface engineered spin-oleds through spin-polarized injection at high voltages. Adv. Mater. 2019, 31, 1806817.

    Article  CAS  Google Scholar 

  49. [49]

    Watanabe, S.; Ando, K.; Kang, K.; Mooser, S.; Vaynzof, Y.; Kurebayashi, H.; Saitoh, E.; Sirringhaus, H. Polaron spin current transport in organic semiconductors. Nat. Phys. 2014, 10, 308–313.

    Article  CAS  Google Scholar 

  50. [50]

    Sun, D. L.; van Schooten, K. J.; Kavand, M.; Malissa, H.; Zhang, C.; Groesbeck, M.; Boehme, C.; Valy Vardeny, Z. Inverse spin Hall effect from pulsed spin current in organic semiconductors with tunable spin-orbit coupling. Nat. Mater. 2016, 15, 863–869.

    Article  CAS  Google Scholar 

  51. [51]

    Wang, S. J.; Venkateshvaran, D.; Mahani, M. R.; Chopra, U.; McNellis, E. R.; Di Pietro, R.; Schott, S.; Wittmann, A.; Schweicher, G; Cubukcu, M. et al. Long spin diffusion lengths in doped conjugated polymers due to enhanced exchange coupling. Nat. Electron. 2019, 2, 98–107.

    Article  CAS  Google Scholar 

  52. [52]

    Devkota, J.; Geng, R. G.; Subedi, R. C.; Nguyen, T. D. Organic spin valves: A review. Adv. Funct. Mater. 2016, 26, 3881–3898.

    Article  CAS  Google Scholar 

  53. [53]

    Xiong, Z. H.; Wu, D.; Valy Vardeny, Z.; Shi, J. Giant magnetoresistance in organic spin-valves. Nature 2004, 427, 821–824.

    Article  CAS  Google Scholar 

  54. [54]

    Sun, D. L.; Ehrenfreund, E.; Valy Vardeny, Z. The first decade of organic spintronics research. Chem. Commun. 2014, 50, 1781–1793.

    Article  CAS  Google Scholar 

  55. [55]

    Ding, S. S.; Tian, Y.; Li, Y.; Mi, W. B.; Dong, H. L.; Zhang, X. T.; Hu, W. P.; Zhu, D. B. Inverse magnetoresistance in polymer spin valves. ACS Appl. Mater. Interfaces 2017, 9, 15644–15651.

    Article  CAS  Google Scholar 

  56. [56]

    Ciudad, D.; Gobbi, M.; Kinane, C. J.; Eich, M.; Moodera, J. S.; Hueso, L. E. Sign control of magnetoresistance through chemically engineered interfaces. Adv. Mater. 2014, 26, 7561–7567.

    Article  CAS  Google Scholar 

  57. [57]

    Julliere, M. Tunneling between ferromagnetic films. Phys. Lett. A 1975, 54, 225–226.

    Article  Google Scholar 

  58. [58]

    Vinzelberg, H.; Schumann, J.; Elefant, D.; Gangineni, R. B.; Thomas, J.; Büchner, B. Low temperature tunneling magnetoresistance on (La, Sr) MnO3/Co junctions with organic spacer layers. J. Appl. Phys. 2008, 103, 093720.

    Article  CAS  Google Scholar 

  59. [59]

    Morley, N. A.; Rao, A.; Dhandapani, D.; Gibbs, M. R. J.; Grell, M.; Richardson, T. Room temperature organic spintronics. J. Appl. Phys. 2008, 103, 07F306.

    Article  CAS  Google Scholar 

  60. [60]

    Jiang, S. W.; Shu, D. J.; Lin, L.; Shi, Y. J.; Shi, J.; Ding, H. F.; Du, J.; Wang, M.; Wu, D. Strong asymmetrical bias dependence of magnetoresistance in organic spin valves: The role of ferromagnetic/organic interfaces. New J. Phys. 2014, 16, 013028.

    Article  CAS  Google Scholar 

  61. [61]

    Jiang, S. W.; Chen, B. B.; Wang, P.; Zhou, Y.; Shi, Y. J.; Yue, F. J.; Ding, H. F.; Wu, D. Voltage polarity manipulation of the magnetoresistance sign in organic spin valve devices. Appl. Phys. Lett. 2014, 104, 262402.

    Article  CAS  Google Scholar 

  62. [62]

    The interface is still the device. Nat. Mater. 2012, 11, 91.

  63. [63]

    Sidorenko, A. A.; Pernechele, C.; Lupo, P.; Ghidini, M.; Solzi, M.; De Renzi, R.; Bergenti, I.; Graziosi, P.; Dediu, V.; Hueso, L. et al. Interface effects on an ultrathin Co film in multilayers based on the organic semiconductor Alq3. Appl. Phys. Lett. 2010, 97, 162509.

    Article  CAS  Google Scholar 

  64. [64]

    Fourmental, C.; Bellec, A.; Repain, V.; Lagoute, J.; Chacon, C.; Girard, Y.; Rousset, S.; Dappe, Y. J.; Vlad, A.; Resta, A. et al. Deep metallic interdiffusion in a model ferromagnetic/molecular system. Phys. Rev. Mater. 2019, 3, 083603.

    Article  CAS  Google Scholar 

  65. [65]

    Drew, A. J.; Szulczewski, G.; Nuccio, L.; Gillin, W. P. The role of interfaces in organic spin valves revealed through spectroscopic and transport measurements. Phys. Status Solidi B 2012, 249, 9–17.

    Article  CAS  Google Scholar 

  66. [66]

    Lach, S.; Altenhof, A.; Tarafder, K.; Schmitt, F.; Ali, M. E.; Vogel, M.; Sauther, J.; Oppeneer, P. M.; Ziegler, C. Metal-organic hybrid interface states of a ferromagnet/organic semiconductor hybrid junction as basis for engineering spin injection in organic spintronics. Adv. Funct. Mater. 2012, 22, 989–997.

    Article  CAS  Google Scholar 

  67. [67]

    Shi, S. W.; Sun, Z. Y.; Bedoya-Pinto, A.; Graziosi, P.; Li, X.; Liu, X. J.; Hueso, L.; Dediu, V. A.; Luo, Y.; Fahlman, M. Hybrid interface states and spin polarization at ferromagnetic metal-organic heterojunctions: Interface engineering for efficient spin injection in organic spintronics. Adv. Funct. Mater. 2014, 24, 4812–4821.

    Article  CAS  Google Scholar 

  68. [68]

    Rijks, T. G.; Coehoorn, R.; de Jong, M. J.; de Jonge, W. J. Semiclassical calculations of the anisotropic magnetoresistance of NiFe-based thin films, wires, and multilayers. Phys. Rev. B 1995, 51, 283–291.

    Article  CAS  Google Scholar 

  69. [69]

    Kamiya, T.; Miyahara, C.; Tada, H. Large tunneling anisotropic magnetoresistance in La0.7Sr0.3MnO3/pentacene/Cu structures prepared on SrTiO3 (110) substrates. Appl. Phys. Lett. 2017, 110, 032401.

    Article  CAS  Google Scholar 

  70. [70]

    Grünewald, M.; Wahler, M.; Schumann, F.; Michelfeit, M.; Gould, C.; Schmidt, R.; Würthner, F.; Schmidt, G.; Molenkamp, L. W. Tunneling anisotropic magnetoresistance in organic spin valves. Phys. Rev. B 2011, 84, 125208.

    Article  CAS  Google Scholar 

  71. [71]

    Wang, K.; Sanderink, J. G. M.; Bolhuis, T.; van der Wiel, W. G.; de Jong, M. P. Tunneling anisotropic magnetoresistance in C60-based organic spintronic systems. Phys. Rev. B 2014, 89, 174419.

    Article  CAS  Google Scholar 

  72. [72]

    Ding, S. S.; Tian, Y.; Dong, H. L.; Zhu, D. B.; Hu, W. P. Anisotropic magnetoresistance in NiFe-based polymer spin valves. ACS Appl. Mater. Interfaces 2019, 11, 11654–11659.

    Article  CAS  Google Scholar 

  73. [73]

    Yang, W. T.; Shi, Q.; Miao, T.; Li, Q.; Cai, P.; Liu, H.; Lin, H. X.; Bai, Y.; Zhu, Y. Y.; Yu, Y. et al. Achieving large and nonvolatile tunable magnetoresistance in organic spin valves using electronic phase separated manganites. Nat. Commun. 2019, 10, 3877.

    Article  CAS  Google Scholar 

  74. [74]

    Ding, S. S.; Tian, Y.; Liu, X.; Zou, Y.; Dong, H. L.; Mi, W. B.; Hu, W. P. Unveiling the role of Fe3O4 in polymer spin valve near Verwey transition. Nano Res. 2021, 14, 304–310.

    Article  CAS  Google Scholar 

  75. [75]

    Groesbeck, M.; Liu, H. L.; Kavand, M.; Lafalce, E.; Wang, J. Y.; Pan, X.; Tennahewa, T. H.; Popli, H.; Malissa, H.; Boehme, C. et al. Separation of spin and charge transport in pristine π-conjugated polymers. Phys. Rev. Lett. 2020, 124, 067702.

    Article  CAS  Google Scholar 

  76. [76]

    Francis, T. L.; Mermer, Ö.; Veeraraghavan, G.; Wohlgenannt, M. Large magnetoresistance at room temperature in semiconducting polymer sandwich devices. New J. Phys. 2004, 6, 185.

    Article  CAS  Google Scholar 

  77. [77]

    Wagemans, W.; Janssen, P.; Schellekens, A. J.; Bloom, F. L.; Bobbert, P. A.; Koopmans, B. The many faces of organic magnetoresistance. Spin 2011, 1, 93–108.

    Article  CAS  Google Scholar 

  78. [78]

    Gao, N.; Li, L.; Lu, N. D.; Xie, C. Q.; Liu, M.; Bässler, H. Unified percolation model for bipolaron-assisted organic magnetoresistance in the unipolar transport regime. Phys. Rev. B 2016, 94, 075201.

    Article  CAS  Google Scholar 

  79. [79]

    Janssen, P.; Cox, M.; Wouters, S. H. W.; Kemerink, M.; Wienk, M. M.; Koopmans, B. Tuning organic magnetoresistance in polymer-fullerene blends by controlling spin reaction pathways. Nat. Commun. 2013, 4, 2286.

    Article  CAS  Google Scholar 

  80. [80]

    Nguyen, T. D.; Sheng, Y.; Rybicki, J.; Wohlgenannt, M. Magnetic field-effects in bipolar, almost hole-only and almost electron-only tris-(8-hydroxyquinoline) aluminum devices. Phys. Rev. B 2008, 77, 235209.

    Article  CAS  Google Scholar 

  81. [81]

    Harmon, N. J.; Flatté, M. E. Organic magnetoresistance from deep traps. J. Appl. Phys. 2014, 116, 043707.

    Article  CAS  Google Scholar 

  82. [82]

    Ding, S. S.; Tian, Y.; Li, Y.; Zhang, H. T.; Zhou, K.; Liu, J. Y.; Qin, L.; Zhang, X. X.; Qiu, X. H.; Dong, H. L. et al. Organic single-crystal spintronics: Magnetoresistance devices with high magnetic-field sensitivity. ACS Nano 2019, 13, 9491–9497.

    Article  CAS  Google Scholar 

  83. [83]

    Wang, F. J.; Macià F.; Wohlgenannt, M.; Kent, A. D.; Flatté, M. E. Magnetic fringe-field control of electronic transport in an organic film. Phys. Rev. X 2012, 2, 021013.

    Google Scholar 

  84. [84]

    Macià, F.; Wang, F. J.; Harmon, N. J.; Kent, A. D.; Wohlgenannt, M.; Flatté, M. E. Organic magnetoelectroluminescence for room temperature transduction between magnetic and optical information. Nat. Commun. 2014, 5, 3609.

    Article  CAS  Google Scholar 

  85. [85]

    Chen, B. B.; Zhou, Y.; Wang, S.; Shi, Y. J.; Ding, H. F.; Wu, D. Giant magnetoresistance enhancement at room-temperature in organic spin valves based on La0.67Sr0.33MnO3 electrodes. Appl. Phys. Lett. 2013, 103, 072402.

    Article  CAS  Google Scholar 

  86. [86]

    Park, J. H.; Vescovo, E.; Kim, H. J.; Kwon, C.; Ramesh, R.; Venkatesan, T. Magnetic properties at surface boundary of a half-metallic ferromagnet La0.7Sr0.3MnO3. Phys. Rev. Lett. 1998, 81, 1953–1956.

    Article  CAS  Google Scholar 

  87. [87]

    Felser, C.; Fecher, G. H.; Balke, B. Spintronics: A challenge for materials science and solid-state chemistry. Angew. Chem., Int. Ed. 2007, 46, 668–699.

    Article  CAS  Google Scholar 

  88. [88]

    Zhang, X. M.; Mizukami, S.; Kubota, T.; Ma, Q. L.; Oogane, M.; Naganuma, H.; Ando, Y.; Miyazaki, T. Observation of a large spin-dependent transport length in organic spin valves at room temperature. Nat. Commun. 2013, 4, 1392.

    Article  CAS  Google Scholar 

  89. [89]

    Li, H. S.; Li, X.; Kim, D.; Zhao, G. J.; Zhang, D. L.; Diao, Z. T.; Chen, T. Y.; Wang, J. P. High spin polarization in epitaxial Fe4N thin films using Cr and Ag as buffer layers. Appl. Phys. Lett. 2018, 112, 162407.

    Article  CAS  Google Scholar 

  90. [90]

    Li, Z. R.; Wang, X. C.; Dai, H. T.; Mi, W. B.; Bai, H. L. Spin dependent transport and magnetic properties in Fe4N/tris(8-hydroxyquinoline) aluminum/Co organic spin valves fabricated by facing-target sputtering. Thin Solid Films 2015, 588, 26–33.

    Article  CAS  Google Scholar 

  91. [91]

    Feng, N.; Mi, W. B.; Wang, X. C.; Bai, H. L. First-principles study on the interfacial magnetic and electronic properties of Fe4N(001)/Si and Fe4N(111)/graphene bilayers. Comput. Mater. Sci. 2015, 96, 256–262.

    Article  CAS  Google Scholar 

  92. [92]

    Kawasugi, Y.; Ujino, T.; Tada, H. Room-temperature magnetoresistance in organic spin-valves based on a Co2MnSi Heusler alloy. Org. Electron. 2013, 14, 3186–3189.

    Article  CAS  Google Scholar 

  93. [93]

    Lee, K. M.; Choi, J. W.; Sok, J.; Min, B. C. Temperature dependence of the interfacial magnetic anisotropy in W/CoFeB/MgO. AIP Adv. 2017, 7, 065107.

    Article  CAS  Google Scholar 

  94. [94]

    Huang, S. X.; Chen, T. Y.; Chien, C. L. Spin polarization of amorphous CoFeB determined by point-contact Andreev reflection. Appl. Phys. Lett. 2008, 92, 242509.

    Article  CAS  Google Scholar 

  95. [95]

    Schoonus, J. J. H. M.; Lumens, P. G. E.; Wagemans, W.; Kohlhepp, J. T.; Bobbert, P. A.; Swagten, H. J. M.; Koopmans, B. Magnetoresistance in hybrid organic spin valves at the onset of multiple-step tunneling. Phys. Rev. Lett. 2009, 103, 146601.

    Article  CAS  Google Scholar 

  96. [96]

    Uhrmann, T.; Dimopoulos, T.; Brückl, H.; Lazarov, V. K.; Kohn, A.; Paschen, U.; Weyers, S.; Bär, L.; Rührig, M. Characterization of embedded MgO/ferromagnet contacts for spin injection in silicon. J. Appl. Phys. 2008, 103, 063709.

    Article  CAS  Google Scholar 

  97. [97]

    Carlegrim, E.; Kanciurzewska, A.; de Jong, M. P.; Tengstedt, C.; Fahlman, M. The unoccupied electronic structure of the semiconducting room temperature molecular magnet V(TCNE)2. Chem. Phys. Lett. 2008, 452, 173–177.

    Article  CAS  Google Scholar 

  98. [98]

    Yoo, J. W.; Chen, C. Y.; Jang, H. W.; Bark, C. W.; Prigodin, V. N.; Eom, C. B.; Epstein, A. J. Spin injection/detection using an organic-based magnetic semiconductor. Nat. Mater. 2010, 9, 638–642.

    Article  CAS  Google Scholar 

  99. [99]

    Shim, J. H.; Raman, K. V.; Park, Y. J.; Santos, T. S.; Miao, G. X.; Satpati, B.; Moodera, J. S. Large spin diffusion length in an amorphous organic semiconductor. Phys. Rev. Lett. 2008, 100, 226603.

    Article  CAS  Google Scholar 

  100. [100]

    Wang, W. D.; Yu, M. H.; Batzill, M.; He, J. B.; Diebold, U.; Tang, J. K. Enhanced tunneling magnetoresistance and high-spin polarization at room temperature in a polystyrene-coated Fe3O4 granular system. Phys. Rev. B 2006, 73, 134412.

    Article  CAS  Google Scholar 

  101. [101]

    Zhang, X. M.; Tong, J. W.; Zhu, H. E; Wang, Z. C; Zhou, L. Q; Wang, S. G; Miyashita, T.; Mitsuishi, M.; Qin, G. W. Room temperature magnetoresistance effects in ferroelectric poly(vinylidene fluoride) spin valves. J. Mater. Chem. C 2017, 5, 5055–5062.

    Article  CAS  Google Scholar 

  102. [102]

    Dey, P.; Rawat, R.; Potdar, S. R.; Choudhary, R. J.; Banerjee, A. Temperature driven transition from giant to tunneling magnetoresistance in Fe3O4/Alq3/Co spin Valve: Role of Verwey transition of Fe3O4. J. Appl. Phys. 2014, 115, 17C110.

    Article  CAS  Google Scholar 

  103. [103]

    Liang, S. H.; Geng, R. G; Yang, B. S.; Zhao, W. B.; Chandra Subedi, R.; Li, X. G.; Han, X. F.; Nguyen, T. D. Curvature-enhanced spinorbit coupling and spinterface effect in fullerene-based spin valves. Sci. Rep. 2016, 6, 19461.

    Article  CAS  Google Scholar 

  104. [104]

    Vetter, E.; VonWald, I.; Yang, S. J.; Yan, L.; Koohfar, S.; Kumah, D.; Yu, Z. G.; You, W.; Sun, D. L. Tuning of spin-orbit coupling in metal-free conjugated polymers by structural conformation. Phys. Rev. Mater. 2020, 4, 085603.

    Article  CAS  Google Scholar 

  105. [105]

    Wittmann, A.; Schweicher, G.; Broch, K.; Novak, J.; Lami, V.; Cornil, D.; McNellis, E. R.; Zadvorna, O.; Venkateshvaran, D.; Takimiya, K. et al. Tuning spin current injection at ferromagnet-nonmagnet interfaces by molecular design. Phys. Rev. Lett. 2020, 124, 027204.

    Article  CAS  Google Scholar 

  106. [106]

    Zheng, Y. H.; Feng, Y. Q.; Gao, D.; Zheng, N. H.; Li, D.; Jiang, L. T.; Wang, X.; Jin, K. J.; Yu, G. Magnetoresistance and spinterface of organic spin valves based on diketopyrrolopyrrole polymers. Adv. Electron. Mater. 2019, 5, 1900318.

    Article  CAS  Google Scholar 

  107. [107]

    Nguyen, T. D.; Hukic-Markosian, G.; Wang, F. J.; Wojcik, L.; Li, X. G.; Ehrenfreund, E.; Valy Vardeny, Z. Isotope effect in spin response of π-conjugated polymer films and devices. Nat. Mater. 2010, 9, 345–352.

    Article  CAS  Google Scholar 

  108. [108]

    Geng, R. G.; Subedi, R. C.; Luong, H. M.; Pham, M. T.; Huang, W. C.; Li, X. G.; Hong, K. L.; Shao, M.; Xiao, K.; Hornak, L. A. et al. Effect of charge localization on the effective hyperfine interaction in organic semiconducting polymers. Phys. Rev. Lett. 2018, 120, 086602.

    Article  CAS  Google Scholar 

  109. [109]

    Tran, T. L. A.; Le, T. Q.; Sanderink, J. G. M.; van der Wiel, W. G.; de Jong, M. P. The multistep tunneling analogue of conductivity mismatch in organic spin valves. Adv. Funct. Mater. 2012, 22, 1180–1189.

    Article  CAS  Google Scholar 

  110. [110]

    Guo, L. D.; Qin, Y.; Gu, X. R.; Zhu, X. W.; Zhou, Q.; Sun, X. N. Spin transport in organic molecules. Front. Chem. 2019, 7, 428.

    Article  CAS  Google Scholar 

  111. [111]

    Schulz, L.; Nuccio, L.; Willis, M.; Desai, P.; Shakya, P.; Kreouzis, T.; Malik, V. K.; Bernhard, C.; Pratt, F. L.; Morley, N. A. et al. Engineering spin propagation across a hybrid organic/inorganic interface using a polar layer. Nat. Mater. 2011, 10, 39–44.

    Article  CAS  Google Scholar 

  112. [112]

    Borgatti, F.; Bergenti, I.; Bona, F.; Dediu, V.; Fondacaro, A.; Huotari, S.; Monaco, G.; MacLaren, D. A.; Chapman, J. N.; Panaccione, G. Understanding the role of tunneling barriers in organic spin valves by hard X-ray photoelectron spectroscopy. Appl. Phys. Lett. 2010, 96, 043306.

    Article  CAS  Google Scholar 

  113. [113]

    Sun, X. N.; Gobbi, M.; Bedoya-Pinto, A.; Txoperena, O.; Golmar, F.; Llopis, R.; Chuvilin, A.; Casanova, F.; Hueso, L. E. Room-temperature air-stable spin transport in bathocuproine-based spin valves. Nat. Commun. 2013, 4, 2794.

    Article  CAS  Google Scholar 

  114. [114]

    Sun, D. L.; Yin, L. F.; Sun, C. J.; Guo, H. W.; Gai, Z.; Zhang, X. G.; Ward, T. Z.; Cheng, Z. H.; Shen, J. Giant magnetoresistance in organic spin valves. Phys. Rev. Lett. 2010, 104, 236602.

    Article  CAS  Google Scholar 

  115. [115]

    Wang, S.; Shi, Y. J.; Lin, L.; Chen, B. B.; Yue, F. J.; Du, J.; Ding, H. F.; Zhang, F. M.; Wu, D. Room-temperature spin valve effects in La0.67Sr0.33MnO3/Alq3/Co devices. Synth. Met. 2011, 161, 1738–1741.

    Article  CAS  Google Scholar 

  116. [116]

    Tatay, S.; Barraud, C.; Galbiati, M.; Seneor, P.; Mattana, R.; Bouzehouane, K.; Deranlot, C.; Jacquet, E.; Forment-Aliaga, A.; Jegou, P. et al. Self-assembled monolayer-functionalized half-metallic manganite for molecular spintronics. ACS Nano 2012, 6, 8753–8757.

    Article  CAS  Google Scholar 

  117. [117]

    Galbiati, M. Molecular Spintronics: From Organic Semiconductors to Self-Assembled Monolayers; Springer: Cham, 2016.

  118. [118]

    Galbiati, M.; Barraud, C.; Tatay, S.; Bouzehouane, K.; Deranlot, C.; Jacquet, E.; Fert, A.; Seneor, P.; Mattana, R.; Petroff, F. Unveiling self-assembled monolayers’ potential for molecular spintronics: Spin transport at high voltage. Adv. Mater. 2012, 24, 6429–6432.

    Article  CAS  Google Scholar 

  119. [119]

    Galbiati, M.; Tatay, S.; Delprat, S.; Le Khanh, H.; Servet, B.; Deranlot, C.; Collin, S.; Seneor, P.; Mattana, R.; Petroff, F. Is spin transport through molecules really occurring in organic spin valves? A combined magnetoresistance and inelastic electron tunnelling spectroscopy study. Appl. Phys. Lett. 2015, 106, 082408.

    Article  CAS  Google Scholar 

  120. [120]

    Barraud, C.; Bouzehouane, K.; Deranlot, C.; Fusil, S.; Jabbar, H.; Arabski, J.; Rakshit, R.; Kim, D. J.; Kieber, C.; Boukari, S. et al. Unidirectional spin-dependent molecule-ferromagnet hybridized states anisotropy in cobalt phthalocyanine based magnetic tunnel junctions. Phys. Rev. Lett. 2015, 114, 206603.

    Article  CAS  Google Scholar 

  121. [121]

    Barraud, C.; Bouzehouane, K.; Deranlot, C.; Kim, D. J.; Rakshit, R.; Shi, S.; Arabski, J.; Bowen, M.; Beaurepaire, E.; Boukari, S. et al. Phthalocyanine based molecular spintronic devices. Dalton Trans. 2016, 45, 16694–16699.

    Article  CAS  Google Scholar 

  122. [122]

    Wagemans, W.; Koopmans, B. Spin transport and magnetoresistance in organic semiconductors. Phys. Status Solidi B 2011, 248, 1029–1041.

    Article  CAS  Google Scholar 

  123. [123]

    Macià, F.; Wang, F.; Harmon, N. J.; Wohlgenannt, M.; Kent, A. D.; Flatté, M. E. Hysteretic control of organic conductance due to remanent magnetic fringe fields. Appl. Phys. Lett. 2013, 102, 042408.

    Article  CAS  Google Scholar 

  124. [124]

    Bairagi, K.; Romero, D. G.; Calavalle, F.; Catalano, S.; Zuccatti, E.; Llopis, R.; Casanova, F.; Hueso, L. E. Room-temperature operation of a p-type molecular spin photovoltaic device on a transparent substrate. Adv. Mater. 2020, 32, 1906908.

    Article  CAS  Google Scholar 

  125. [125]

    Li, F.; Li, T.; Chen, F.; Zhang, F. P. Excellent spin transport in spin valves based on the conjugated polymer with high carrier mobility. Sci. Rep. 2015, 5, 9355.

    Article  CAS  Google Scholar 

  126. [126]

    Yu, Z. G. Impurity-band transport in organic spin valves. Nat. Commun. 2014, 5, 4842.

    Article  CAS  Google Scholar 

  127. [127]

    Riminucci, A.; Yu, Z. G.; Prezioso, M.; Cecchini, R.; Bergenti, I.; Graziosi, P.; Dediu, V. A. Controlling magnetoresistance by oxygen impurities in Mq3-based molecular spin valves. ACS Appl. Mater. Interfaces 2019, 11, 8319–8326.

    Article  CAS  Google Scholar 

  128. [128]

    Grünewald, M.; Göckeritz, R.; Homonnay, N.; Würthner, F.; Molenkamp, L. W.; Schmidt, G. Vertical organic spin valves in perpendicular magnetic fields. Phys. Rev. B 2013, 88, 085319.

    Article  CAS  Google Scholar 

  129. [129]

    Kalinowski, J.; Cocchi, M.; Virgili, D.; Di Marco, P.; Fattori, V. Magnetic field effects on emission and current in Alq3-based electroluminescent diodes. Chem. Phys. Lett. 2003, 380, 710–715.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the National Key R&D Program of China (Nos. 2016YFB0401100 and 2017YFA0204503), and the National Natural Science Foundation of China (Nos. 52003190, 51633006, 91833306, 21875158, 51703159, and 51733004).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Yuan Tian or Wenping Hu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ding, S., Tian, Y. & Hu, W. Cornerstone of molecular spintronics: Strategies for reliable organic spin valves. Nano Res. 14, 3653–3668 (2021). https://doi.org/10.1007/s12274-021-3310-6

Download citation

Keywords

  • molecular spintronics
  • organic spin valves
  • magnetoresistance
  • device reliability
  • fair performance evaluation